Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.
|
|
- Boglárka Jónásné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció... 4 A kettősintegrál kiszámítása téglalap tartományon... 4 A kettősintegrál kiszámítása normál tartományon... 6 Kettősintegrál y-tengelyre vonatkoztatott normál tartományon... 7 A kettősintegrál geometriai jelentése... 7 Integráltranszformáció... 8 Polárkoordinátás transzformáció... 9 Térgörbék... Kísérő triéder... 5 Térgörbék ívhossza... 8
2 Kétváltozós függvény integrálszámítása Primitívfüggvény Az f ( y, ) függvény változó szerinti primitív függvénye (, ) (, ) (, ) F y = f y Az összes primitív függvény jelölése: (, ) (, ) F y, ha f yd= F y + C Az f ( y, ) függvény y változó szerinti primitív függvénye G(, y ), ha G (, y) = f (, y) Az összes primitív függvény jelölése: (, ) (, ) y Példa f ydy= Gy + C e d= e d= e + C, mert y y y y y y y e = e = e y y y y y y y y y y e dy = e dy = e + C y y y, mert y y e = e y Kettősintegrál A kettősintegrál téglalap tartományon Legyen T egy téglalap alakú tartomány a koordinátatengelyekkel párhuzamos oldalakkal, (, ): a T y b =, osszuk fel az [ ab, ] intervallumot n egyenlő részre, jelölje az c y d osztópontokat a= 0 < <... < í < i+ <... n = b, osszuk fel a [ cd, ] intervallumot is m egyenlő részre, jelölje az osztópontokat c= y0 < y<... < yj < yj+ <... ym = d. Legyen ( ui, vj) egy tetszőleges belső pontja az < u < y < v < y i i i+ j j j+ téglalapnak. f u, v ( y y ) ( ) Képezzük az ( ) + + i i j j i i szorzatot, azaz a téglalap egy tetszőleges belső pontjában vett függvényértéket szorozzuk meg a téglalap területével. Summázzuk a szorzatot az összes téglalapra.
3 n m I = f ui, vj ( i i) ( yj yj), melyet a konkrét (n,m) A kapott összeg ( ) + + i= j= felosztáshoz tartozó általános integrálközelítő összegnek nevezünk. = vagyis mij az alsó határa, M ij a felső határa a téglalapbeli függvényértékeknek. n m Legyen snm, = mij( i+ i) ( yj+ yj), ezt az összeget, az adott (n,m) felosztáshoz Legyen mij = inf { f( ui, vj )} és M ij sup { f( ui, vj )} i= j= tartozó alsó közelítő összegnek nevezzük. n m Legyen Snm, = Mij( i+ i) ( yj+ yj), ezt az összeget, az adott (n,m) felosztáshoz i= j= tartozó felső közelítő összegnek nevezzük. Ekkor minden integrálközelítő összegre igaz, hogy snm, I Snm, osztópontok felvétele esetén az alsó összeg nő (nem csökken), a felső összeg csökken (nem nő). Ha az alsó összegeknek a felső határa és a felső összegeknek alsó határa megegyezik, vagyis ha sup( snm, ) = inf( Snm, ), akkor mondjuk, hogy f ( y, ) integrálható T -n. Jele: f (, y) ddy (szokásos jelölés még dt ) A kettősintegrál létezésének szükséges feltétele T minden I -re. További Az integrál definíciójából következik, hogy ha létezik a kettős integrál, akkor az f ( y, ) függvény korlátos a T tartományon. 3
4 Illusztráció Vegyük az f (, y) 9 y ha + y 9 = függvényt! 0 ha + y 9 A hozzá tartozó felület egy forgás-paraboloid z = + y, lefelé fordítva (--el szorozva) és feltolva a z=9 pontba. Legyen a T tartomány egy 6 egység oldalú négyzet melynek középpontja az origó. Elkészítettük az n=m (ugyanannyi részre osztjuk fel a négyzet mindkét oldalát) felosztáshoz tartozó alsó és felső közelítő összegek egyikét-másikát. A kettősintegrál kiszámítása téglalap tartományon A kettősintegrál egy téglalap tartományon (, ): a T y b = visszavezethető két c y d egymás után végrehajtható egyszeres integrálra. Téglalap tartomány esetén tetszőleges az integrálás sorrendje. Ha az integrálközelítő összegben az összes téglalapra való összegezést először rögzített ( i+, i) mellett végezzük j szerint ab -n, akkor két egyszeres [ cd, ] -n, majd i szerint [, ] integrálközelítő összeget kapunk, tehát: 4
5 b d f (, y) ddy = f (, y) dy d T a c Könnyen látható, hogy ha fordított sorrendben végezzük az összes téglalapra való összegezést, először rögzített ( yj+, yj) mellett végezzük i szerint [ ab, ] -n, majd j szerint cd -n, akkor két egyszeres integrálközelítő összeget kapunk, tehát: [, ] d b f (, y) ddy = f (, y) d dy Vagyis az integrálás sorrendje tetszőleges. T c a Példa Határozzuk meg az (, ) y f y e + = függvény kettős integrálját a T = (, y): y tartományon! Megoldás Ha először y-szerint integrálunk azután -szerint, akkor: T + y + y y y y e ddy = e dy d = e e dy d = e e dy d = e e d = = e e d= e e e e e Példa Határozzuk meg a z = sin + sin yfüggvény kettősintegrálját N-en. π π π N = {(, y) :,0 y π π π π = yddy y ddy y π dy = 0 π 0 ( sin sin ) ( sin sin ) [ cos sin ] N + = + = + = 5
6 π [ ] π = π sin ydy = π cos y = π cos + cos 0 = π 0 0 π A kettősintegrál kiszámítása normál tartományon Definíció -tengelyre vonatkoztatott normál tartománynak nevezzük a következő tartományt. N a b = (, y): f( ) y f( ) Ha az integrálközelítő összegben rögzített akkor az hez tartozó intervallum [ ( ), ( )] i i i mellett végezzük előbb az összegezést, f f. i Tehát: b f ( ) f (, y) ddy = f (, y) dy d N a f ( ) Példa Határozzuk meg az ( ) f y, = yfüggvény kettős integrálját a N 0 = (, y): y tartományon! Megoldás N 5 y ddy = ydy d = y d = ( ) d = Példa y Számítsuk ki az f(, y) = függvény kettősintegrálját a D tartományon! + 6
7 D 0 = y ; D y 0 y = 0 y 4 y y y ddy = dy d = ydy d = d = d = D = ln( ) [ ln( ) ] ( ) 0 d = + d = d = = ln( + ) + + ln( + )) = + + = Kettősintegrál y-tengelyre vonatkoztatott normál tartományon Definíció: y-tengelyre vonatkoztatott normál tartománynak nevezzük a következő tartományt. N y c y d = (, y): g( y) g( y) d g ( y) f (, y) ddy = f (, y) d dy Ny c g ( y) A kettősintegrál geometriai jelentése A téglalap tartományon vett kettősintegrál geometriai jelentése a felület alatti előjeles térfogat, hiszen egy felosztáshoz tartozó alsó közelítő összeg a beírt hasábok térfogatának összege, a felső összeg pedig a kívül írt hasábok térfogatának összege: Példa 7
8 Határozzuk meg a f ( y, ) = y függvény kettősintegrálját az egységkörön. Megoldás y ddy = 0, mert a függvény értéke szimmetrikus de ellentétes előjelű a következő K tartományon. Határozzuk meg a f ( y, ) = y felület és az egységsugarú henger részének térfogatát. + y = z = z közös Megoldás Tekintettel arra, hogy most nem előjeles térfogatot számolunk, kiszámoljuk az első síknegyedbe eső N negyedkörre az integrál értékét és négyszer vesszük. y V = 4 y ddy 4 y dy d 4 = = d= 4 d= N = 4 d= 4 = Integráltranszformáció f (, y) ddy kettősintegrál kiszámításánál, ha az [, ] T (, y) koordinátájú ponthoz az [ uv, ] síkon a ( (, ), (, )) f ( y, ) f( uv (, ), yuv (, )) és a T tartomány az [, ] át. A kettősintegrál pedig ( (, ), (, )) J (, ) v(, ) (, ) (, ) uv uv Q y síkon minden uv yuv pontot rendeljük, akkor uv síkon egy Q tartományba megy f u v y u v J dudv integrálba megy át, ahol u = neve Jacobi determináns. y u v y u v u v 8
9 Polárkoordinátás transzformáció Ha az u paraméter geometriai jelentése az origótól való távolság, a v jelentése pedig a pont irányszöge (-tengely pozitív felével bezárt szög) akkor a szokásos u = r v = ϕ jelöléssel ( r, ϕ ) = r cos ϕ, y( r, ϕ) = r sinϕ r ( r, ϕ) ϕ ( r, ϕ) cosϕ r sinϕ J = = = rcos ϕ+ rsin ϕ = r y r, ϕ y r, ϕ sinϕ r cosϕ u ( ) ϕ ( ) A transzformációnál az [, y] síkban lévő szektor (lásd az ábrát) téglalap tartományba megy át az [ r, ϕ ] síkon Példa Határozzuk meg az f ( y, ) ln( y ) T {(, y):3 y 4, y 0} = + tartományon! = + függvény kettősintegrálját A T tartomány egy fél körgyűrű, mely polárkoordinátás transzformációval egy Q téglalap tartományba megy át a polár síkon. = rcosϕ y = rsinϕ Polár transzformációt alkalmazva kapjuk: ln( ) ( ln ) ( ln ) ( ln ) T π 4 π 4 π 4 + y ddy= r rdrd ϕ = r rdrd ϕ = r rdrd ϕ Parciális integrálás segítségével: r r lnr dr = r ln r r (ln r) dr = r lnr r dr = r lnr = r lnr r 9
10 Tehát visszatérve a keresett integrálra: π 4 4 r ln r dr dϕ = π r ln r = π 6(ln 4 ) 9(ln 3 ) Példa Határozzuk meg a nyeregfelület kettősintegrálját az egységkörön. 0
11 Példa Számítsuk ki az Megoldás + y = z kúp + y + z = gömb belsejébe eső részének térfogatát! A térfogatot két egyenlő részből számoljuk. A kúp pozitív fele z = + y. A test, melynek a térfogatát számoljuk a kúpból és egy gömbszeletből áll. A gömbszelet alatti térfogatból ki kell vonni a kúp alatti térfogatot. K + yddy yddy K Ahol a K tartomány a test vetülete az [, y ] síkon, melyet úgy kapunk, hogy a gömb és kúp metszetgörbéjét levetítjük az [, y ] síkra. A metszetgörbe pontjaira: y + = innen y = + y ; + y = y = + y ;azaz Tehát a K tartomány egy sugarú kör origó középpontú kör. Az integrál additivitása miatt yddy + yddy= ( y + y) ddy= V K K K Polár transzformációt alkalmazva kapjuk: K π π 3 3 r ( ) ( y + y ) ddy = r r r dr dϕ = ( r ) dϕ = π 3 3 r 0 0 π ( ) π ( r ) dϕ = ( ) r 3 3 = Feladatok:. Számítsa ki a z = 8 y paraboloid és a z = 0 sík közé zárt térrész térfogatát!
12 . Határozza meg a T y 3 ddy kettős integrál értékét, ha a T tartományt az + y 4, 0, y 0 egyenlőtlenségek jelölik ki. Térgörbék
13 Deriválás 3
14 4
15 Kísérő triéder 5
16 6
17 7
18 Térgörbék ívhossza 8
19 Példa a.) Bizonyítsuk be, hogy az astroid rt () ((cos), t ) 3 (sin t), 3 0 = síkgörbe minden pontjában az érintőjéből a koordináta tengelyek által lemetszett szakasz ugyanakkora. b.) Számítsuk ki az astroid ívhosszát! Megoldás ( ) rt &( ) = 3(cos t) ( sin t), 3(sin t) cos t, 0 rt &() = 9(cos)(sin) t t + 9(sin)(cos) t t = 3cossin t t= sint A negyed részének ívhossza: t t π π 3 s = r& ( t) dt = sint dt = 3 sint dt = 3[ cost] = Tehát az astroid hossza: π 9
20 Példa Bizonyítsuk be, hogy az r() t ( tcos t, tsin t, t) egyenletű kúpfelületen. Adjuk meg a görbületét a Megoldás t = térgörbe rajta van az π = paraméterű pontban! Vetülete az[, y] síkon + y = z () ( cos sin, sin cos, ) r t = t t t t+ t t, r π = π,, && r t = sin t (sin t+ tcos t), cos t+ (cost tsin t), 0 && r() t = ( sin t t cos t), cost t sin t, 0), && r π =, π, 0 i j k () ( ) π π π r& && r = =,, +, 4 π 0 π r& = + 4 Feladatok r& && r g = = r& 3. Adott az r() t ( e cos, cos, ) t t e t t e t π π π π r& && r = ( + ) = = térgörbe π 5π π + 4 a) Írja fel a térgörbe t 0 = 0 pontjához tartozó simulósíkjának és érintő egyenesének egyenletét. b) Számítsa ki a térgörbe t 0,ln intervallumba eső darabjának az ívhosszát. r t cos t, sin t, ln cost P,0,0 pontbeli kísérő = térgörbe ( ) 4. Határozza meg az () ( ) triéderének egységvektorait, a görbületet! Határozza meg ebben a pontban a simulósík és az érintő egyenes egyenletét is! 0 0
21 Példa = cos t Igazoljuk, hogy a rt () = y = costsint z = sin t számítsuk ki az ívhosszát! π π t térgörbe az egység sugarú gömbön van, és Megoldás Az egységsugarú gömb egyenlete: + y + z =, az egyenletbe behelyettesítve a térgörbe koordináta-függvényeit, ( ) ( ) ( ) cos t + cost sin t + sin t = cos t cos t+ sin t + sin t =, kielégíti azt, tehát valóban a felületen van. & = sin t rt &() = y& = cost, z& = cost & rt ( ) = sin t+ cos t+ cos t= + cos t Az ívhosszát nyolc egybevágó darabból számolva: π t s = r& () t dt = + cos t dt t 0 közelítőleg tudjuk kiszámítani (elliptikus integrál) A görbe nézetei:
Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13.
2015 május 13. Kétváltozós függvény kettősintegráljának definíciója Legyen f (x, y), R 2 R korlátos függvény egy T korlátos és mérhető területű tartományon. Vegyük a T tartomány egy felosztását T 1, T
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
ANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
Széchenyi István Egyetem
polár 3D gömbi Széchenyi István Egyetem Téglalapon vett integrál polár 3D gömbi Legyenek [a, b], [c, d] R véges intervallumok, és jelölje T az [a, b] [c, d] = {(x, y) R : a x b, c y d } téglalapot. Legyen
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
Matematika I. Vektorok, egyenesek, síkok
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk
Matematikai analízis II.
Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények
A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)
Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6
Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja
Megjegyzés: jelenti. akkor létezik az. ekkor
. Hármas Integrál. Bevezetés és definíciók A bevezetés első részében egy feladaton keresztül jutunk el a hármasintegrál definíciójához. Feladat: Legyen R korlátos test, és a testnek legyen az f(x, y, z
Analízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
VIK A3 Matematika, Gyakorlati anyag 2.
VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2
Többváltozós függvények Feladatok
Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y
5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11
Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4
Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Hármas integrál Szabó Krisztina menedzser hallgató. A hármas és háromszoros integrál
Hármas integrál Szabó Krisztina menedzser hallgató A hármas és háromszoros integrál Definició A fizikai meggondolások előzményeként jutunk el a hármas integrál következő értelmezéséhez. Legyen értelmezve
x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx
Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos
10. Differenciálszámítás
0. Differenciálszámítás 0. Vázolja a következő függvények, és határozza meg az értelmezési tartomány azon pontjait, ahol nem differenciálhatóak: a, f() = - b, f()= sin c, f() = sin d, f () = + e, f() =
T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.
Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor
A2 jegyzet építőmérnök mérnök hallgatóknak Többváltozós deriválás
A jegyzet építőmérnök mérnök hallgatóknak Többváltozós deriválás Simon Károly 7.4.4 BA.. Többváltozós valósértékű függvények integrálása... Normáltartományok Normáltartományok síkban A normáltartományok
IV. INTEGRÁLSZÁMÍTÁS Feladatok november
IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin
Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4
Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos
Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november
Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................
Kalkulus. Komplex számok
Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az
Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához
Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó
2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)
. Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()
Matematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére
Matematika II. Feladatgyűjtemény GEMANB Anyagmérnök BSc szakos hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . gyakorlat Matematika II.. Az alábbi f függvényeknél adja meg f -t! f() = + 5; (b) f()
Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
Egyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
3. előadás. Elemi geometria Terület, térfogat
3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
Integrálszámítás (Gyakorló feladatok)
Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)
Integr alsz am ıt as. 1. r esz aprilis 12.
Integrálszámítás. 1. rész. 2018. április 12. Területszámítás f : [a, b] IR + korlátos függvény. Mennyi a függvény grafikonja és az x tengely közti terület? Riemann integrál, ismétlés F: Az összes lehetséges
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok
Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás
Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd
Integrálszámítás 4. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 2015 november 30. Filip Ferdinánd 2015 november 30. Integrálszámítás 4. 1 / 12 Az el adás vázlata Területszámítás
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
Felületek differenciálgeometriai vizsgálata
Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai értelemben Felület: Olyan alakzat, amely előállítható az (u,v) sík egy összefüggő tartományán értelmezett r(u,v) kétparaméteres
1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük:
. Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését
Kétváltozós függvények ábrázolása síkmetszetek képzése által
Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az
Feladatok matematikából 3. rész
Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2
Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 7 VII VEkTORANALÍZIS 1 ELmÉLETI ALAPOk Az u függvényt skalár-vektor függvénynek nevezzük, ha értelmezési tartománya a háromdimenziós tér vektorainak halmaza, a függvényértékek
Többváltozós analízis gyakorlat, megoldások
Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,
Függvényhatárérték és folytonosság
8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak
13. Trigonometria II.
Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája
Többes integrálok matematikai és fizikai alkalmazásai
Eötvös Loránd Tudományegyetem Természettudományi Kar Többes integrálok matematikai és fizikai alkalmazásai Témavezető: Fehér László Egyetemi docens nalízis Tanszék Készítette: Boda Lívia Matematika BSc
Kettős és többes integrálok
Kettős és többes integrálok ) f,) + + kettős integrálja az, tartománon Megoldás: + + dd 6 + 6 + 8 + 9 + ] + + ] d 8 + 8 + ) f,) sin + ) integrálja a, tartománon Megoldás: ] d + 9 + d + + 68 8 7,5 + sin
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
A kör. A kör egyenlete
A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +
Matematika B4 VIII. gyakorlat megoldása
Matematika B4 VIII. gyakorlat megoldása 5.április 7.. Eloszlás- és sűrűségfüggvény Ha az X egy folytonos valószínűségi változó, akkor X-et jól jellemzi az eloszlás illetve a sűrűségfüggvénye. Az eloszlásfüggvény
Lengyelné Dr. Szilágyi Szilvia április 7.
ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:
9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;
Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
Dierenciálgeometria feladatsor
Dierenciálgeometria feladatsor 1. Görbék paraméterezése 1. Határozzuk meg az alábbi ponthalmazok egy paraméteres el állítását: a a, b középpontú, r sugarú kör a síkban; b y = mx + b egyenlettel leírt egyenes
Határozatlan integrál, primitív függvény
Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,
1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!
. Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.
Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy
Koordináta-geometria II.
Koordináta-geometria II. DEFINÍCIÓ: (Alakzat egyenlete) A síkon adott egy derékszögű koordináta rendszer. A síkban levő alakzat egyenlete olyan f (x, y) = 0 egyenlet, amelyet azoknak és csak azoknak a
Vektoranalízis Vektor értékű függvények
VS Vektor értékű üggvények VS A korábbi ejezetekben tanulmányoztuk azokat a üggvényeket, amelyek értékkészlete a valós számok halmazának egy részhalmaza. Ezek egyrészt az R R típusú egyváltozós, valós
5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
EGY ABLAK - GEOMETRIAI PROBLÉMA
EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az
7. Kétváltozós függvények
Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és
Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
Koordinátarendszerek
Koordinátarendszerek KO 1 Koordinátarendszerek Ponthalmazok előállításai Koordinátarendszerek KO Két gyakran alkalmazott síkbeli koordinátarendszer Derékszögű (Descartes féle) koordinátarendszer Síkbeli
Többváltozós analízis gyakorlat
Többváltozós nlízis gykorlt Áltlános iskoli mtemtiktnár szk 07/08. őszi félév Ajánlott irodlom (sok gykorló feldt, megoldásokkl: Thoms-féle klkulus 3., Typote, 007. (Jól hsználhtók z -. kötetek is Fekete
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
5. fejezet. Differenciálegyenletek
5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II.
Trigonometria II. A tetszőleges nagyságú szögek szögfüggvényeit koordináta rendszerben egységhosszúságú forgásvektor segítségével definiáljuk. DEFINÍCIÓ: (Vektor irányszöge) Egy vektor irányszögén értjük
1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények
1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
Vektoranalízis Vektor értékű függvények
Vektoranalízis VS Vektoranalízis Vektor értékű üggvények A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK engedélyével használhatók el! Vektoranalízis VS A korábbi ejezetekben tanulmányoztuk
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Felügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül