Numerikus módszerek 1.
|
|
- Dezső Takács
- 9 évvel ezelőtt
- Látták:
Átírás
1 Numerikus módszerek előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK
2 Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció
3 Emlékeztető: Iterációs módszerek Az Ax = b LER megoldása érdekében alakítsuk azt át x = Bx + c alakúra, és valamely x (0) kezdőpontból végezzük az x (k+1) = B x (k) + c (k N 0 ) iterációt. Ez a vektorsorozat bizonyos feltételek mellett konvergál a LER megoldásához. (Ekvivalens feltétel: (B) < 1.) Volt: Banach-féle fixponttétel, Jacobi-, Gauss Seidel-iterációk. Megjegyzés: 2 3 változó: felesleges megértés sok változó (100, 1000): használják
4 Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció
5 Richardson-iteráció Tekintsük az Ax = b LER-t, ahol A szimmetrikus, pozitív definit mátrix (azaz minden sajátértéke valós, sőt pozitív), és p : R. Ax = b p Ax = p b 0 = pax + pb x = x pax + pb = (I pa)x + pb Ezek alapján az iteráció a következő. Definíció: Richardson-iteráció p paraméterrel R(p) x (k+1) = (I pa) x (k) + pb = B } {{ } }{{} R(p) x (k) + c R(p) B R(p) c R(p)
6 Richardson-iteráció Példa Vizsgáljuk meg a Richardson-iterációt néhány p R paraméter mellett a következő egyenletrendszer esetén. Ax = b, ( ) 3 1 x = 1 3 ( ) 1. 5 A mátrix szimm., poz. def., a megoldás pedig x = ( ) 1. 2
7 Richardson-iteráció Tétel: A Richardson-iteráció konvergenciája Ha az A R n n mátrix szimmetrikus, pozitív definit és sajátértékeire m = λ 1 λ n = M teljesül, akkor R(p) (azaz egy A mátrixú LER-re felírt p R paraméterű Richardson-iteráció) konvergens, ha ( p 0, 2 ), M az optimális paraméter és a hozzá kapcsolódó kontrakciós együttható pedig: p opt = 2 M + m, opt := (B R(popt)) = M m M + m.
8 Richardson-iteráció Bizonyítás: 1 B R(p) sajátértékei: λ i (p) = 1 p λ i, hiszen Av = λ i v (I pa)v = v pav = v pλ i v = (1 pλ i )v. Vagyis: λ 1 (p) = 1 p λ 1 = 1 pm, λ 2 (p) = 1 p λ 2,. λ n (p) = 1 p λ n = 1 pm. 2 B R(p) spektrálsugara így (B R(p) ) = n max i=1 1 p λ i.
9 Richardson-iteráció 3 Ábrázoljuk az 1 p λ i függvényeket (i = 1, 2,..., n)! (Ezek p-től függenek.) 1 p λ i = 0 p = 1 λ i (B R(p) ) 1 pm 1 pm 1 opt 1 M p opt 2 M 1 m p
10 4 R(p) konvergens, ha (B R(p) ) < 1, azaz ha p Ezek az 1 pm = 1 egyenlet megoldásai. 5 Továbbá az optimális paramétert az 1 pm = 1 pm Richardson-iteráció ( 0, 2 ). M egyenlet megoldása adja. (Nem a 0, hanem a másik.) 6 Ekkor 1 + pm = 1 pm pm + pm = 2 p(m + m) = 2 = p opt = 2 M + m (B R(popt)) = 1 p opt m = M + m M + m 2m M + m = M m M + m.
11 Richardson-iteráció Példa Adjuk meg, hogy a Richardson-iteráció mely p R paraméterek mellett konvergens a következő egyenletrendszer esetén mely ugyanaz, mint az imént. Mi az optimális paraméter és a hozzá tartozó átmenetmátrix spektrálsugara? Ax = b, A mátrix sajátértékei 2 és 4. ( ) 3 1 x = 1 3 ( ) 1. 5
12 Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció
13 Relaxáció A relaxáció, avagy csillapítás, avagy tompítás alapötlete: x (k+1) helyett (1 ω) x (k) + ω x (k+1) x (k) x (k+1) Megj.: alulrelaxálás (0 < ω < 1), túlrelaxálás (ω > 1) ω = 1 az eredeti módszert adja
14 Relaxált Jacobi-módszer Induljunk a Jacobi-módszerből és a helyben hagyásból : x = D 1 (L + U) x + D 1 b / ω x = x / (1 ω) A kettő súlyozott összege: x = [ (1 ω)i ωd 1 (L + U) ] x + ωd 1 b Ezek alapján az iteráció a következő. Definíció: relaxált Jacobi-iteráció ω paraméterrel J(ω) [ ] x (k+1) = (1 ω)i ωd 1 (L + U) x (k) + ωd } {{ 1 b} } {{ } c J(ω) B J(ω)
15 Relaxált Jacobi-módszer Írjuk fel koordinátánként! Állítás: J(ω) komponensenkénti alakja x (k+1) i = (1 ω) x (k) i + ω x (k+1) i,j(1), ahol x (k+1) i,j(1) a hagyományos Jacobi-módszer (J(1)) által adott, azaz x (k+1) i,j(1) = 1 n a i,i j=1, j i a i,j x (k) j b i. Biz.: Házi feladat meggondolni. Nem nehéz.
16 Relaxált Jacobi-módszer Tétel: a relaxált Jacobi-módszer konvergenciájáról Ha egy mátrixra a J(1) módszer konvergens, akkor 0 < ω < 1 esetén a J(ω) módszer is konvergens. (Az ω = 0 esetben nem.) Biz.: Rövid, táblán. Meggondoltuk. Megj.: A relaxált Jacobi-módszert nem szokták alkalmazni...
17 Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció
18 Induljunk a Seidel-iteráció következő alakjából: Relaxált Gauss Seidel-iteráció (L + D) x = U x + b / ω D x = D x / (1 ω) A kettő súlyozott összege: (D + ωl) x = [(1 ω)d ωu] x + ωb Ezek alapján az iteráció a következő. Definíció: relaxált Seidel-iteráció ω paraméterrel S(ω) x (k+1) = (D + ωl) 1 [(1 ω)d ωu] x (k) + ω(d + ωl) 1 b } {{ } } {{ } B S(ω) c S(ω)
19 Relaxált Gauss Seidel-iteráció Írjuk fel koordinátánként! (Kiderül, hogy helyben számolható.) Állítás: S(ω) komponensenkénti alakja ahol x (k+1) i,s(1) x (k+1) i = (1 ω) x (k) i + ω x (k+1) i,s(1), a hagyományos Seidel-módszer (S(1)) által adott, azaz x (k+1) i,s(1) = 1 a i,i i 1 n a i,j x (k+1) j + j=1 j=i+1 a i,j x (k) j b i. Minden k lépés az i = 1, 2,..., n sorrendben számolandó.
20 Relaxált Gauss Seidel-iteráció Biz.: Alakítsunk át, majd gondoljunk bele a mátrixszorzásba. (D + ωl)x (k+1) = (1 ω)dx (k) ωux (k) + ωb Dx (k+1) = (1 ω)dx (k) ωlx (k+1) ωux (k) + ωb ) x (k+1) = (1 ω)x (k) ω D 1 Lx (k+1) + Ux (k) b } {{ } Lásd S(1)-nél. Megj.: Vigyázat! x (k+1) = (1 ω) x (k) + ω x (k+1) S(1) (tehát az egész vektorra); csak komponensenként. nem igaz
21 Relaxált Gauss Seidel-iteráció Tétel: a relaxált Seidel-módszer konvergenciájáról Ha egy mátrixra az S(ω) módszer konvergens, akkor 0 < ω < 2. Lemma det B = n λ i (B) i=1 Biz.: Előbb a lemma, azután a tétel. Táblán. Meggondoltuk. Megjegyzés: Ha ω / (0, 2), akkor általában nem konvergál. A relaxált Seidel-módszert gyakran alkalmazzák...
22 Relaxált Gauss Seidel-iteráció Tétel: a relaxált Seidel-módszer konvergenciájáról Ha az egyenletrendszer mátrixa szimmetrikus, pozitív definit és ω (0, 2), akkor az S(ω) módszer konvergens. Biz.: nélkül.
23 Példák Matlab-ban 1 A Richardson-iteráció viselkedésének vizsgálata különböző paraméterek mellett.
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!
Numerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
Táblán. Numerikus módszerek 1. előadás (estis), 2017/2018 ősz. Lócsi Levente. Frissült: december 1.
Táblán Numerikus módszerek 1. előadás (estis), 2017/2018 ősz Lócsi Levente Frissült: 2017. december 1. Ebben az írásban a 2017/2018 őszi félév estis Numerikus módszerek 1. előadásának a diasorban nem szereplő,
Numerikus módszerek 1.
Numerikus módszerek 1. 11. előadás: A Newton-módszer és társai Lócsi Levente ELTE IK 2013. november 25. Tartalomjegyzék 1 A Newton-módszer és konvergenciatételei 2 Húrmódszer és szelőmódszer 3 Általánosítás
Numerikus módszerek 1.
Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval
Numerikus módszerek 1.
Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák
Numerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
Eötvös Loránd Tudományegyetem Természettudományi Kar
Eötvös Loránd Tudományegyetem Természettudományi Kar Alapvető iterációs eljárások lineáris egyenletrendszerek megoldására Szakdolgozat Ruzsics László Matematika B.Sc., elemző szakirány Témavezető: Kurics
NUMERIKUS MÓDSZEREK PÉLDATÁR
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó................................................ VEKTOR- ÉS MÁTRIXNORMÁK,
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Lineáris algebrai egyenletrendszerek direkt és iterációs megoldási módszerei
Eötvös Loránd Tudományegyetem Természettudományi Kar Lineáris algebrai egyenletrendszerek direkt és iterációs megoldási módszerei BSc Szakdolgozat Készítette: Laki Annamária Matematika BSc Matematikai
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Numerikus módszerek I. zárthelyi dolgozat, 2009/10. I. félév, A. csoport, MEGOLDÁSOK
Numerikus módszerek I. zárthelyi dolgozat, 9/. I. félév, A. csoport, MEGOLDÁSOK. Feladat. Az a. választás mellett A /( a) értéke.486. Határozzuk meg mi is A értékét egy tizes számrendszerű, hatjegyű mantisszás
Lineáris algebrai egyenletrendszerek iteratív megoldási módszerei
Eötvös Loránd Tudományegyetem Természettudományi kar Lineáris algebrai egyenletrendszerek iteratív megoldási módszerei Szakdolgozat Készítette: Kis Ágnes Matematika Bsc. Matematikai elemző szakirány Témavezető:
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
Lineáris algebra és mátrixok alkalmazása a numerikus analízisben
Eötvös Loránd Tudományegyetem Természettudományi kar Lineáris algebra és mátrixok alkalmazása a numerikus analízisben Szakdolgozat Készítette: Borostyán Dóra Matematika BSc matematikai elemző Témavezető:
Lineáris algebra. (közgazdászoknak)
Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Tétel: Ha,, akkor az ábrázolt szám hibája:
1. A lebegpontos számábrázolás egy modellje. A normalizált lebegpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl) fogalma,
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
NUMERIKUS MÓDSZEREK I. TÉTELEK
NUMERIKUS MÓDSZEREK I. TÉTELEK Szerkesztette: Balogh Tamás 014. január 19. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)
Numerikus módszerek 1.
Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Boros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
alakú számot normalizált lebegőpontos számnak nevezik, ha ,, és. ( : mantissza, : mantissza hossza, : karakterisztika) Jelölés: Gépi számhalmaz:
1. A lebegőpontos számábrázolás egy modellje. A normalizált lebegőpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl)
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
Gauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Numerikus módszerek példatár
Numerikus módszerek példatár Faragó István, Fekete Imre, Horváth Róbert 2013. július 5. Tartalomjegyzék Előszó 2 Feladatok 4 1. Előismeretek 4 1.1. Képletek, összefüggések............................ 4
1 Lebegőpontos számábrázolás
Tartalom 1 Lebegőpontos számábrázolás... 2 2 Vektornormák... 4 3 Indukált mátrixnormák és tulajdonságaik... 5 4 A lineáris rendszer jobboldala hibás... 6 5 A kondíciószám és tulajdonságai... 7 6 Perturbációs
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
LINEÁRIS ALGEBRAI EGYENLETRENDSZEREK
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR LINEÁRIS ALGEBRAI EGYENLETRENDSZEREK DIREKT ÉS ITERATÍV MEGOLDÁSI MÓDSZEREI BSc szakdolgozat Készítette: Várhegyi Bence Matematika BSc Matematikai elemző
3. előadás Stabilitás
Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása
Rózsa Petra. Szimmetrikus, pozitív definit együtthatómátrixú lineáris algebrai egyenletrendszerek iteratív megoldási módszerei
Eötvös Loránd Tudományegyetem Természettudományi Kar Rózsa Petra Szimmetrikus, pozitív definit együtthatómátrixú lineáris algebrai egyenletrendszerek iteratív megoldási módszerei BSc Elemz Matematikus
MODELLEK ÉS ALGORITMUSOK ELŐADÁS
MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Alkalmazott algebra - SVD
Alkalmazott algebra - SVD Ivanyos Gábor 20 sz Poz. szemidenit mátrixok spektrálfelbontásának általánosítása nem feltétlenül négyzetes mátrixokra LSI - mögöttes szemantikájú indexelés "Közelít " webkeresés
Saj at ert ek-probl em ak febru ar 22.
Sajátérték-problémák 2016. február 22. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre az egyenlet
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Lineáris algebra és mátrixok alkalmazásai
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Lineáris algebra és mátrixok alkalmazásai Szakdolgozat Készítette: Ruzsányi Orsolya Matematika BSc, matematikai elemző szakirány Témavezető: Fialowski
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek
Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Diszkrét matematika I. gyakorlat
Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség
Problémás regressziók
Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer
5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39
5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es
Numerikus módszerek példatár
Numerikus módszerek példatár Faragó István, Fekete Imre, Horváth Róbert 2013. június Tartalomjegyzék El szó 5 Feladatok 9 1. El ismeretek 9 1.1. Képletek, összefüggések............................ 9 1.2.
Szemidenit optimalizálás és az S-lemma
Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
A szimplex tábla. p. 1
A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex
1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
XI A MÁTRIX INVERZE 1 Az inverzmátrix definíciója Determinánsok szorzástétele Az egységmátrix definíciója: 1 0 0 0 0 1 0 0 E n = 0 0 1 0 0 0 0 1 n-edrenű (azaz n n típusú) mátrix E n -nel bármely mátrixot
Haladó lineáris algebra
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Lagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét!
5. gyakorlat Lineáris leképezések Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! f : IR IR, f(x) 5x Mit rendel hozzá ez a függvény két szám összegéhez? x, x IR, f(x +
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz. Mindkét eliminációs módszer műveletigénye sokkal kisebb, mint a Cramer-szabályé:
3. el adás: Determinánsok
3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül
A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az
Tartalomjegyzék. Typotex Kiadó, 2010
Tartalomjegyzék 15. Elliptikus egyenletek 7 15.1. Bevezetés: Elliptikus egyenletek alkalmazott feladatokban... 7 15.2. Elméleti háttér.......................... 9 15.3. Véges dierencia eljárások II...................
LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak
LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
A Banach-fixponttétel és alkalmazásai
Eötvös Loránd Tudományegyetem Természettudományi Kar A Banach-fixponttétel és alkalmazásai Szakdolgozat Juhász Gergely Matematika B.Sc., matematikai elemz szakirány Témavezet : Karátson János, egyetemi
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
Lineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
Hosszú Ádám Tamás. Rosszul kondicionált egyenletrendszerekre alkalmazott iterációs módszerek
Eötvös Loránd Tudományegyetem Természettudományi Kar Hosszú Ádám Tamás Rosszul kondicionált egyenletrendszerekre alkalmazott iterációs módszerek BSc Szakdolgozat Témavezet : Dr. Gáspár Csaba Numerikus
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
Ipari matematika 2. gyakorlófeladatok
Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,
Lineáris algebra. =0 iє{1,,n}
Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai
Alkalmazott algebra. Lineáris leképezések EIC. Wettl Ferenc ALGEBRA TANSZÉK BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK )
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Alkalmazott algebra BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK ) Lineáris leképezések
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás
Tartalom Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás 2018 1 Állapottér reprezentációk tulajdonságai Általánosan egy lineáris, SISO dinamikus rendszer
Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással
pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál
Egy általános iskolai feladat egyetemi megvilágításban
Egy általános iskolai feladat egyetemi megvilágításban avagy mit kell(ene) tudnia egy 8.-osnak a matematika versenyeken Kunos Ádám Középiskolás pályázat díjkiosztó SZTE Bolyai Intézet 2011. november 12.
Feladat: megoldani az alábbi egyenletrendszert: A x = b,
Gauss Jordan-elimináció Feladat: megoldani az alábbi egyenletrendszert: ahol A négyzetes mátrix. A x = b, A Gauss Jordan-elimináció tulajdonképpen az általános iskolában tanult módszer lineáris egyenletrendszerek
Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )
Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor