GAZDASÁGI MATEMATIKA I.
|
|
- Valéria Borbély
- 8 évvel ezelőtt
- Látták:
Átírás
1 GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z A hlmznk) ill. b / A (b nem eleme z A hlmznk). Egy hlmz kkor dott, h minden objektumról el tudjuk dönteni, hogy eleme hlmznk vgy nem z. Hlmzok megdási módji: felsorolás pl. A = {2, 3, 5, 7, } (z els 5 prímszámból álló hlmz), ismert hlmz dott tuljdonságú elemeinek megdás pl. A = { n N : n páros } hol N természetes számok hlmz, melyet ismertnek tekintünk. Definíciók. Azt hlmzt melynek egyetlen eleme sincs üres hlmznk nevezzük és -tel jelöljük. Az A és B hlmzokt egyenl nek nevezzük, h elemei ugynzok. Ezt A = B-vel jelöljük, tgdását A B jelöli. Azt mondjuk, hogy z A hlmz részhlmz B hlmznk, h A minden eleme eleme B-nek. Jelölése: A B. Ezt úgy is írhtjuk, hogy B A, ezt úgy olvssuk, hogy B trtlmzz z A hlmzt. Az A hlmz vlódi részhlmz B hlmznk, h A B és A B. Megjegyzések. Denícióinkt, állításinkt egyszer bben foglmzhtjuk meg mtemtiki logik jeleinek hsználtávl. Ítélet (állítás) ltt olyn kijelentést értünk melyr l egyértelm en eldönthet, hogy igz (i) vgy hmis (h). Állításokból újbb állításokt kphtunk z 5 logiki m velet (negáció, konjunkció, diszjunkció, implikáció, ekivivlenci) segítségével. Legyenek P, Q állítások. A logiki m veletek deníciói: P (nem P, vgy P tgdás) kkor és cskis kkor igz, h P hmis. P Q (P és Q) kkor és cskis kkor igz h P és Q is igz. P Q (P vgy Q) kkor és cskis kkor igz h P és Q leglább egyike igz. P = Q (P-b l következik Q)kkor és cskis kkor igz h P hmis vgy h Q igz. P Q (P ekvivlens Q-vl) kkor és cskis kkor igz h P és Q vgy mindketten igzk vgy mindketten hmisk. P = Q esetén zt mondjuk, hogy P elegend Q teljesüléséhez, vgy Q szükséges P teljesüléséhez. Beláthtó, hogy (P = Q) ( Q = P ) P Q esetén zt mondjuk, hogy P szükséges és elegend Q teljesüléséhez. Hsználjuk még logiki kvntorokt: univerzális kvntor: x = minden x-re egzisztenciális kvntor: x = létezik x
2 2 GAZDASÁGI MATEMATIKA I. E jelölések segítségével pl. A = B ( x)((x A = x B) (x B = x A)), A B ( x)(x A = x B). M veletek hlmzokkl. Célszer vizsgált hlmzokt egy X lphlmz részhlmzink tekinteni. Definíciók. A B := { x X : x A vgy x B } z A és B hlmzok uniój vgy egyesítése A B := { x X : x A és x B } z A és B hlmzok metszete vgy közös része A \ B := { x X : x A és x / B } z A és B hlmzok különbsége A := X \ A z A hlmz komplementere,, \ binér (kétváltozós) m veletek, komplementerképzés unér (egyváltozós) m velet. Az A és B hlmzokt diszjunktnk nevezzük, h metszetük üres. Állítás. Tetsz leges A, B, C X hlmzokr teljesülnek z lábbi tuljdonságok. A B = B A, A (B C) = (A B) C, A B = B A, A (B C) = (A B) C, A (B C) = (A B) (A C), A (B C) = (A B) (A C), A A = A, A A = A, A B = A B, A B = A B. A felsorolt tuljdonságok nevei rendre (zz felsorolás sorrendjében) z unió ill. metszetképzésre vontkozó kommuttivitás, sszocitivitás, disztributivitás, idempotenci, és de Morgn féle zonosságok. A hlmzm veletek zonossági z un. Venn digrmmokkl szemléltethet k. Definíciók. Hlmzrendszer (vgy hlmzcslád) ltt olyn (nemüres) hlmzt értünk, melynek elemi hlmzok. H I egy (nemüres) hlmz és minden i I elemhez meg vn dv egy A i vel jelölt hlmz, kkor z A = { A i : i I } hlmzrendszert I-vel indexelt hlmzrendszernek nevezzük, I neve indexhlmz. Egy R hlmzrendszer unióját és metszetét R := { x : A R úgy hogy x A }, R := { x : A R mellett x A } deniálj. H R = A = { A i : i I } egy I hlmzzl indexelt hlmzrendszer, kkor z unióját és metszetét -vel szokás jelölni. i I, i I
3 GAZDASÁGI MATEMATIKA I. 3.2 Relációk Definíció. Az A és B hlmzok Descrtes szorztán (vgy direkt szorztán) e hlmzok elemeib l képezett összes (, b) rendezett párok hlmzát értjük, hol A, b B. Jelölésére z A B szimbólumot hsználjuk. Azz A B = { (, b) : A, b B }. Rendezett párok egyenl ségére megköveteljük zt, hogy (, b) = (c, d) kkor és cskis kkor h = c, b = d. Hsználjuk z A A = A 2 jelölést is. Megjegyezzük, hogy A B áltlábn nem egyenl B A-vl. Definíció. Az A és B hlmzok Descrtes szorztánk egy R A B részhlmzát z A és B hlmzok közötti (binér) relációnk nevezzük. H (, b) R kkor zt mondjuk, hogy z elem R relációbn vn b-vel. Ezt szokás R b-rel is jelölni. A = B esetén z A és B közötti relációt A-n értelmezett relációnk mondjuk. Az lábbikbn legfontosbb relációtípusokt tárgyljuk meg. Definíció. Az A hlmzon értelmezett R A A relációt ekvivlenci relációnk nevezzük, h R reexív, zz ( A) R szimmetrikus, zz (, b A) R b = b R trnzitív, zz (, b, c A) R b b R c = R c. Péld. Legyen A z els éves debreceni közgzdászhllgtók hlmz, és R b kkor és cskis kkor teljesüljön h z és b hllgtók ugynbbn hónpbn születtek. Ekkor R egy ekvivlenci reláció. Az összes hllgtók 2 osztályb sorolhtók (születési hónp szerint), bármely két osztályt véve zok vgy zonosk, vgy diszjunktk. Áltlábn is igz, hogy h R egy ekvivlenci reláció z A-n kkor z egymássl relációbn álló elemeket egy osztályb sorolv z A hlmz egy osztályozását kpjuk (zz A felbontását páronként diszjunkt hlmzok uniójr), és fordítv, A minden osztályozás megd egy ekvivlenci relációt, melynek osztályi éppen kiindulásként vett osztályok. Definíció. Az A hlmzon értelmezett R A A relációt féligrendezésnek nevezzük, h R reexív, zz ( A) R ntiszimmetrikus, zz (, b A) R b b R = = b trnzitív, zz (, b, c A) R b b R c = R c. Az A hlmzon értelmezett R A A relációt rendezésnek nevezzük, h R féligrendezés, és (, b A) R b b R. Példák. Egy X hlmz összes részhlmzin trtlmzási reláció féligrendezés. H A = R vlós számok hlmz, kkor rendezés. Definíciók. Tekintsük vlós számok R hlmzát rendezéssel és legyen A R. Az A hlmzt felülr l korlátosnk nevezzük, h vn olyn k R szám, hogy ( A) k. A k számot A (egy) fels korlátjánk nevezzük. Az A hlmzt lulról korlátosnk nevezzük, h vn olyn k R szám, hogy ( A) k. A k számot A (egy) lsó korlátjánk nevezzük. Az A hlmzt korlátosnk nevezzük, h lulról és felülr l is korlátos.
4 4 GAZDASÁGI MATEMATIKA I. Az s R számot z A hlmz pontos fels korlátjánk (vgy suprémumánk) nevezzük, h s z A fels korlátj A bármely s fels korlátjár s s. Jelölés s = sup A. Az i R számot z A hlmz pontos lsó korlátjánk (vgy inmumánk) nevezzük, h i z A lsó korlátj A bármely i lsó korlátjár i i. Jelölés i = inf A. Péld. Legyen A = {, 2, 3,... } természetes számok reciprokink hlmz. Akkor A korlátos és sup A =, inf A = 0. Definíció. Az A és B hlmzok között értelmezett F A B relációt z A hlmzon deniált függvénynek nevezzük, h minden A elemhez pontosn egy olyn b B elem létezik, melyre F b teljesül. Ilyenkor b = F () jelölést hsználjuk, függvény jelölésére pedig F : A B-t hsználjuk. D F = A z F függvény értelmezési trtomány (domin of F). R F := { F () : A } z F függvény értékkészlete (rnge of F). Definíciók. Az F : A B függvényt injektívnek (vgy kölcsönösen egyértelm nek, invertálhtónk) nevezzük, h (, b A) b = F () F (b), vgy, mi ugynz (, b A)F () = F (b) = = b. Az F : A B függvényt szürjektívnek (vgy B-re képez nek) nevezzük, h R F = B. Az F : A B függvényt bijektívnek (vgy kölcsönösen egyértelm en B-re képez nek) nevezzük, h injektív és szürjektív. Definíció. H F : A B injektív, kkor z F : R F A inverz függvényét z lábbi módon értelmezzük: tetsz leges b R F -hez létezik egyetlen egy A úgy, hogy b = F (), ekkor legyen F (b) :=. Röviden, F (b) = h F () = b. Azonnl láthtó, hogy F ( F (b) ) = F () = b h b R F, F (F ()) = h A. H F bijektív, kkor itt R F = B. 2. A VALÓS SZÁMOK 2. A vlós számok ximómrendszere Az R hlmzt vlós számok hlmzánk nevezzük, h teljesíti z lábbi 3 xiómcsoport xiómáit..testxiómák R-ben két m velet vn értelmezve, z
5 GAZDASÁGI MATEMATIKA I. 5 R R (x, y) x + y összedás R R (x, y) x y szorzás melyek teljesítik z lábbi xiómákt (melyeket testxiómáknk nevezünk). A szorzás jelét z lábbi xiómákbn kiírjuk, de továbbikbn nem, kivéve, h elhgyás félrértéshez vezetne. Az összedás xiómái: ( x, y R) x + y = y + x, ( x, y, z R) x + (y + z) = (x + y) + z, ( 0 R)( x R) x + 0 = x, ( x R)( x R) x + ( x) = 0 A szorzás xiómái: ( x, y R) x y = y x, ( x, y, z R) x (y z) = (x y) z, ( R, 0)( x R) x = x, ( x R, x 0)( x R) x x = Ezek z xiómák rendre z összedás ill. szorzás kommuttivitását, sszocitivitását, 0 ill. létezését, és z dditív ill. multipliktív inverz létezését fejezik ki. Megköveteljük szorzás disztributivitását z összedásr nézve, zz ( x, y, z R) x (y + z) = x y + x z. 2. Rendezési xiómák R-en értelmezve vn egy ( R R) (olvsd kisebb vgy egyenl ) rendezési reláció (mely korábbn tárgylt) négy xiómát teljesíti, továbbá ( x, y, z R) (x y) = x + z y + z, ( x, y R) (0 x 0 y) = 0 x y. E tuljdonságokt z összedás és szorzás monotonitásánk nevezzük. H 0 x de 0 x(x R) kkor ezt 0 < x -szel (vgy x > 0-vl) jelöljük, és x -et pozitívnk mondjuk. x R-et negtívnk mondjuk, h x pozitív. 3. Teljességi xióm R ( rendezésre nézve) teljes, zz R bármely nemüres felülr l korlátos részhlmzánk vn pontos fels korlátj. Összefogllv, vlós számok R hlmz tehát egy teljes rendezett test. Megmutthtó, hogy létezik ilyen hlmz, és ez bizonyos értelemben egyértelm. A vlós számokt számegyenesen modellezhetjük. A testxiómákt felhsználv igzolhtó, hogy bármely x, y, z R esetén h x + y = x + z, kkor y = z; h xy = xz, x 0, kkor y = z; h x + y = x, kkor y = 0; h xy = x, x 0, kkor y = ; h x + y = 0, kkor y = x; h xy =, x 0, kkor y = x ; ( x) = x; h x 0, kkor ( x ) = x, továbbá 0x = 0; x 0, y 0 xy 0; ( x)y = (xy) = x( y); ( x)( y) = xy.
6 6 GAZDASÁGI MATEMATIKA I. A rendezési és testxiómákt (rendezett test xiómáit) felhsználv igzolhtó, hogy bármely x, y, z R esetén h x 0, y z, h x 0, y z, x 0 kkor és cskis kkor, h x 0, kkor xy yz, kkor xy yz, h x 0, kkor x 2 > 0, speciálisn > 0, h 0 < x y, kkor 0 < y x, és x 2 y 2. A bizonyítássl gykorlton fogllkozunk mjd. 2. R nevezetes részhlmzi, bszolút érték, távolság Definíciók. Az N = {, 2, 3, 4... } hlmzt természetes számok hlmzánk nevezzük. Végiggondolv zt, hogy 2 = +, 3 = 2 +, 4 = 3 +,... dódik, hogy N R-nek z legsz kebb részhlmz, melyre teljesül, z, hogy N, h n N kkor n + N. Az, hogy N legsz kebb ilyen hlmz zt jelenti, hogy h egy M N-re is teljesülnek z teljesíti z M, és n M = n + M tuljdonságok, kkor M = N. A Z = {0, ±, ±2, ±3,... } hlmzt z egész számok hlmzánk nevezzük. A Q = { pq : p, q Z, q 0 } hlmzt rcionális számok hlmzánk nevezzük. Definíciók. Legyen < b (, b R). Az ], b[ := { x R : < x < b } [, b] := { x R : x b } ], b] := { x R : < x b } [, b[ := { x R : x < b } számhlmzokt rendre (véges) nyílt, zárt, blról nyílt jobbról zárt, blról zárt jobbról nyílt intervllumoknk nevezzük. [, ] := { x R : x } = {} elfjult (egyetlen pontból álló) zárt intervllum. Legyen, b R. Az ], [ := { x R : < x } [, [ := { x R : x } ], b] := { x R : x b } ], b[ := { x R : x < b } ], [ := R számhlmzokt (végtelen) nyílt, blról zárt jobbról nyílt stb. intervllumoknk nevezzük. Definíció. Az { x h x 0 x := x h x < 0 számot z x vlós szám bszolút értékének nevezzük. Állítás. [z bszolút érték tuljdonsági] Bármely x, y R esetén (x R) x 0 és x = 0 x = 0, xy = x y, x + y x + y.
7 GAZDASÁGI MATEMATIKA I. 7 Az els tuljdonság nyilvánvló, többiek pl. esetszétválsztássl bizonyíthtók. További tuljdonságok: x y x y (x, y R), x x és hsonlón x < < x <. Definíció. Az x, y R számok távolságát d(x, y) := x y deniálj. Állítás. [ távolság tuljdonsági] Bármely x, y, z R esetén d(x, y) 0 és d(x, y) = 0 x = y, nemnegtivitás d(x, y) = d(y, x), szimmetri d(x, y) d(x, z) + d(z, y) háromszög egyenl tlenség. E tuljdonságok egyszer en következnek z bszolút érték tuljdonságiból. 2.2 A teljességi xióm néhány következménye Tétel. Az R bármely nemüres lulról korlátos részhlmzánk vn pontos lsó korlátj. A bizonyításhoz legyen A R egy nemüres lulról korlátos hlmz, k lsó korláttl, és tekintsük B := { : A } hlmzt, kkor ( ) ( A = k )-ból következik, hogy k így B felülr l korlátos k fels korláttl, és fordítv. A teljességi xióm mitt létezik β := sup B. Könny belátni, hogy α := β = inf A z A-nk pontos lsó korlátj: ti. z el z ek lpján lsó korlát, és h α z A hlmz egy lsó korlátj, kkor α B-nek egy fels korlátj, így β α mib l α = β α. Tétel. A természetes számok hlmz felülr l nem korlátos. A bizonyításhoz tegyük fel, hogy N felülr l korlátos,így létezik z α := sup N szám, melyre ( n)(n N = n α). Mivel α < α így α nem lehet N fels korlátj, ezért vn olyn n 0 N melyre α < n 0 zz α < n 0 +. Mivel n 0 + N így α nem fels korlátj N-nek, mi ellentmondás. Indirekt bizonyítást végeztünk: feltételeztük, hogy tétel állítás nem igz (ez z indirekt feltevés). Helyes következtetésekkel ellentmondást kptunk, ennek csk z lehet z ok, hogy indirekt feltevésünk nem igz, így nnk tgdás, zz tétel állítás igz. Következmény.[ vlós számok Archimedesi tuljdonság] Bármely x > 0 és y R számokhoz létezik olyn n N melyre y < nx. Ugynis y x nem fels korlátj N-nek, így vn olyn n N, hogy n > y x mib l nx > y. Tétel. [Cntor féle metszettétel] H [ n, b n ] (n N) zárt egymásb sktulyázott intervllumok sorozt, zz kkor [, b ] [ 2, b 2 ] [ 2, b 2 ]... n= [ n, b n ]. Röviden: zárt intervllumok egymásb sktulyázott soroztánk metszete nemüres.
8 8 GAZDASÁGI MATEMATIKA I. A bizonyításhoz el ször jegyezzük meg, hogy n b n (n N) mivel [ n, b n ] intervllum, z egymásb sktulyázás pedig zt jelenti, hogy n n+ és b n+ b n E feltételekb l zonnl kpjuk, hogy bármely m, n N esetén n b m. (n N). Legyen A := { n : n N }, B := { b m : m N } kkor A felülr l korlátos (bármely b m (m N) fels korlátj, B pedig lulról korlátos (bármely n (n N) lsó korlátj. Így léteznek z α := sup A, β := inf B pontos korlátok. α deníciój mitt n α b m Ebb l láthtó, hogy α is lsó korlátj B-nek, ezért továbbá β deníciój mitt β b m Ezeket z egyenl tlenségeket összevetve kpjuk, hogy mi zt jelenti, hogy α β, (m, n N). (m N). n α β b n (n N) [α, β] mint állítottuk. Definíció. Az x R szám egész kitev s htványit továbbá [ n, b n ] n= x := x, x n+ := x n x (n N) x 0 :=, x n := (x 0, n N) xn -nel értelmezzük. A következ tétel szintén teljességi xióm segítségével igzolhtó ( bizonyítás megtlálhtó pl. W. Rudin, A mtemtiki nlízis lpji c. könyvében, M szki Könyvkidó, 975). Tétel. [n-edik gyök létezése] Bármely x 0 nemnegtív vlós számhoz és n N természetes számhoz pontosn egy olyn y 0 nemnegtív vlós szám létezik, melyre y n = x. Definíció. Az el z tétel állításábn szerepl y 0 számot z x 0 szám n-edik gyökének nevezzük, és n x vgy x n-nel jelöljük. H n páros, x 0 kkor n x z egyetlen olyn nempozitív szám melynek n-edik htvány x így ekkor y n = x y = n x y = n x. H n pártln, kkor negtív számokr is kiterjesztjük z n-edik gyök denícióját: n x := n x h x < 0. Ezek után lehet pozitív számok rcionális kitev s htványát értelmezni, z x r := q x p hol x > 0, r = pq, p Z, q N képlettel.
9 GAZDASÁGI MATEMATIKA I. 9 Igzolhtó hogy ez deníció korrekt (x r független r el állításától) és hogy htványozás szokásos tuljdonsági (rcionális kitev k esetén) teljes lnek. 2.3 Topológikus foglmk, Bolzno-Weierstrss tétel Definíció. Egy R pont ε > 0 sugrú (nyílt) környezetén K(, ε) := { x R : d(x, ) < ε } hlmzt értjük. Világos, hogy K(, ε) éppen z pontr nézve szimmetrikus 2ε hosszúságú ] ε, + ε[ nyílt intervllum. Definíciók. Legyen A R. Az R pontot z A hlmz bels pontjánk nevezzük, h -nk vn olyn környezete mely (teljesen) A-bn vn, zz ( ε > 0)K(, ε) A. Az R pontot z A hlmz izolált pontjánk nevezzük, h A és -nk vn olyn környezete melyben nincs más A-beli pont, zz A (( ε > 0)(K(, ε) \ {}) A = ). Az R pontot z A hlmz torlódási pontjánk nevezzük, h bármely környezetében vn -tól különböz A-beli pont, zz ( ε > 0) (K(, ε) \ {}) A ). Az R pontot z A hlmz htárpontjánk nevezzük, h bármely környezetében vn A-beli pont, és nem A-beli pont, zz ( ε > 0) ( K(, ε) A K(, ε) A ). A bels pont és z izolált pont mindig pontj hlmznk, torlódási és htárpont lehet hlmzpont, vgy nem hlmzpont. Definíciók. A R összes bels pontjink hlmzát A belsejének nevezzük és A -rel jelöljük. A R összes htárpontjink hlmzát A htáránk nevezzük és A-rel jelöljük. Definíciók. Az A R hlmzt nyíltnk nevezzük, h minden pontj bels pont. Az A R hlmzt zártnk nevezzük, h komplementere nyílt. Péld. Legyen A := { : n N }. Htározzuk meg A bels, izolált, torlódási és htárpontjink n hlmzát. Továbbá htározzunk meg A belsejét, htárát, döntsük el, hogy nyílt vgy zárt hlmz-e! Megoldás. A-nk nincs bels pontj, minden pontj izolált, egyetlen torlódási pontj 0, egyetlen htárpontj 0, A =, A = {0}, z A hlmz sem nem nyílt, sem nem zárt. Állítás. Egy A R hlmz kkor és cskis kkor zárt, h trtlmzz összes torlódási pontját. Bizonyítás ld. gykorlt. Tétel. [Bolzno-Weierstrss tétel] Bármely korlátos végtelen számhlmznk vn torlódási pontj. Egy hlmzt végesnek mondunk, h üres, vgy h elemeinek szám egy természetes szám. Egy hlmzt végtelennek mondunk, h nem véges. Bizonyítás. Tegyük fel, hogy A R korlátos végtelen hlmz, kkor vn olyn [, b ] zárt intervllum, hogy A [, b ].
10 0 GAZDASÁGI MATEMATIKA I. Felezzük meg [, b ]-t és válsszuk ki zt zárt [ 2, b 2 ]-vel jelölt felét, mely végtelen sok A-beli elemet trtlmz. Ezután felezzük meg [ 2, b 2 ]-t és válsszuk ki zt zárt [ 3, b 3 ]-ml jelölt felét, mely végtelen sok A-beli elemet trtlmz, és így tovább. Az így kpott [ n, b n ] (n N) intervllumsorozt egymásb sktulyázott, ezért Cntor tétele mitt [ n, b n ]. n= Mivel z [ n, b n ] intervllum hossz b 2 tetsz leges kicsi, h n elég ngy, ezért z intervllumok metszete csk egyetlen pontot trtlmzht, legyen ez n z pont. Azt állítjuk, hogy torlódási pontj A-nk. Ugynis véve egy tetsz leges ε > 0 számot [ n, b n ] K(, ε) h n elég ngy. Ugynis válsszuk n-et olyn ngyr, hogy b n n < ε legyen, kkor [ n, b n ] mitt z [ n, b n ] intervllum minden pontjánk -tól vló távolság < ε így z intervllum pontji K(, ε)-bn vnnk. Mivel minden intervllumbn végtelen sok A-beli pont vn így K(, ε) trtlmz -tól különböz A-beli pontot. 3. SOROZATOK 3. Soroztok korlátosság, monotonitás, konvergenciáj Definíció. Egy f : N R függvényt (vlós szám)soroztnk nevezünk. H A egy dott hlmz és f : N A, kkor f-et A-beli (érték ) soroztnk nevezzük. Jelöléseink: f(n) = n sorozt n-edik eleme, f = ( n ) sorozt mg, { n : n N } sorozt értékkészlete. Sorozt megdás: képlettel pl. n = n (n N), rekurzív módon pl. =, és n+ = 2 + n szbállyl pl. n = n-edik prímszám. Definíciók. Az ( n ) soroztot felülr l korlátosnk lulról korlátosnk Azz Az ( n ) soroztot nevezzünk, hogy felülr l korlátosnk lulról korlátosnk (n N), nevezzük, h k R k R ( n N) n k ( n N) n k. nevezzük, h értékészlete felülr l korlátos lulról korlátos. szám, melyet sorozt egy fels korlátjánk fels korlátjánk Az ( n ) soroztot korlátosnk nevezzük, h lulról és felülr l is korlátos. Könny belátni, hogy egy n sorozt kkor és cskis kkor korlátos, h vn olyn K R hogy n K minden n N-re. Az ( n ) soroztot monoton növekv nek monoton csökken nek nevezzük, h ( n N) n+ n. ( n N) n+ n Az ( n ) soroztot szigorún monoton növekv nek szigorún monoton csökken nek nevezzük, h ( n N) n+ > n. ( n N) n+ < n
11 GAZDASÁGI MATEMATIKA I. Egy soroztot (szigorún) monotonnk mondunk, h (szigorún) monoton növekv vgy csökken. Péld. Legyen n := n (n N). Ez sorozt lulról korlátos (pl. k = 0 lsó korlát), és felülr l is korlátos (pl. k = fels korlát), így korlátos. Soroztunk szigorún monoton csökken. Az is igz, hogy n növekedésével n egyre közelebb kerül 0-hoz (jóllehet soh sem éri el 0-t). Pontosbbn, 0 kármilyen kis környezetét vesszük, zon belül vn soroztnk véges sok kivételével minden eleme. Definíciók. Az ( n ) soroztot konvergensnek nevezzük, h vn olyn R szám, hogy bármely ε > 0-hoz létezik olyn N(ε) R szám, hogy n < ε h n > N(ε). A számot sorozt htárértékének (limeszének) nevezzük és z n (n ) jelölést hsználjuk. N(ε) z ε-hoz trtozó küszöbszám. Az ( n ) soroztot divergensnek nevezzük, h nem konvergens. vgy lim n n = Állítás. [ konvergenci környezetes átfoglmzás] Az ( n ) sorozt konvergens és htárértéke kkor és cskis kkor, h z pont bármely környezetén kívül soroztnk csk véges sok eleme vn. Bizonyítás. H n (n ), kkor minden ε > esetén vn olyn N(ε), hogy n < ε h n > N(ε), mi úgy is írhtó, hogy ε < n < + ε, zz n K(, ε) h n > N(ε). De ez zt jelenti, hogy K(, ε) környezeten belül vnnk z N(ε)-nél ngyobb index elemek, míg kívül csk z N(ε)-nél nem ngyobb index ek lehetnek, melyek szám éges. Fordítv, h minden ε > 0 esetén K(, ε) környezeten kívül csk véges sok elem vn, pl. p drb k, k2,..., kp elemek, kkor N(ε) := mx{k, k 2,..., k p } válsztássl n < ε h n > N(ε), zz soroztunk konvergens és htárértéke. Következmény. H egy soroztbn véges sok elemet tesz legesen megváltozttunk, soroztból véges sok elemet elhgyunk, sorozthoz véges sok elemet hozzáveszünk, kkor sem sorozt konvergenciáj és htárértéke (divergenciáj) nem változik. Állítás. [ htárérték egyértelm sége] Konvergens soroztnk pontosn egy htárértéke vn. Indirekt bizonyítás. H z n (n ) soroztnk két htárértéke voln,, b( < b) kkor ε = b 3 válsztássl denícióból ellentmondásr jutunk. Példák. n = (n N) konvergens és htárértéke null. n n = ( ) n (n N) divergens. Tétel. [konvergenci és korlátosság kpcsolt] Konvergens sorozt korlátos. Vn olyn korlátos sorozt mely divergens (nem konvergens). Bizonyítás. ε = -gyel kpjuk, hogy n < h n > N(). Világos, hogy k := mx{ +, és K(, ) környezeten kívüli elemek }
12 2 GAZDASÁGI MATEMATIKA I. sorozt fels korlátj, míg k := min{, és K(, ) környezeten kívüli elemek } sorozt lsó korlátj. n = ( ) n (n N) korlátos de nem konverges. Tétel. [konvergenci és monotonitás kpcsolt] Monoton növekv és felülr l csökken és lulról korlátos sorozt konvergens. Bizonyítás. Tegyük fel pl. hogy ( n ) növekv felülr l korlátos, és legyen := sup{ n : n N }. Véve egy ε > 0 számot ε nem fels korlátj soroztnk, így vn olyn n 0 N index, hogy n0 > ε. Legyen N(ε) := n 0, kkor n > N(ε) = n 0 esetén és ezt kellett bizonyítni. ε < n0 n < + ε zz n < ε 3.2 M veletek, rendezés és konvergenci kpcsolt ( ) Definíciók. H ( n ), (b n ) soroztok c R, kkor z n ( n + b n ),, ( n b n ),, (c n ), ( n ) soroztokt b n rendre z ( n ), (b n ) soroztok összegének, szorztánk, hánydosánk, z ( n ) c-szeresének, bszolút értékének nevezzük. A hánydos deníciójábn fel kell tennünk, hogy b n 0. Tétel. [konvergenci és m veletek kpcsolt] Konvergens soroztok összege, szorzt, hánydos (h értelmezve vn), konstnsszoros, bszolút értéke is konvergens, és e soroztok htárértékeinek összegéhez, szorztához, hánydosához, konstnsszorosához, bszolút értékéhez konvergál, zz h n, b n b (n ) kkor n + b n n b n n + b (n ), b (n ), b n b (n ), h b n, b 0, c n c (n ), n (n ). Bizonyítás. Itt csk z els állítást igzoljuk. Tetsz leges ε > 0 mellett mib l n < ε 2 h n > N ( ε 2), és b n b < ε 2 h n > N 2 ( ε 2), ( n + b n ) ( + b) < n + b n b < ε 2 + ε 2 = ε h n > N(ε) := mx { N ( ε 2 ) ( ε )}, N 2 és ezt kellett igzolni. Tétel. [konvergenci és rendezés kpcsolt] () Konvergens sorozt jeltrtó, zz h n 0 (n ), kkor vn olyn n 0 R, hogy sg n = sg h n > n 0. (2) A konvergenci meg rzi monotonitást, zz h n b n (n N) és n, b n b (n )), kkor b. (3) Érvényes rend rtétel, zz h n, b n (n ) és n x n b n (n N), kkor (x n ) is konvergens és x n, (n ).
13 GAZDASÁGI MATEMATIKA I. 3 Az els állításbn sg signum (el jel) függvényt jelöli, melynek deníciój sg x := h x > 0 0 h x = 0. h x < 0 Bizonyítás. Az els állítás igzolásához legyen ε = /2, kkor n < /2 h n > n 0 := N( /2). Innen /2 < n < + /2 h n > n 0 mib l > 0 ill. < 0 esetszétválsztássl dódik állításunk. A második állítást indirekt úton igzoljuk. H > b voln, kkor b > 0 így jeltrtóság mitt n b n > 0 voln elég ngy n-re, mi ellentmondás. A rend rtétel igzolás. Az n x n b n (n N) feltételb l n kivonásávl kpjuk, hogy 0 x n n b n n vgy x n n b n n < ε h n > N(ε) mi éppen zt jelenti, hogy x n n 0 (n ) mib l x n = (x n n ) + n ) + = h n. 3.3 B vített vlós számok, végtelenhez trtó soroztok Definíció. Az R b := R {+ } { } hlmzt b vített vlós számok hlmzánk nevezzük (+ helyett gykrn csupán -t írunk). M veletek R b -ben: bármely x R-re legyen Nincsennek értelmezve z lábbik: x + (± ) = (± ) + x = ± (± ) + (± ) = ± x(± ) = (± )x = ± h x > 0 x(± ) = (± )x = h x < 0 (± )(± ) = + (± )( ) = x ± = 0. (± ) + ( ), 0(± ), (± )0, ± ±, x 0. Rendezés: minden x R esetén, ( korábbi rendezés megtrtás mellett) < x < +. Megjegyzés. R b nem test! A htárérték foglmánk kiterjesztése. Az n = ( ) n, n = ( ) n, n = n, n = n 2 (n N) vlmennyien divergens soroztok, de közülük z els kett másképpen viselkedik, mint z utolsó kett : zok ngy n esetén -hez ill. -hez közelednek.
14 4 GAZDASÁGI MATEMATIKA I. Definíció. Azt mondjuk, hogy z ( n ) soroztnk htárértéke + bármely K R számhoz vn olyn N(K) R, hogy n > K h n > N(K). n < K + (vgy sorozt trt -hez) h Jelölése (z els esetben) n + (n ) vgy lim n =. n H n ( ) kkor sorozt divergens, de vn htárértéke. H + környezetein ]K, + [ intervllumokt, környezetein ], K[ intervllumokt értjük,hol K R tetsz leges, kkor egyszer belátni, hogy érvényes z lábbi Állítás. Egy sorozt htárértéke + (vgy ) kkor és cskis kkor, h + (vgy ) bármely környezetén kívül soroztnk csk véges sok eleme vn. Példák. Az n = n (n N) sorozt htárértéke +. Az n = n 2 (n N) sorozt htárértéke. Definíció. H A R felülr l nem korlátos kkor sup A :=. H A R lulról nem korlátos kkor inf A :=. Ezzel kiegészítéssel minden A R hlmznk vn supremum és inmum, de lehet hogy ezek végtelenek zz inf A sup A +. Továbbá minden monoton soroztnk vn htárértéke (R b -ben): növekv nem korlátos sorozt trt + -hez, csökken nem korlátos sorozt trt -hez. A htárérték és m veletek kpcsolt is kiterjeszthet, z lábbi tétellel. Tétel. H n, b n b (n ) hol most, b R b, c R, kkor n + b n + b (n ), h + b értelmezve vn, n b n b (n ), h b értelmezve vn, n b n b (n ), h b n 0, és értelmezve vn, b c n c (n ), h c értelmezve vn, továbbá h n kkor n 0 (n ). 3.4 Nevezetes htárértékek Tétel. () (2) n n + h > 0, h = 0, (n ) 0 h < 0. 0 h <, h =, + h >, (n ) divergens h.
15 (3) H > 0, kkor GAZDASÁGI MATEMATIKA I. 5 n (n ). (4) H <, k R, kkor (5) n n (n ). (6) H R kkor (7) n n! + (n ). n k n 0 n n! (n ). 0 (n ). ( (8) Az n = + n) n (n N) sorozt szigorún monoton növekv és felülr l korlátos, n < 3, így konvergens. Htárértéke egy nevezetes szám, mit e-vel jelölünk, közelit értéke e = 2, 7... (9) H 0 c n 0, kkor ( + c n ) cn e (n ).
16 6 GAZDASÁGI MATEMATIKA I. Bizonyítások. () H = 0, kkor z állítás nyilvánvló, mert n 0 = minden n N-re. H > 0, kkor tetsz leges (pozitív) K-t véve n > K pontosn kkor, h n > K / így deníció lpján n +. H < 0, kkor n = n = 0, mivel most > 0. + (2) A Bernoulli egyenl tlenség szerint ( + x) n + nx, h n N, x és itt egyenl ség kkor, és cskis kkor teljesül, h n = vgy x = 0. H > kkor = + h, hol h > 0, így n = ( + h) n + nh, n +. Legyen most <. H = 0, kkor n = 0 n = 0 0. Így feltehetjük, hogy 0 < <, ezért n = ( ) n + = 0, mib l n 0. H =, kkor n =. H =, kkor n = ( ) n divergens. H <, kkor 2n = ( 2 ) n + mivel 2 >, és 2n = (2 ) n, így soroztunk divergens. (3) H, kkor b n := n 0, Bernoulli egyenl tlenség lpján kpjuk, hogy = ( + b n ) n + nb n, mib l 0 b n n. n Innen rend rtétellel dódik, hogy b n 0,. H 0 < <, kkor, z el z ek mitt n, n. (4) H k < 0, kkor sorozt els és második tényez je is zérushoz trt, így sorozt is. H k = 0 kkor 2. Állítás mitt n 0 n = n 0. H k > 0, kkor legyen k 0 egy k-nál ngyobb egész, és tegyük fel, hogy n > k 0. Vn olyn h > 0, hogy = + h, és 0 n k n nk0 A jobboldli kifejezést növelhetjük n n... n h k = (k 0 + )! 0+ (k 0 + )! n(n )... (n k 0) ( + h) n < n ( k0 n ). h k 0 + k 0 + h k0+ ( ) ( n... k 0 ) n (n k0 ) 0, mivel jobboldli szorzt második tényez jének nevez jében z els k 0 db. tényez -hez trt, míg z utolsó + -hez. Ezért rend rtétel mitt n k n 0, és z bszolút érték elhgyásávl kpott sorozt is nullához trt. (5) Legyen ε > 0 dott, lklmzzuk z el z állítást = + ε, k = -nél, kkor n ( + ε) n 0, mib l n ( + ε) n <, h n > N() = N (ε). Innen átrendezéssel, mjd gyökvonássl kpjuk, hogy zz n < ( + ε) n, ε < n n < + ε n n < ε h n > N (ε)
17 GAZDASÁGI MATEMATIKA I. 7 bizonyítv állításunkt. (6) Legyen n 0 egy -nél ngyobb természetes szám, n > n 0, kkor 0 n n! = n = n! n n 0!(n 0 + )(n 0 + 2)... n n n 0!(n 0 + ) n n0 = (n 0 + ) n0 n 0! ( ) n. n 0 + A jobboldli sorozt 0-hoz trt, mivel zárójeles tört bszolút értéke kisebb mint, így rend rtétel mitt n n! 0 es n n! 0. (7) A soroztunk szigorún monoton növekv, mert z egyenl tlenség ekvivlens z < (n + )n n! n n! < n+ (n + )! = n + n +... n + 2 n egyenl tlenséggel, mi igz, mert jobboldlon lev szorzt minden tényez je -nél ngyobb. Másrészt soroztunk nem korlátos felülr l, ugynis h z voln, kkor n n! K, n! K n, Kn n! következne, mi nem lehet, mert Kn 0 6. Állítás szerint. n! (8) A monotonitás igzolás: h n > kkor n n = ( + n ) n ( + ) n = n ( n + n ( n n ) n ) n = n n ( n + n ( n n ) n ) n = n n = n ( ) n n n 2 > n ( ) n n n 2 = n ( ) =, n n hol Bernoulli egyenl tlenség szigorú változtát hsználtuk. A korlátosság igzolás: binomiális tételt hsználv kpjuk, hogy n = ( + n) n = n k=0 ( n k ) n k. ( n 2 Az l (l = 0,..., k ) egyenl tlenséget hsználv z el z összeg áltlános tgját felülr l n megbecsüljük: ( n k ) n(n )... (n k + ) = nk n k = n! Ezt felhsználv kpjuk, hogy k! = 2... k = 2 k. n 2 ( ) ( 2 ) (... k ) n n n k! n n = + (/2)n /2 = + 2 ( /2 n ) < 3. (9) Nem bizonyítjuk. ) n
18 8 GAZDASÁGI MATEMATIKA I. 4. SOROK 4. Definíció, konvergenci, divergenci, összeg Definíció. Egy ( n ) (szám)sorozt elemeit z összedás jelével összekpcsolv kpott vgy n= összeget (szám)sornk (vgy numerikus sornk) nevezzük. n sor n-edik (vgy áltlános) tgj, s n := n = n (röviden n ) n k (n N) pedig sor n-edik részletösszege. A n sort konvergensnek nevezzük, h részletösszegeinek (s n ) sorozt konvergens, lim s n = s n htárértéket sor összegének nevezzük és zt irjuk, hogy n := lim n= n= k= k n= n = s, zz k n. A n sort divergensnek nevezzük, h nem konvergens. Megjegyzések.. Az összegezés kezd dhet n = 0-vl is. Kissé zvró, hogy sort és (konvergens sor esetén) z összegét is ugynzzl szimbólumml jelöltük. Ezt elkerülend sorokr inkább n (ill. h z összegzés n = 0-vl kezd dik n ) jelölést hsználjuk, sor összegét pedig inkább n -nel jelöljük mjd. 0 n= 2. H egy sorbn véges sok tgot megváltozttunk, sorból véges sok tgot elhgyunk, vgy véges sok tgot sorhoz hozzáveszünk, kkor sor konvergenciáj/divergenciáj nem változik, z összege viszont változht! Ez bból következik, hogy h z eredeti sor részletösszegeinek sorozt (s n ), kkor fenti változttások után kpott sor (S n ) részletösszegeire S n = s n + A h n > n 0 teljesül, vlmilyen A R és n 0 N mellett, hol A z új (megváltozttott) tgok és régiek különbsége. Innen láthtó, hogy (s n ) és (S n ) vgy mindketten konvergensek vgy divergensek, konvergenci esetén viszont lim S n = lim s n + A n n zz z összegek eltérése A. Divergens sornk természetesen nincs összege (bár, h s n ( ) kkor szokás zt mondni, hogy sor összege ( ). Példák.. Geometrii sor. A q n = + q + q sort, hol 0, R, q R geometrii sornk nevezzük. sor els tgj, q sor hánydos, vgy kvociense. Vizsgáljuk meg e sor konvergenciáját. A részletösszegek sorozt s n = + q + + q n (n N)
19 mit q-vl megszorozv GAZDASÁGI MATEMATIKA I. 9 s n q = q + + q n + q n, így kivonássl s n s n q = q n vgy s n ( q) = ( q n ), mib l ( q és q = eseteket szétválsztv kpjuk, hogy s n = Figyelembevéve (q n ) sorozt viselkedését kpjuk, hogy s n ( q n ), h q, q n, h q =., h q <, q divergens, h q >, vgy q, divergens, h q =. Ezzel igzolást nyert következ Állítás. [geometrii sor konvergenciáj] A q n = + q + q , ( 0,, q R) geometii sor kkor és cskis kkor konvergens, h q < és kkor sor összege s = els tg = q kvociens. 2. Hrmónikus sor. A n = sort hrmónikus sornk nevezzük. 3 Állítás. [hrmónikus sor divergenciáj] A hrmónikus sor divergens. Bizonyítás. Vegyük észre, hogy sor s 2 n lkú részletösszegeire s 2 = + 2 = 3 2 s 2 2 = s 2 + ( 3 + ) 4 > = 4 2 s 2 3 = s ( ) 8 > = 5 2 s 2 4 = s ( ) 6 > = 6 2 áll fenn, és indukcióvl könnyen igzolhtó, hogy s 2 n > n (n = 2, 3,... ) így s 2 n (n ) mib l (s n ) szigorú monoton növekedése mitt s n (n ), igzolv állításunkt. Tétel. [sor konvergenciájánk szükséges feltétele] Konvergens sor áltlános tgj nullához konvergál. Azz, h n sor konvergens, kkor lim n = 0. n Így, h ( n ) divergens, vgy h ( n ) konvergens, de htárértéke nem 0, kkor n sor divergens. Bizonyítás. Világos, hogy n = s n s n így konvergens sor esetén s n s, s n s mitt n s s = 0 mint állítottuk. H n 0 kkor n sor lehet konvergens is és divergens is, utóbbir péld hrmónikus sor. A továbbikbn sorokt tgjik el jele szerint osztályozzuk, és vizsgáljuk.
20 20 GAZDASÁGI MATEMATIKA I. Definíciók. Egy sort lternáló sornk nevezzünk, h tgjink el jele váltkozik (pozitív tgot negtív tg követ vgy fordítv). Egy sort pozitív (negtív) tgú sornk nevezzünk, h tgji pozitívok (negtívok). Tetsz leges el jel tgok esetén sor tgjink z bszolút értékeib l lkotott sort vizsgáljuk. Alternáló sorokr vontkozik Leibniz tétele. [elegend feltétel lternáló sorok konvergenciájár] A ( ) n+ n ( n 0, n N) lternáló sor konvergens, h ( n ) monoton csökken en trt nullához, és ekkor sor s összegére, és részletösszegeinek (s n ) soroztár érvényes z s s n n+ (n N) becslés. Bizonyítás. ( n ) monoton csökkenése mitt s 2n+ = s 2n + ( ) 2n+ 2n + ( ) 2n+2 2n+ = s 2n + ( 2n + 2n+ ) s 2n s 2n+2 = s 2n + ( ) 2n+2 2n+ + ( ) 2n+3 2n+2 = s 2n + ( 2n+ 2n+2 ) s 2n s 2n = s 2n + ( ) 2n+ 2n = s 2n 2n s 2n zz (s 2n ) monoton csökken, (s 2n ) monoton növekv, és s 2n s 2n, mib l egy [s 2, s ] [s 4, s 3 ] [s 6, s 5 ]... intervllumsktulyázást kpunk, hol z intervllumok (Cntor tétele szerint nemüres) metszete csk egy pontból állht, mert z intervllumok s 2n s 2n = ( ) 2n+ 2n = 2n 0 (n ) hossz nullához trt. Legyen s fenti intervllumok egyetlen közös pontj, kkor s 2n s, s 2n s (n ) ezért s n s (n ) igzolv konvergenciár vontkozó állítást. A becslés igzolás: s s n = ( ) n+2 n+ + ( ) n+3 n+2 + ( ) n+4 n+3 + ( ) n+5 n+4 + ( ) n+6 n+5... = ( n+ n+2 ) + ( n+3 n+4 ) + ( n+5 n+6 ) +... = ( n+ n+2 ) + ( n+3 n+4 ) + ( n+5 n+6 ) +... = n+ [( n+2 n+3 ) + ( n+4 n+5 ) +... ] n+. Itt második sorbn z bszolút érték elhgyhtó, mivel tgok összege nemnegtív, z utolsó sorbn lev egyenl tlenség pedig zért igz, mert szögletes zárójelben lev összeg nemnegtív. Péld. A ( ) n+ n = sor konvergens, mert n = n 0 (n ) (csökken en). Érdekes megjegyezni, hogy e sor összege ln Pozitív tgú sorok A n sort kkor neveztük pozitív tgúnk, h n > 0 (n N) teljesül. Ilyen sorok részletösszegeire s n+ = s n + n+ > s n (n N), zz részletösszegek sorozt monoton növekv, ezért (s n ) kkor és cskis kkor konvergens h felülr l korlátos. Ezért pozitív tgú sor kkor és cskis kkor konvergens h részletösszegeinek sorozt felülr l korlátos. Ez megállpítás z lpj konvergencikritériumok (vgy konvergencitesztek) bizonyításánk. Tétel. [mjoráns- minoráns teszt] H 0 < n b n (k N) és
21 h GAZDASÁGI MATEMATIKA I. 2 bn sor konvergens, kkor n sor is konvergens, n sor divergens, kkor b n sor is divergens. Megjegyzés. Azt mondjuk, hogy b n sor mjorálj n sort (vgy mi ugynz, n sor minorálj b n sort) h n b n (n N). Bizonyítás. Jelölje (s n ()) n sor részletösszegeinek soroztát, (s n (b)) pedig b n sor részletösszegeinek soroztát, kkor s n () s n (b) (n N). Az els esetben b n sor konvergens, így (s n (b)) felülr l korlátos, részletösszegekre vontkozo el bbi egyenl tlenség mitt (s n ()) is felülr l korlátos, ezért n sor konvergens. A második esetben n sor divergens, így (s n ()) felülr l nem korlátos, részletösszegekre vontkozo egyenl tlenség mitt (s n (b)) sem korlátos felülr l, ezért b n sor divergens. Tétel. [hánydos vgy D'Alembert teszt] Legyen n pozitív tgú sor. H n+ n h n+ n q < (n N) kkor n sor konvergens, (n N) kkor n sor divergens. Ezt tételt egy másik lkbn (limeszes lk) is kimondjuk. Legyen n pozitív tgú sor és tegyük fel, hogy lim k n+ n = L (L R b ). (i) H L < kkor n sor konvergens, (ii) h L > kkor n sor divergens, (iii) h L = kkor n sor lehet konvergens, és lehet divergens is. Bizonyítás. H z els feltétel teljesül, kkor z 2 q, 3 2 q, 4 3 q,..., n n q egyenl ltlenségeket összeszorozv kpjuk, hogy n q n, mib l n q n (n N). Ez zt jelenti, hogy n sort q n konvergens (mert 0 q < mitt q < ) geometrii sor mjorálj, így mjoráns teszt lpján n sor konvergens. H második feltétel teljesül, kkor n+ n mitt konvergenci szükséges feltétele, z n 0 (n ) feltétel nem teljesül, sor divergens. A limeszes lk bizonyítás. H (i) teljesül kkor legyen r = L > 0. Az L htárérték r sugrú környezete 2 -nél kisebb értékeket trtlmz, e környezetén kívül z ( ) n+ soroztnk csk véges sok eleme vn, így n n+ n q (:= L + r < ) h n n 0
22 22 GAZDASÁGI MATEMATIKA I. vlmely n 0 mellett, így (2) véges sok index kivételével teljesül, 4. szksz 2. megjegyzése lpján következik állításunk. (ii) mellett hsonló gondoltmenettel kpjuk, hogy (22) véges sok index kivételével teljesül, mib l következik, hogy ( n ) nem trtht 0-hoz, sor divergens. (iii) Végül, hrmónikus sornál L = és e sor divergens, sor konvergens, és e sornál szintén L =. n2 Utóbbi sor konvergenciáj pl. bból következik, hogy n (n ) n ( = + ) ( ) ( n ) = 2 n n < 2 így részletösszegek sorozt korlátos, sor konvergens. Tétel. [gyök vgy Cuchy teszt] Tegyük fel, hogy n 0 (n N). H n n q < (n N) kkor n sor konvergens, h n n (n N) kkor n sor divergens. Ezt tételt is kimondjuk limeszes lkbn. Legyen n 0 (n N), és tegyük fel, hogy lim n n = L (L R b ). n (j) H L < kkor n sor konvergens, (jj) h L > kkor n sor divergens, (jjj) h L = kkor n sor lehet konvergens, és lehet divergens is. Bizonyítás. H tétel els feltétele teljesül, kkor z n q n, (n N) mi zt jelenti, hogy n sort q n konvergens geometrii sor mjorálj, így mjoráns teszt lpján n sor konvergens. H tétel második feltétele feltétele teljesül, kkor n mitt konvergenci szükséges feltétele, z n 0 (n ) feltétel, nem teljesül, sor divergens. A limeszes lk bizonyítás. H (j) teljesül kkor legyen r = L > 0. Az L htárérték r sugrú környezete 2 -nél kisebb értékeket trtlmz, e környezetén ívül z ( n n ) soroztnk csk véges sok eleme vn, így n n q (:= L + r < ) h n n 0 vlmely n 0 mellett, így (23) véges sok index kivételével teljesül, 4. szksz 2. megjegyzése lpján dódik állításunk. (jj) mellett hsonló gondoltmenettel kpjuk, hogy (24) véges sok index kivételével teljesül, mib l következik, hogy ( n ) nem trtht 0-hoz, sor divergens. (jjj) Végül, hrmónikus sornál L = és e sor divergens, sor konvergens, és e sornál szintén L =. n2 Igzolhtó, hogy gyök teszt er sebb, mint hánydos teszt (zz, h hánydos teszt eldönti konvergenciát/divergenciát kkor ugynezt teszi gyök teszt is), hánydos teszt lklmzás viszont áltlábn egyszer bb.
23 Példák.. A 2n n! GAZDASÁGI MATEMATIKA I. 23 sor konvergens, mert hánydos teszt limeszes lkját lklmzv n+ n = 2n+ (n + )! n! 2 n = 2 n + 0 = L <. 2. A hol p R (hiperhrmonikus) sor divergens, h p 0, mert ekkor z áltlános tg nem trt 0-hoz. np p > 0 mellett mind hánydos, mind gyök teszt limeszes lkj L = -et d, segítségükkel konvergenci nem dönthet el. A Cuchy-féle kondenzációs teszt segítségével (ld. pl Ljkó jegyzet) kphtjuk, hogy A (p R) sor kkor és cskis kkor konvergens, h p >. np Ugyncsk ezzel teszttel dódik, hogy A 2 n(ln n) (p R) sor kkor és cskis kkor konvergens, h p >. p kezdenünk, mivel ln = Abszolút konvergenci, m veletek sorokkl Itt z összegezést n = 2-nél kell Definíciók. A n sort bszolút konvergensnek nevezzük, h n sor konvergens. A n sort feltételesen konvergensnek nevezzük, h sor konvergens de nem bszolút konvergens. Igzolhtó, hogy bszolút konvergens sor konvergens, fordított állítás viszont nem igz, mint ezt sor muttj. Utóbbi sor feltételesen konvergens. ( ) n+ n Az bszolút konvergenci eldöntésere lklmzhtók z el z szkszbn tárgylt tesztek. H n 0 (n N) és lim n n+ n lim n < kkor n sor bszolút konvergens, h n+ n kkor n sor divergens. n H lim n < kkor n sor bszolút konvergens, h n n kkor n sor divergens. n h lim n Legyen n egy dott sor és ϕ : N N egy bijektív leképezése N-nek önmgár, kkor ϕ(n) sort n sor (ϕ) bijekcióhoz trtozó) átrendezésének nevezzük. Például sor egy átrendezése sor, hol két pozitív tgot egy negtív tg követ.
24 24 GAZDASÁGI MATEMATIKA I. Az bszolút konvergens sorok fontos tuljdonság, z, hogy bármely átrendezésük is konvergens, és z átrendezett sor összege megegyezik z eredeti sor összegével. Feltételesen konvergens sorokr ez nem igz, s t, feltételesen konvergens sornk vn olyn átrendezése, mely divergens, vgy melynek összege egy tetsz legesen el írt szám. Könny belátni, hogy konvergens sor tetsz legesen zárójelezhet, és zárójelezett sor összege egyenl z eredeti sor összegével. Továbbá ( soroztokr vontkozó m veleti tuljdonságok mitt) konvergens sorok összegsor ( tgok összedásávl keletkez sor) és konvergens sor számszoros is konvergens és összegük kiinduló sorok összege és számszoros, zz, h n, b n konvergensek, c R kkor ( n + b n ), (c n ) is konvergensek és ( n + b n ) = n + b n, n= n= n= (c n ) = c n. A sorok szorzás lényegesen komplikáltbb. Definíció. A n és b n sorok Cuchy-féle szorztsor c n sor, melynek tgji n= c n := 0 b n + b n + + n b 0 = n= n k b n k. Tétel. Abszolút konvergens sorok Cuchy-féle szorztsor is bszolút konvergens, és összege tényez sorok összegének szorzt. k=0 4.4 Függvénysorok, htványsorok Definíciók. H egy sor tgji (zonos hlmzon értelmezett) függvények, kkor sort függvénysornk nevezzük. Legyenek f n : D R R (n N) vlós számok D részhlmzán értelmezett függvények. A f n (x) függvénysor konvergencihlmzát/divergencihlmzát zon x D pontok lkotják melyekre sor konvergens/divergens. A konvergencihlmz pontjibn értelmezhet sor összegfüggvénye (mint részletösszegek htárértéke). Definíció. A n (x ) n lkú függvénysort htványsornk nevezzük. n z n-edik együtthtó, pedig 0 sorfejtés középpontj. Vizsgáljuk meg n (x ) n htványsor bszolút konvergenciáját gyökteszttel. H n n (x ) n = x n n 0 (n ) x L < htványsor bszolút konvergens, > htványsor divergens, hol feltételeztük, hogy z ( n n ) soroztnk létezik z L htárértéke, 0 L.. L = 0 esetén x L = 0(<,) így htványsor minden x R mellett bszolút ( konvergens < L < esetén x L < (> ) kkor és cskis kkor, h x < L > L), ezért x < L esetén sor bszolút konvergens, míg x > L mellett sor divergens.
25 GAZDASÁGI MATEMATIKA I L = esetén x L = > h x, így ekkor sor divergens, míg x = esetén sor nyilván konvergens (ugynis nulldik tg kivételével z összes tg null). Definíció. Az r := L = n n lim n ( ) 0 :=, := 0 b vített vlós számot n (x ) n htványsor konvergencisugránk nevezzük. 0 Az el bbiek lpján állíthtjuk: H x < r, kkor htványsorunk bszolút konvergens, h x > r, kkor htványsorunk divergens. Péld. A geometrii sor esetén + x + x 2 + = h x < x konvergencisugár r =. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5. Függvény htárértéke Egy D R hlmz torlódási pontjink hlmzát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D ( D hlmz torlódási pontj). Azt mondjuk, hogy f-nek vn (véges) htárértéke z x 0 pontbn, h vn olyn R szám, hogy minden ε > 0-hoz vn olyn δ(ε) > 0, hogy f(x) < ε h 0 < x x 0 < δ(ε) és x D teljesül. Az R számot z f függvény x 0 pontbeli htárértékének nevezzük, és jelölésére z lim f(x) =, x x 0 vgy f(x) (x x 0 )-t hsználjuk. Állítás. A htárérték, h létezik, kkor egyértelm. Bizonyítás. Tegyük fel, hogy f-nek létezik véges htárértéke x 0 -bn, de nem egyértelm. Akkor vn két olyn szám, R, hogy minden ε > 0-hoz vnnk olyn δ(ε), δ (ε) > 0 számok, melyekre f(x) < ε h 0 < x x 0 < δ (ε) és x D f(x) < ε h 0 < x x 0 < δ (ε) és x D. Ebb l 0 = f(x) + f(x) < 2ε h 0 < x x 0 < min{δ(ε), δ (ε)} és x D. Mivel itt ε > 0 tetsz legesen kicsi, így = 0, =, mi ellentmondás, bizonyítv állításunkt. Megjegyzés. Htárérték létezhet z x 0 pontbn kkor is, h függvény nincs értelmezve pontbn de torlódási pontj nnk (egy hlmz torlódási pontj ui. nem feltétlenül pontj hlmznk). Éppen emitt lényeges denícióbn 0 < x x 0 feltétel, ez biztosítj zt, hogy x x 0. Tétel. [átviteli elv] Legyen f : D R R és x 0 D. f(x) = kkor és cskis kkor, h bármely (x n ) : N D, x 0 x n x 0 (n ) sorozt esetén lim x x 0 f(x n ) (n ).
26 26 GAZDASÁGI MATEMATIKA I. Másképpen megfoglmzv: z f függvény értelmezési trtományánk egy x 0 torlódási pontjábn kkor és cskis kkor lesz f htárértéke z szám, h z értelmezési trtományból bármely x 0 -hoz konvergáló (x n ) soroztot véve, melynek elemei x 0 -tól különböz ek, függvényértékek (f(x n )) sorozt hoz konvergál. Bizonyítás. H lim x x 0 f(x) =, és x 0 x n x 0 (n ), kkor δ(ε) > 0-hoz vn olyn N (δ(ε)) > 0, hogy x n x 0 < δ(ε) h n > N (δ(ε)), így f(x n ) < ε h n > N (δ(ε)), mi zt jelenti, hogy f(x n ) (n. Indirekt bizonyítást hsználunk. Tegyük fel, hogy bármely (x n ) : N D, x 0 x n x 0 (n ) sorozt esetén f(x n ) (n ), de lim f(x) = x x 0 nem teljesül. Ez utóbbi zt jelenti, hogy (ε > 0) (δ(ε) > 0) (x D) [(0 < x x 0 < δ(ε)) ( f(x) < ε)]. Ennek tgdás zt jelenti, hogy Innen δ(ε ) = n-t véve (ε > 0) (δ(ε ) > 0) (x D) [(0 < x x 0 < δ(ε )) ( f(x) ε )]. [( (x n D) 0 < x n x 0 < ) ] ( f(x n ) ε ) n de kkor x 0 x n x 0 (n ) és f(x n ) (n ), mi ellentmondás. Megjegyezzük, hogy P Q implikáció ekvivlens ( P ) Q-vl, így tgdás (P Q) = (( P ) Q) = P ( Q) lesz (itt tgdás m veletének logiki jele). Példák. ld. el dás. Átfoglmzás. f(x) < ε f(x) K(, ε) 0 < x x 0 < δ(ε) x D x (K(x 0, δ) \ {x 0 }) D hol K(, ε) z pont ε sugrú környezetét jelöli. Ennek segítségével deníció átfoglmzhtó: lim f(x) =, x x 0 h pont bármely K(, ε) környezetéhez vn x 0 -nk olyn K(x 0, δ) környezete, hogy h x (K(x 0, δ) \ {x 0 }) D, kkor f(x) K(, ε). Ez z átfoglmzás lehet séget d htárérték deníciójánk kiterjesztésére. Azt mondjuk, hogy + + torlódási pontj D R-nek, h bármely környezetében vn D-beli pont (mi nyilvánvlón mindig különböz + -t l).. A deníció kiterjeszthet rr z esetre, mikor x 0, R b. Például, z x 0 =, = esetben htárérték deníciój: legyen x 0 = torlódási pontj D-nek, kkor lim f(x) = zt jelenti, hogy hogy x bármely környezetéhez vn -nek olyn környezete, hogy h x-et ezen utóbbi környezet és D közös részéb l vesszük, kkor f(x) benne lesz el bbi környezetében. Vgy, mi ugynz, bármely K < 0 számhoz vn olyn δ(k) > 0 szám, hogy f(x) < K h x > δ(k), és x D.
27 GAZDASÁGI MATEMATIKA I Jobb- és bloldli htárérték (csk x 0 R-ben). Tegyük fel, x 0 D [x 0, + [ hlmz torlódási pontj. H D [x 0, + [ hlmzr lesz kített függvény D ], x 0 ] D ], x 0 ] htárértéke z x 0 pontbn z szám, kkor zt mondjuk, hogy jobboldli f bloldli htárértéke, és ezt lim f(x) = x x 0+0 lim x x 0 0 f(x) = -vl jelöljük. Másképpen foglmzv, legyen x 0 D [x 0, + [ hlmz torlódási pontj. Akkor mondjuk, hogy z f : D D ], x 0 ] R R függvénynek z szám jobboldli bloldli htárértéke z x 0 pontbn, h minden ε > 0-hoz vn olyn δ(ε) > 0, hogy 0 < x x f(x) < ε h 0 < δ(ε) és δ(ε) < x x 0 < 0 x D teljesül. Definíció. Legyenek f, g : D R R, kkor e függvények (pontonkénti) összegét, f c R-szeresét, szorztukt, hánydosukt z (f + g)(x) : = f(x) + g(x) (x D) (cf)(x) : = cf(x) (x D) (fg)(x) : = f(x)g(x) (x D) (f/g)(x) : = f(x)/g(x) (x D, g(x) 0) képletekkel értelmezzük. Tétel. [htárérték, monotonitás és m veletek] Legyenek f, g : D R R, x 0 D, és tegyük fel, hogy Akkor bármely c R mellett lim f(x) =, lim g(x) = b. x x 0 x x 0 lim (f + g)(x) x x 0 = + b, lim (cf)(x) x x 0 = c, lim (fg)(x) x x 0 = b, lim (f/g)(x) x x 0 = /b, h b 0. H f(x) g(x) (x D, x x 0 ), kkor b. H f(x) h(x) g(x) (x D, x x 0 ), és = b, kkor lim h(x) =. x x 0 Bizonyítás. Az átviteli elv lpján soroztok htárértékének tuljdonságiból következik. A tétel kkor is igz, h, b R b, x 0 R b, de ekkor meg kell követelnünk, hogy jobboldli kifejezések ( + b, c, b, /b) értelmezve legyenek. Definíció. A h(x) := g (f(x)) (x D) függvényt, hol f : D R R, g : f(d) R, z f és g függvényekb l összetett függvénynek nevezzük, f bels, g küls függvény. h jelölésére hsználjuk h = g f-t is (itt f(d) = { f(x) : x D } z f függvény értékkészlete). Tétel. [összetett függvény htárértéke] Legyen f : D R R, g : f(d) R, és h(x) := g (f(x)) (x D). H x 0 D, lim f(x) =, / f (D \ {x 0 }), x x 0 és lim g(x) = b y kkor lim h(x) = b. x x 0
28 28 GAZDASÁGI MATEMATIKA I. Bizonyítás. Legyen x 0 x n x 0 (n ) kkor y n := f(x n ) (n ) és y n f (D \ {x 0 }) ezért y n, így h(x n ) = g(y n ) b (n.) 5.2 Függvény folytonosság Definíció. Az f : D R R függvényt értelmezési trtományánk x 0 D pontjábn folytonosnk nevezzük, h bármely ε > 0-hoz vn olyn δ(ε) > 0, hogy f(x) f(x 0 ) < ε h x x 0 < δ(ε) és x D teljesül. H x 0 D D kkor f folytonos x 0 -bn kkor, és cskis kkor, h lim f(x) = f(x 0 ). x x 0 H x 0 D, de x 0 / D, kkor x 0 D izolált pontj, izolált pontokbn f deníció lpján mindig folytonos. Tétel. [átviteli elv függvény folytonosságár] Az f : D R R függvény folytonos z x 0 D pontbn kkor és cskis kkor, h bármely (x n ) : N D, x n x 0 (n ) sorozt esetén f(x n ) f(x 0 ) (n ). Környezetes átfoglmzás. Az f : D R R függvény folytonos z x 0 D pontbn kkor és cskis kkor, h f(x 0 ) bármely K(f(x 0 ), ε) környezetéhez vn x 0 -nk olyn K(x 0, δ) környezete, hogy h x K(x 0, δ), kkor f(x) K(f(x 0 ), ε). Tétel. [folytonosság es m veletek] H f, g : D R R folytonosk z x 0 D pontbn, kkor f + g, cf, fg, f/g (h g(x 0 ) 0) is folytonosk x 0 -bn. Továbbá, h(x) = g (f(x)) (x D) összetett függvény (hol f : D R R, g : f(d) R) folytonos x 0 -bn, h f folytonos x 0 -bn és g folytonos z y 0 := f(x 0 ) pontbn. 5.3 Folytonos függvények globális tuljdonsági Definíciók. Az f : D R R függvényt lulról felülr l korlátosnk nevezzük, h értékkészlete lulról felülr l korlátos. Az f : D R R függvényt monoton növekv nek csökken nek nevezzük D n, h bármely x < x 2, x, x 2 D esetén f(x ) f(x 2 ) f(x ) f(x 2 ) teljesül. Az f : D R R függvényt szigorún monoton növekv nek csökken nek nevezzük D n, h bármely x < x 2, x, x 2 D esetén f(x ) < f(x 2 ) f(x ) > f(x 2 ) teljesül. Azt mondjuk, hogy z f : D R R függvénynek lokális (helyi) mximum minimum z x 0 D pontbn, h vn olyn ε > 0 hogy f(x 0 ) f(x) f(x 0 ) f(x) teljesül minden x K(x 0, ε) D esetén.
29 GAZDASÁGI MATEMATIKA I. 29 Azt mondjuk, hogy z f : D R R függvénynek szigorú lokális (helyi) mximum minimum z x 0 D pontbn, h vn olyn ε > 0 hogy f(x 0 ) > f(x) teljesül minden f(x 0 ) < f(x) x K(x 0, ε) D, x x 0 esetén. Azt mondjuk, hogy z f : D R R függvénynek globális (bszolút) mximum minimum vn z x 0 D pontbn, h f(x 0 ) f(x) f(x 0 ) f(x) teljesül minden x D esetén. Azt mondjuk, hogy z f : D R R függvénynek szigorú globális (bszolút) mximum minimum vn z x 0 D pontbn, h f(x 0 ) > f(x) f(x 0 ) < f(x) teljesül minden x D, x x 0 esetén. Állítás. Folytonos függvény jeltrtó, zz h f : D R R folytonos z x 0 D pontbn, és f(x 0 ) 0 kkor vn olyn δ > 0 hogy sg f(x) = sg f(x 0 ) h x K(x 0, δ) D, hol sg szignum (el jel) függvényt jelöli. Bizonyítás. A folytonosság mitt ε := f(x 0 ) /2-höz vn olyn δ > 0, hogy f(x) f(x 0 ) < f(x 0 ) /2 h x x 0 < δ(ε) és x D. Legyen pl. f(x 0 ) > 0, kkor z el z egyenl tlenséget részletesen kiírv kpjuk, hogy f(x 0 )/2 < f(x) f(x 0 ) < f(x 0 )/2, vgy f(x 0 )/2 < f(x) (< 3f(x 0 )/2), h x G(x 0, δ) D, mi muttj állításunk helyességét. Definíció. Azt mondjuk, hogy z f : D R R függvény folytonos z A D hlmzon, h f z A hlmz minden pontjábn folytonos. Tétel. [folytonos függvény korlátosság] Korlátos zárt intervllumon folytonos függvény korlátos. Azz h f : [, b] R folytonos [, b]-n, kkor vnnk olyn k, K R melyekre k f(x) K minden x [, b] mellett. Bizonyítás. Tegyük fel állításunkkl ellentétben, hogy pl. f nem korlátos felülr l. Akkor minden n N-hez vn olyn x n [, b], hogy f(x n ) > n. Tekintsük z A := { x n : n N } hlmzt. H A véges hlmz, kkor vn olyn x k0 eleme A-nk, hogy x n = x k0 véges sok n index kivételével, zz, x n = x k0 h n > n 0. H A végtelen hlmz, kkor Bolzno-Weierstrss tétel lpján A-nk vn (leglább egy) x 0 torlódási pontj. x n [, b] és [, b] zártság mitt x 0 [, b]. Vegyünk z x 0 pont K(x 0, ) környezetéb l egy x 0 -tól különböz A-beli x n pontot. Ezután z x 0 pont K(x 0, d ) környezetéb l, hol d = x n x 0, válsszunk egy olyn x 0 -tól különböz x n2 A pontot melyre n 2 > n legyen (ilyen biztosn vn, mert z x 0 pont bármely környezete végtelen sok A-beli pontot trtlmz, egyébként x 0 nem lehetne A torlódási pontj). Az x n3 pontot K(x 0, d 2 ) környezetb l válsztjuk, hol d 2 = x n2 x 0, úgy, hogy x n3 x 0, és n 3 > n 2 legyen. Hsonlón
Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév
Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra
RészletesebbenMatematika I. Mőszaki informatikai mérnm. rnökasszisztens. Galambos GáborG JGYPK 2011
Mtemtik I. Mőszki informtiki mérnm rnöksszisztens http://jgypk.u jgypk.u-szeged.hu/tnszek/szmtech szmtech/oktts/mtemtik-.pdf Glmbos GáborG JGYPK - Mtemtik I. Felsıfokú Szkképzés A Mtemtik I. fıbb f témái:
RészletesebbenJuhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai
Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,
RészletesebbenExponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek
Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7
RészletesebbenAnalízisfeladat-gyűjtemény IV.
Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította
RészletesebbenGAZDASÁGI MATEMATIKA I.
GAZDASÁGI MATEMATIKA I. LOSONCZI LÁSZLÓ ANYAGAINAK FELHASZNÁLÁSÁVAL. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek,
RészletesebbenMATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM
MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent
RészletesebbenPÁLYÁZATI ÚTMUTATÓ. a Társadalmi Megújulás Operatív Program keretében
PÁLYÁZATI ÚTMUTATÓ Társdlmi Megújulás Opertív Progrm keretében Munkhelyi képzések támogtás mikro- és kisválllkozások számár címmel meghirdetett pályázti felhívásához Kódszám: TÁMOP-2.1.3/07/1 v 1.2 A projektek
RészletesebbenGAZDASÁGI MATEMATIKA I.
GAZDASÁGI MATEMATIKA I. ÖSSZEÁLLÍTOTTA: LOSONCZI LÁSZLÓ. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis
RészletesebbenÓravázlatok: Matematika 2. Tartományintegrálok
Órvázltok: Mtemtik 2. rtományintegrálok Brth Ferenc zegedi udományegyetem, Elméleti Fiziki nszék készültség: April 23, 23 http://www.jte.u-szeged.hu/ brthf/oktts.htm) ontents 1. A kettős integrál 1 1.1.
RészletesebbenMiskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás
RészletesebbenVégeredmények, emelt szintû feladatok részletes megoldása
Végeredmények, emelt szintû feldtok részletes megoldás I. gyökvonás. gyökfoglom kiterjesztése. négyzetgyök lklmzási. számok n-edik gyöke 5. z n-edik gyökfüggvény, z n-edik gyök lklmzás 6 II. Másodfokú
RészletesebbenSűrűségmérés. 1. Szilárd test sűrűségének mérése
Sűrűségérés. Szilárd test sűrűségének érése A sűrűség,, definíciój hoogén test esetén: test töege osztv test V térfogtávl: V A sűrűség SI értékegysége kg/, hsználtos ég kg/d, kg/l és g/c Ne hoogén testnél
RészletesebbenMATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
RészletesebbenII. A számtani és mértani közép közötti összefüggés
4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!
RészletesebbenAnalízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:
Részletesebben19. Függvények rekurzív megadása, a mester módszer
19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.
RészletesebbenValószín ségelmélet házi feladatok
Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott
RészletesebbenAz R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
RészletesebbenJANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok
JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet
RészletesebbenA gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:
. Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,
RészletesebbenA VI. FEKETE MIHÁLY EMLÉKVERSENY
A VI. FEKETE MIHÁLY EMLÉKVERSENY Elődó: Bgi Márk Elődás címe: Csillgászti elődás és kvíz A versenyzők feldtmegoldásokon törik fejüket. 88 VI. FEKETE MIHÁLY EMLÉKVERSENY Zent, 008. december. 9. évfolym.
RészletesebbenMátrixok és determinánsok
Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.
RészletesebbenANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA
ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Blogh Tmás 2013. jnuár 16. H hibát tlálsz, kérlek jelezd info@bloghtms.hu e-mil címen! Ez Mű Cretive Commons Nevezd meg! - Ne dd el! - Így
RészletesebbenMATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen
RészletesebbenTERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA
9 MÉRÉEK A KLAZKU FZKA LABORATÓRUMBAN TERMOELEKTROMO HŰTŐELEMEK VZGÁLATA 1. Bevezetés A termoelektromos jelenségek vizsgált etekintést enged termikus és z elektromos jelenségkör kpcsoltár. A termoelektromos
RészletesebbenHalmazelmélet. 2. fejezet 2-1
2. fejezet Halmazelmélet D 2.1 Két halmazt akkor és csak akkor tekintünk egyenl nek, ha elemeik ugyanazok. A halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele:. D 2.2 Az A halmazt a B halmaz
RészletesebbenMATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti
Részletesebbene s gyakorlati alkalmaza sai
Sze lso e rte k-sza mı ta s e s gyakorlati alkalmaza sai Szakdolgozat ı rta: Pallagi Dia na Matematika BSc szak, elemzo szakira ny Te mavezeto : Svantnerne Sebestye n Gabriella Tana rsege d Alkalmazott
RészletesebbenII. Lineáris egyenletrendszerek megoldása
Lieáris egyeletredszerek megoldás 5 II Lieáris egyeletredszerek megoldás Kettő vgy három ismeretlet trtlmzó egyeletredszerek Korábbi tulmáyitok sorá láttátok, hogy vgy ismeretlet trtlmzó lieáris egyeletredszerek
RészletesebbenVektorszámítás Fizika tanárszak I. évfolyam
Vektorszámítás Fizika tanárszak I. évfolyam Lengyel Krisztián TARTALOMJEGYZÉK Tartalomjegyzék. Deriválás.. Elmélet........................................... Deriválási szabályok..................................
RészletesebbenMAGICAR 441 E TÍPUSÚ AUTÓRIASZTÓ-RENDSZER
MAGICAR 441 E TÍPUSÚ AUTÓRIASZTÓ-RENDSZER 1. TULAJDONSÁGOK, FŐ FUNKCIÓK 1. A risztóberendezéshez 2 db ugrókódos (progrmozhtó) távirányító trtozik. 2. Fontos funkciój z utomtikus inditásgátlás, mely egy
RészletesebbenGYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert)
GYAKORLAT. Elemi logika, matematikai állítások és következtetések, halmazok lásd EA-ban is; iskolából ismert I. Halmazok.. Alapfogalmak: "halmaz" és "eleme". Halmaz kritériuma: egyértelm en eldönthet,
RészletesebbenKonfár László Kozmáné Jakab Ágnes Pintér Klára. sokszínû. munkafüzet. Harmadik, változatlan kiadás. Mozaik Kiadó Szeged, 2012
Konfár László Kozmáné Jk Ágnes Pintér Klár sokszínû munkfüzet 8 Hrmdik, változtln kidás Mozik Kidó Szeged, 0 Szerzõk: KONFÁR LÁSZLÓ áltlános iskoli szkvezetõ tnár KOZMÁNÉ JK ÁGNES áltlános iskoli szkvezetõ
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet
RészletesebbenDiszkrét Matematika I.
Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Bácsó Sándor Diszkrét Matematika I. egyetemi jegyzet mobidiák
RészletesebbenMatematikai és matematikai statisztikai alapismeretek
Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok
Részletesebben2. Halmazelmélet (megoldások)
(megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek
RészletesebbenFESZÍTŐMŰVES VASÚTI JÁRMŰALVÁZAK. Prof.Dr. Zobory István
FESZÍTŐMŰVES VASÚTI JÁRMŰALVÁZAK Prof.Dr. Zobory István Budpest 04 Trtlomegyzék. Bevezetés... 3. A vsúti árművek teherviselő részeiről... 3. Alvázs (nem önhordó) kocsik... 3.. Kéttengelyes kocsik... 4..
RészletesebbenPtolemaios-tétele, Casey-tétel, feladatok
Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor
RészletesebbenFELVÉTELI VIZSGA, július 15.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten ANALÍZIS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Nevezetes halmazok
RészletesebbenMARADÉKANOMÁLIA-SZÁMÍTÁS
MARADÉKANOMÁLIASZÁMÍTÁS **'* Kivont STEINER FERENC" okl középiskoli tnárnk Nehézipri Műszki Egyetem Bánymérnöki Krához benyújtott és elfogdott doktori értekezéséből Az értekezés bírálói: Dr csókás János
RészletesebbenBevezetés. Mi a koleszterin?
Bevezet betegklub feldt tgji számár betegségükkel kpcsoltos szkszerű információkt megdni. Ebben füzetben koleszterin htásiról cukorbetegségről gyűjtöttünk össze hsznos információkt. Mi koleszterin? koleszterin
Részletesebben= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1
Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n
RészletesebbenMATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
Részletesebbenmatematikai statisztika 2006. október 24.
Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................
RészletesebbenMatematika A1a - Analízis elméleti kérdései
Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n
RészletesebbenA Szolgáltatás minőségével kapcsolatos viták
I. A Szolgálttó neve, címe DITEL 2000 Kereskedelmi és Szolgálttó Korlátolt Felelősségű Társság 1051. Budpest, Nádor u 26. Adószám:11905648-2- 41cégjegyzékszám: 01-09-682492 Ügyfélszolgált: Cím: 1163 Budpest,
RészletesebbenKészségszint-mérés és - fejlesztés a matematika kompetencia területén
Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő
RészletesebbenLajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1
Ljkó Károly Klkulus II. Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 1 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet dvi, pdf és ps formátumbn
Részletesebben2. előadás: További gömbi fogalmak
2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással
RészletesebbenHatározott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál
Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett
RészletesebbenJegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4)
Jegyzőkönyv ermoelektromos hűtőelemek vizsgáltáról (4) Készítette: üzes Dániel Mérés ideje: 8-11-6, szerd 14-18 ór Jegyzőkönyv elkészülte: 8-1-1 A mérés célj A termoelektromos hűtőelemek vizsgáltávl kicsit
RészletesebbenGáspár Csaba. Analízis
Gáspár Csaba Analízis Készült a HEFOP 3.3.-P.-004-09-00/.0 pályázat támogatásával Szerzők: Lektor: Gáspár Csaba Szili László, egyetemi docens c Gáspár Csaba, 006. Tartalomjegyzék. Bevezetés 5. Alapvető
Részletesebben5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14.
Tartalomjegyzék 1 A matematikai logika elemei 1 11 Az ítéletkalkulus elemei 1 12 A predikátum-kalkulus elemei 7 13 Halmazok 10 14 A matematikai indukció elve 14 2 Valós számok 19 21 Valós számhalmazok
Részletesebbenf(x) a (x x 0 )-t használjuk.
5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Részletesebben9. HATÁROZATLAN INTEGRÁL
9. HATÁROZATLAN INTEGRÁL 9. Definíció és lpintegrálok. Definíció. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differenciálhtó
RészletesebbenLineáris algebra - jegyzet. Kupán Pál
Lineáris algebra - jegyzet Kupán Pál Tartalomjegyzék fejezet Vektorgeometria 5 Vektorok normája Vektorok skaláris szorzata 4 3 Vektorok vektoriális szorzata 5 fejezet Vektorterek, alterek, bázis Vektorterek
RészletesebbenLÁNG CSABÁNÉ SZÁMELMÉLET. Példák és feladatok. ELTE IK Budapest 2010-10-24 2. javított kiadás
LÁNG CSABÁNÉ SZÁMELMÉLET Példák és feladatok ELTE IK Budapest 2010-10-24 2. javított kiadás Fels oktatási tankönyv Lektorálták: Kátai Imre Bui Minh Phong Burcsi Péter Farkas Gábor Fülöp Ágnes Germán László
RészletesebbenGazdasági matematika I. tanmenet
Gzdsági mtemtik I. tnmenet Mádi-Ngy Gergely A hivtkozásokbn z lábbi két tnkönyvre utlunk: Cs: Csernyák László (szerk.): Anlízis, Nemzeti Tnkönyvkidó 200. D: Denkinger Géz: Anlízis gykorltok, Nemzeti Tnkönyvkidó
RészletesebbenKalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév
Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],
RészletesebbenMatematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés
Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2005 Bevezetés A logika a gondolkodás általános törvényszerűségeit, szabályait vizsgálja. A matematikai logika a
RészletesebbenMatematikai analízis. Editura Didactică şi Pedagogică
András Szilárd Mureşn Mrin Mtemtiki nlízis és lklmzási Editur Didctică şi Pedgogică Bucureşti, 2005 Descriere CIP Bibliotecii Nţionle României ANDRÁS SZILÁRD, MARIAN MUREŞAN Mtemtiki nlízis és lklmzási/
RészletesebbenA vasbeton vázszerkezet, mint a villámvédelmi rendszer része
Vsbeton pillér vázs épületek villámvédelme I. Írt: Krupp Attil Az épületek jelentős rze vsbeton pillérvázs épület formájábn létesül, melyeknél vázszerkezetet rzben vgy egzben villámvédelmi célr is fel
RészletesebbenA torokgerendás fedélszerkezet erőjátékáról 1. rész
A torokgerendás fedélszerkezet erőjátékáról. rész Bevezetés Az idő múlik, kívánlmk és lehetőségek változnk. Tegnp még logrléccel számoltunk, m már elektronikus számoló - és számítógéppel. Sok teendőnk
Részletesebben1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b
XVII ERDÉLYI MAGYAR MATEMATIKAVERSENY CSÍKSZEREDA 007 FEBRUÁR 8- NAP 9 OSZTÁLY Igzoljuk, hogy mide * \ {} eseté 5 ( ) Lckó József, Csíkszered Az b,, b számok eseté htározzuk meg z Ex ( ) x b x kifejezés
Részletesebben1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2
A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:
RészletesebbenMATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
RészletesebbenAnalízis II. harmadik, javított kiadás
Ljkó Károly Anlízis II. hrmdik, jvított kidás Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet
RészletesebbenEls gyakorlat. vagy más jelöléssel
Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,
RészletesebbenBIOKOMPATIBILIS ANYAGOK.
1 BIOKOMPATIBILIS ANYAGOK. 1Bevezetés. Biokomptbilis nygok különböző funkcionális testrészek pótlásár ill. plsztiki célokt szolgáló lkos, meghtározott méretű, nygok ill. eszközök, melyek trtósn vgy meghtározott
RészletesebbenVB-EC2012 program rövid szakmai ismertetése
VB-EC01 progrm rövid szkmi ismertetése A VB-EC01 progrmcsomg hrdver- és szoftverigénye: o Windows XP vgy újbb Windows operációs rendszer o Min. Gb memóri és 100 Mb üres lemezterület o Leglább 104*768-s
RészletesebbenHatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória
1. ktegóri 1.1.1. Adtok: ) Cseh László átlgsebessége b) Chd le Clos átlgsebessége Ezzel z átlgsebességgel Cseh László ideje ( ) ltt megtett távolság Így -re volt céltól. Jn Switkowski átlgsebessége Ezzel
RészletesebbenMolnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0
Anlízis. Írásbeli tételek-bizonyítások Molnár Bence 1.Tétel: Intervllumon értelmezett folytonos függvény értékkészlete intervllum Legyen I R tetszőleges intervllum és f I R folytonos függvény R f intervllum
RészletesebbenMatematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
RészletesebbenMátrix-vektor feladatok Összeállította dr. Salánki József egyetemi adjunktus Begépelte Dr. Dudás László és Bálint Gusztáv
Mátrx-vektor feldtok Összeállított dr. Slánk József egyetem djunktus Begépelte Dr. Dudás László és Bálnt Gusztáv 1. feldt Adottk z n elemű, b vektorok. Képezn kell c vektort, hol c = b / Σ( ), ( = 0,1,,
RészletesebbenNUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó
FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright Az Olvasó most egy egyetemi jegyzetet tart
RészletesebbenBináris keres fák kiegyensúlyozásai. Egyed Boglárka
Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi
RészletesebbenJANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. ***************
JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS II. Folytonosság, differenciálhatóság *************** Pécs, 1996 Lektorok: DR. SZÉKELYHIDI LÁSZLÓ egyetemi tanár, a mat. tud. doktora DR. SZILI LÁSZLÓ
Részletesebbenf(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Részletesebbenhajlító nyomaték és a T nyíróerő között ugyanolyan összefüggés van, mint az egyenes rudaknál.
5 RÚDELADATOK 51 íkgörbe rudk Grhof 1 -féle elmélete íkgörbe rúd: rúd köépvonl ( ponti ál) íkgörbe e P n e t Jelöléek: A köépvonl mentén pontokt ívkoordinátávl onoítjuk Pl P pont A P pontbn (P pontho trtoó
RészletesebbenA Riemann-integrál intervallumon I.
A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,
RészletesebbenTermészetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5
1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat
RészletesebbenTARTALOM. Ismétlő tesztek...248 ÚTMUTATÁSOK ÉS EREDMÉNYEK...255
TARTALOM. SZÁMHALMAZOK...5.. Természetes kitevőjű hatványok...5.. Negatív egész kitevőjű hatványok...6.. Racionális kitevőjű hatványok...7.4. Irracionális kitevőjű hatványok...0.5. Négyzetgyök és köbgyök...
RészletesebbenIV. Algebra. Algebrai átalakítások. Polinomok
Alger Algeri átlkítások olinomok 6 ) Öttel oszthtó számok pl: -0-5 0 5 áltlánosn 5 $ l lkú, hol l tetszôleges egész szám Mtemtiki jelöléssel: 5 $ l hol l! Z ) $ k+ vgy$ k- hol k! Z $ m- vgy $ m+ lkú, hol
RészletesebbenVersenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.
Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy
Részletesebben7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei
7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,
RészletesebbenSzámelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa
Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa 1. Mutasd meg, hogy a tízes számrendszerben felírt 111111111111 tizenhárom jegyű szám összetett szám, azaz
RészletesebbenKockázati folyamatok. Sz cs Gábor. Szeged, 2012. szi félév. Szegedi Tudományegyetem, Bolyai Intézet
Kockázati folyamatok Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet Szeged, 2012. szi félév Sz cs Gábor (SZTE, Bolyai Intézet) Kockázati folyamatok 2012. szi félév 1 / 48 Bevezetés A kurzus céljai
RészletesebbenMATEMATIKA FELADATLAP a 6. évfolyamosok számára
6. évfolym Mt2 feltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2015. jnuár 22. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen
RészletesebbenSzéchenyi István Egyetem, 2005
Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását
Részletesebben86 MAM112M előadásjegyzet, 2008/2009
86 MAM11M előadásjegyzet, 8/9 5. Fourier-elmélet 5.1. Komplex trigonometrikus Fourier-sorok Tekintsük az [,], C Hilbert-teret, azaz azoknak a komplex értékű f : [,] C függvényeknek a halmazát, amelyek
Részletesebben3. Strukturált programok
Ha egy S program egyszerű, akkor nem lehet túl nehéz eldönteni róla, hogy megold-e egy (A,Ef,Uf) specifikációval megadott feladatot, azaz Ef-ből (Ef által leírt állapotból indulva) Uf-ben (Uf által leírt
Részletesebben3.1. Halmazok számossága
38 Győri István, Hrtung Ferenc: MA1114f és MA6116 elődásjegyzet, 2006/2007 3. Mérték- és integrálelmélet 3.1. Hlmzok számosság Azt mondjuk, hogy egy véges A hlmz számosság n, h z A hlmz n db elemből áll.
RészletesebbenMIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június
MIKROÖKONÓMIA I Készült a TÁMOP-412-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
RészletesebbenSorozatok és Sorozatok és / 18
Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle
Részletesebben6. Tárkezelés. Operációs rendszerek. Bevezetés. 6.1. A program címeinek kötése. A címleképzés. A címek kötésének lehetőségei
6. Tárkezelés Oerációs rendszerek 6. Tárkezelés Simon Gyul Bevezetés A rogrm címeinek kötése Társzervezési elvek Egy- és többrtíciós rendszerek Szegmens- és lszervezés Felhsznált irodlom: Kóczy-Kondorosi
Részletesebben1. Halmazelméleti alapok
1. Hlmzelméleti lpok A Mtemtiki kislexikonbn hlmz foglmár következ deníciót tláljuk: A hlmz tetsz leges természet dolgoknk vlmilyen módon összegy jtött összessége. Ez deníció zonbn nem hsználhtó, ugynis
RészletesebbenHálók kongruenciahálója
Hálók kongruenciahálója Diplomamunka Írta: Skublics Benedek Témavezet : Pálfy Péter Pál Eötvös Loránd Tudományegyetem Matematikai Intézet 2007 Tartalomjegyzék Bevezetés 1 1. Hálók kongruenciái 3 1.1. A
Részletesebben