Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás
|
|
- Rebeka Patakiné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Tartalom Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás
2 Állapottér reprezentációk tulajdonságai Általánosan egy lineáris, SISO dinamikus rendszer állapotdinamikai és megfigyelési egyenleteit a következő alakban írhatjuk: ẋ = Ax + bu y = c T x, Egy adott állapottér reprezentációt az (A,b,c T ) hármas fejez ki. Egy (A,b,c T ) állapottér reprezentáció dimenziójának az állapottér dimenzióját nevezzük: n = dim{x(t)}
3 Állapottér reprezentációk tulajdonságai Az állapottérben adott rendszer blokkdiagramja:
4 Állapottér reprezentációk tulajdonságai Az állapottér reprezentáció alapján a rendszer átviteli függvényét a LAPLACE-transzformáció alkalmazásával kapjuk meg: sx(s) x(0) = AX(s) + bu(s), ebből (si A)X(s) = bu(s) + x(0)
5 Állapottér reprezentációk tulajdonságai Az állapot LAPLACE-transzformáltja: X(s) = (si A) 1 bu(s) + (si A) 1 x(0), ahol x(0) a kezdő állapot t = 0 időpontban. Az x(0) = 0 feltétel mellett Y (s) = c T X(s) = c T (si A) 1 bu(s) A G(s) átviteli függvény: G(s) = Y (s) U(s) = ct (si A) 1 b
6 Állapottér reprezentációk tulajdonságai Összehasonlítva a G(s)= b(s) a(s) jelöléssel látható, hogy b(s)=c T adj(si-a)b (n-1)-edfokú polinom, ha A R n n, a(s)=det(si-a) n-edfokú polinom, ha A R n n. Az átviteli függvény pólusai tehát az a(s)=det(si-a)=0 karakterisztikus egyenlet gyökei
7 Állapottér reprezentációk tulajdonságai 1. Példa: Diagonál reprezentációknál, ha n = 2 akkor az A d mátrix A d = λ λ 2 alakú, amiből s λ det(si A d ) = s λ 2 tehát a rendszer pólusai λ 1 és λ 2. = (s λ 1)(s λ 2 ) = 0,
8 Állapottér reprezentációk tulajdonságai 2. Példa: Határozzuk meg az alábbi állapotegyenlet alapján a pólusokat! ẋ1 ẋ 2 = det(si A c ) = a 1 a s + a 1 a 0 1 s x 1 x u 0 = s2 + a 1 s + a 0 = 0, ami épp a G(s) átviteli függvény nevező polinomja. Ennek gyökei, tehát a rendszer pólusai λ 1 és λ
9 Állapottér reprezentációk tulajdonságai 1. Megjegyzés: Ha adott egy A R n n mátrix, akkor a det(si-a)=0 egyenlet gyökei az A mátrix sajátértékei. A stabilitáselméletből tanultak alapján a rendszer stabilis, ha pólusai a baloldali komplex félsíkon helyezkednek el. Ebből az állapottér reprezentációk stabilitására a következőt kapjuk:
10 Állapottér reprezentációk tulajdonságai 1. Állítás (Állapottér reprezentációk stabilitása): Az (A,b,c T ) reprezentáció stabilis, ha az A mátrix sajátértékei a baloldali komplex félsíkon találhatók. Egy állapottér reprezentációt az (A,b,c T ) mátrix hármassal jellemeztünk, ahol ha a rendszernek egy bemenő- és egy kimenőjele van, akkor a b és c T n- dimenziós vektorok, A pedig n n méretű mátrix, ahol n az állapottér dimenzióját jelöli
11 Állapottér reprezentációk tulajdonságai Tegyük fel, hogy ismerjük a rendszer x(t) állapotát a t = t 0 időpontban. Ekkor a rendszer viselkedésével kapcsolatban a következő két kérdést vethetjük fel: 1. Állapot megfigyelhetőség: Adott (A,b,c T ). Mi a feltétele annak, hogy az x(t) állapotokat minden a t t 0 időpontra meghatározhassuk a rendszer jövőbeli bemeneti (u(t)) és kimeneti (y(t)) függvényeinek ismeretében?
12 Állapottér reprezentációk tulajdonságai 2. Állapot irányíthatóság: Adott (A,b,c T ), és x(t) a t = t 0 = 0 időpontban. Mi a feltétele annak, hogy találjunk olyan u(t), t t 0 irányítást, amely a rendszert véges T idő alatt az x(0) állapotból egy tetszőleges x(t ), x(t ) x(0) állapotba viszi?
13 Állapot megfigyelhetőség Az állapot megfigyelhetőség vizsgálatához induljunk ki az állapot egyenletekből és képezzük az állapotvektor valamint a kimenet magasabb rendű deriváltjait!
14 Állapot megfigyelhetőség ẋ = Ax + bu y = c T x ẏ = c T ẋ = c T (Ax + bu) = c T Ax + c T bu ÿ = c T ẍ = c T A(Ax + bu) + c T b u = = c T A 2 x + c T Abu + c T b u. y (n 1) = c T x (n 1) = = c T A n 1 x + c T A n 2 bu + c T A n 3 b u c T bu (n 2)
15 Állapot megfigyelhetőség Mátrixos jelölésekkel: ẋ = Ax + bu y ẏ. y (n 1) = c T c T A. c T A n 1 x c T b c T A (n 2) b c T b 0 u. u (n 1) u (n 2) y n (t) = O n (c T,A)x(t) + T n u n (t)
16 Állapot megfigyelhetőség Amennyiben y(t), u(t) ismert t t 0 időpontban, akkor az y n (t), u n (t) vektorokat is ismerjük. Az O n (c T,A), T n mátrixokat az ismert (A,b,c T ) mátrixokból képezhetjük
17 Állapot megfigyelhetőség A kérdés tehát az x(t) állapotvektor meghatározása minden t t 0 időpontra. Legyen t 0 0, ekkor az u(t) gerjesztőjel (és deriváltjai) zérusok, így u n (0) = 0. Ekkor a fenti egyenlet y n (0) = O n (c T,A)x(0) alakra egyszerűsödik
18 Állapot megfigyelhetőség Mivel O n (c T,A) R n n, az y n (0) ismeretében az x(0) állapot egyértelműen meghatározható, ha az O n (c T,A) teljes rangú, vagyis ha rang { O n (c T,A) } = n, tehát ha az O n (c T,A) mátrix rangja megegyezik az állapottér dimenziójával
19 Állapot megfigyelhetőség Ha egy tetszőleges t 0 0 esetén y n (t 0 ) 0, akkor O n (c T,A)x(t 0 ) = y n (t 0 ) T n u n (t 0 ). Az egyenlet jobboldala tetszőleges vektor, így x(t 0 )- ra csak akkor van egyértelmű megoldás, ha az O n (c T,A) mátrix teljes oszloprangú, azaz a képtere a teljes n- dimenziós állapottér
20 Állapot megfigyelhetőség Láttuk, hogy a fenti állapotmegfigyelhetőségi feltételek az x(t), t t 0 meghatározására csak a (c T,A) pártól függnek a belőlük képzett O n (c T,A) mátrix rangján keresztül
21 Állapot megfigyelhetőség 1. Definíció. Az O n (c T,A) mátrixot a rendszer megfigyelhetőségi mátrixának nevezzük. 2. Állítás (Kálmán-féle rangfeltétel): Egy (c T,A) pár megfigyelhető akkor és csak akkor, ha megfigyelhetőségi mátrixuk rangja megegyezik az állapottér dimenziójával, azaz rang { O n (c T,A) } = n
22 Állapot megfigyelhetőség 3. Példa: Vizsgáljuk az alábbi diagonális állapottér reprezentáció megfigyelhetőségét! ẋ = λ 1 0 x + r 1 u, dimx = 2 0 λ 2 r 2 [ ] y = 1 1 x. A megfigyelhetőségi mátrix: O 2 (c T,A) = ct c T A = 1 1 λ 1 λ
23 Állapot megfigyelhetőség A rangfeltételt a következőképp vizsgálhatjuk: rang { O 2 (c T,A) } = 2 akkor, ha det{o 2 (c T,A) 0. Mivel det { O 2 (c T,A) } = λ 2 λ 1, a rendszer állapot megfigyelhető akkor és csak akkor, ha λ 2 λ
24 Állapot irányíthatóság Az állapot megfigyelhetőséggel analóg módon, konstruktívan bizonyíthatjuk, hogy egy (A,b,c T ) rendszer állapot irányítható, azaz állapota egy tetszőleges x(0) kezdeti állapotból egy másik, x(t ) x(0) állapotba vihető véges T idő alatt, ha az ún. irányíthatósági mátrix [ ] C n (A,b) = b Ab... A n 1 b teljes rangú, ahol n az állapottér reprezentáció dimenziója
25 Állapot irányíthatóság 3. Állítás (Kálmán-féle rangfeltétel): Egy (A,b,c T ) állapottér reprezentáció irányítható akkor és csak akkor, ha rang{c n (A,b)} = n
26 Minimál reprezentáció 4. Állítás (Minimál reprezentáció): Egy rendszer (Ã, b, c T ) állapottér reprezentációja minimál reprezentáció, ha együttesen irányítható és megfigyelhető, azaz rang { C n (Ã, b )} = rang { O n ( c T,Ã )} = n
27 Minimál reprezentáció A minimál reprezentációkhoz tartozó állapotér dimenziója a legkisebb az összes olyan (A,b,c T ) állapottér reprezentációkat tekintve, amelyekre c T (si A) 1 b = c T ( si à ) b = b(s) a(s), ahol b(s)/a(s) a rendszer átviteli függvénye
28 Állapot irányíthatóság 4. Példa: Vizsgáljuk meg a diagonális állapottér reprezentáció irányíthatóságát az n = 2 esetre! Az irányíthatósági mátrix az alábbi lesz: C 2 (A d,b d ) = r 1 λ 1 r 1 r 2 λ 2 r
29 Állapot irányíthatóság A fenti irányíthatósági mátrix rangja éppen 2 ha nemszinguláris, azaz det{c 2 (A d,b d )} = r 1 r 2 λ 2 r 1 r 2 λ 1 = r 1 r 2 (λ 2 λ 1 ) 0, azaz rang{c 2 (A d,b d )} = 2 r 1 0,r 2 0 és λ 1 λ
30 Állapot irányíthatóság 5. Példa: Vizsgáljuk meg az irányítható állapottér reprezentáció irányíthatóságát! A c = a 1 a 0 1 0, b c = 1 0, Az irányíthatósági mátrix: C 2 (A c,b c ) = 1 a 1 0 1,
31 Állapot irányíthatóság így ez a reprezentáció mindig irányítható, azonban adódhat olyan eset, hogy nem megfigyelhető. 2. Megjegyzés: Általánosan igaz, hogy minden irányítható (A,b,c T ) állapottér reprezentáció az (A c,b c,c T c ) alakra hozható hasonlósági transzformációval
Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi
Tartalom Bevezetés az állapottér-elméletbe Irányítható alak Megfigyelhetőségi alak Diagonális alak Állapottér transzformáció 2018 1 A szabályozáselmélet klasszikus, BODE, NICHOLS, NYQUIST nevéhez kötődő,
Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)
Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás
Bevezetés az állapottér elméletbe: Állapottér reprezentációk
Tartalom Bevezetés az állapottér elméletbe: Állapottér reprezentációk vizsgálata 1. Példa az állapottér reprezentációk megválasztására 2. Átviteli függvény és állapottér reprezentációk közötti kapcsolatok
Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján
Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika rendszerek Irányítástechnika Budapest, 2008 2 Az előadás felépítése 1. 2. 3. 4. Irányítástechnika Budapest, 2008
Ha ismert (A,b,c T ), akkor
Az eddigiekben feltételeztük, hogy a rendszer állapotát mérni tudjuk. Az állapot ismerete szükséges az állapot-visszacsatolt szabályzó tervezéséhez. Ha nem ismerjük az x(t) állapotvektort, akkor egy olyan
Irányítástechnika II. Nem hivatalos vizsga beugró kérdéssor kidolgozás
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar Irányítástechnika II. Nem hivatalos vizsga beugró kérdéssor kidolgozás Jelen gyűjtő munkát készítette Fölföldi Konrád,
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs
Irányításelmélet és technika I.
Irányításelmélet és technika I Folytonos idejű rendszerek leírása az állapottérben Állapotvisszacsatolást alkalmazó szabályozási körök Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki
3. előadás Stabilitás
Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása
Állapottér modellek tulajdonságai PTE PMMK MI BSc 1
Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza
Irányítástechnika 2. előadás
Irányítástechnika 2. előadás Dr. Kovács Levente 2013. 03. 19. 2013.03.19. Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok
IRÁNYÍTÁSTECHNIKA II.
IRÁNYÍTÁSTECHNIKA II. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
1. Bázistranszformáció
1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n
Inverz inga irányítása állapot-visszacsatolással
Inverz inga irányítása állapot-visszacsatolással Segédlet az Irányítástechnika c. tantárgyhoz Összeállította: Dr. Bokor József, egyetemi tanár Dr. Gáspár Péter, tanszékvezető egyetemi tanár Dr. Szászi
Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból
Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból 1 Átviteli tényező számítása: Lineáris rendszer: Pl1.: Egy villanymotor 100V-os bemenő jelre 1000 fordulat/perc kimenő jelet ad.
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések
"Flat" rendszerek. definíciók, példák, alkalmazások
"Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.
Számítógép-vezérelt szabályozás- és irányításelmélet
Számítógép-vezérelt szabályozás- és irányításelmélet 2. gyakorlat Feladattípusok két függvény konvolúciója ÿ + aẏ + by = e at, y(), ẏ() típusú kezdetiérték feladatok megoldása (Laplace transzformációval)
Inverz Laplace-transzformáció. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Definíció: Ha az f (t) függvény laplace-transzformáltja F (s), akkor f (t)-t az F (s) függvény inverz Laplace-transzformáltjának nevezzük. Definíció: Ha
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?adás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs
Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla
Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és
pont) Írja fel M struktúrában a parametrikus bizonytalansággal jellemzett
Irányításelmélet MSc (Tipikus példák) Gáspár Péter 1. Egyértelmű-e az irányíthatósági állapottér reprezentáció? Egyértelműe a diagonális állapottér reprezentáció? 2. Adja meg az állapotmegfigyelhetőség
Számítógépes gyakorlat MATLAB, Control System Toolbox
Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges
Mátrix-exponens, Laplace transzformáció
2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9.
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs
L-transzformáltja: G(s) = L{g(t)}.
Tartalom 1. Stabilitáselmélet stabilitás feltételei inverz inga egyszerűsített modellje 2. Zárt, visszacsatolt rendszerek stabilitása Nyquist stabilitási kritérium Bode stabilitási kritérium 2018 1 Stabilitáselmélet
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.
1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai
Diszkrét és hibrid diagnosztikai és irányítórendszerek LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium
Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )
Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor
Tartalom. 1. Számítógéppel irányított rendszerek 2. Az egységugrásra ekvivalens diszkrét állapottér
Tartalom 1. Számítógéppel irányított rendszerek 2. Az egységugrásra ekvivalens diszkrét állapottér 2015 1 Számítógéppel irányított rendszerek Számítógéppel irányított rendszer blokkvázlata Tartószerv D/A
Differenciálegyenlet rendszerek
Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja
Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)
Lineáris algebra. =0 iє{1,,n}
Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
Hurokegyenlet alakja, ha az áram irányával megegyező feszültségeséseket tekintjük pozitívnak:
Első gyakorlat A gyakorlat célja, hogy megismerkedjünk Matlab-SIMULINK szoftverrel és annak segítségével sajátítsuk el az Automatika c. tantárgy gyakorlati tananyagát. Ezen a gyakorlaton ismertetésre kerül
Irányítástechnika II. előadásvázlat
Irányítástechnika II. előadásvázlat Dr. Bokor József egyetemi tanár, az MTA rendes tagja BME Közlekedés- és Járműirányítási Tanszék 2018 1 Tartalom Irányítástechnika II. féléves tárgytematika Az irányításelmélet
Dinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
RENDSZERTECHNIKA 8. GYAKORLAT
RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.
Számítógépvezérelt szabályozások elmélete
Számítógépvezérelt szabályozások elmélete Folytonos idejű rendszerek Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék Számítógépvezérelt szabályozások
12. előadás - Markov-láncok I.
12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R
A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek
10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix
Az impulzusnyomatékok általános elmélete
Az impulzusnyomatékok általános elmélete November 27, 2006 Az elemi kvantummechanika keretében tárgyaltuk már az impulzusnyomatékot. A továbbiakban általánosítjuk az impulzusnyomaték fogalmát a kvantummechanikában
Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22
Mátrixfüggvények Wettl Ferenc 2016. április 28. Wettl Ferenc Mátrixfüggvények 2016. április 28. 1 / 22 Tartalom 1 Diagonalizálható mátrixok függvényei 2 Mátrixfüggvény a Jordan-alakból 3 Mátrixfüggvény
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,
6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió
6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
Polinomok maradékos osztása
14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
Lineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Sajátérték, sajátvektor, sajátaltér Kf87 2017-11-21
Modellek és Algoritmusok - 2.ZH Elmélet
Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)
Négypólusok tárgyalása Laplace transzformációval
Négypólusok tárgyalása Laplace transzformációval Segédlet az Elektrotechnika II. c. tantárgyhoz Összeállította: Dr. Kurutz Károly egyetemi tanár Szászi István egyetemi tanársegéd . Laplace transzformáció
Differenciálegyenletek megoldása Laplace-transzformációval. Vajda István március 21.
Analízis előadások Vajda István 2009. március 21. A módszer alkalmazásának feltételei: Állandó együtthatós, lineáris differenciálegyenletek megoldására használhatjuk. A módszer alkalmazásának feltételei:
Méréselmélet példatár
Méréselmélet példatár I. rész Gerzson Miklós Méréselmélet példatár I. rész Pécs 2015 A tananyag a TÁMOP-4.1.1.F-14/1/KONV-2015-0009 azonosító számú, "A gépészeti és informatikai ágazatok duális és moduláris
Inverz inga állapot-visszacsatolás tervezés Matlab segédlet
Inverz inga állapot-visszacsatolás tervezés Matlab segédlet FIGYELEM: Az elektronikus labor 2 kérdésből álló (feleletválasztós) beugró teszttel indul (min. 6% kell a sikeres teljesítéshez), melynek anyaga
y + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
Méréselmélet példatár
Gerzson Miklós Méréselmélet példatár Pécs 2015 A tananyag a TÁMOP-4.1.1.F-14/1/KONV-2015-0009 azonosító számú, "A gépészeti és informatikai ágazatok duális és moduláris képzéseinek kialakítása a Pécsi
Lineáris algebra numerikus módszerei
Bevezetés Szükségünk van a komplex elemű mátrixok és vektorok bevezetésére. A komplex elemű n-dimenziós oszlopvektorok halmazát C n -el jelöljük. Hasonlóképpen az m n méretű komplex elemű mátrixok halmazát
Soros felépítésű folytonos PID szabályozó
Soros felépítésű folytonos PID szabályozó Főbb funkciók: A program egy PID szabályozót és egy ez által szabályozott folyamatot szimulál, a kimeneti és a beavatkozó jel grafikonon való ábrázolásával. A
Kibernetika korábbi vizsga zárthelyi dolgozatokból válogatott tesztkérdések Figyelem! Az alábbi tesztek csak mintául szolgálnak a tesztkérdések megoldásához, azaz a bemagolásuk nem jelenti a tananyag elsajátítását
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
differenciálegyenletek
Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
3. Fékezett ingamozgás
3. Fékezett ingamozgás A valóságban mindig jelen van valamilyen csillapítás. A gázban vagy folyadékban való mozgásnál, kis sebesség esetén a csillapítás arányos a sebességgel. Ha az vagy az ''+k sin =0,
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Bevezetés az algebrába 2
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Differenciálegyenletek gyakorlat december 5.
Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos
Lineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28
Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek
1. Homogén lineáris egyenletrendszer megoldástere
X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Lineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Sajátérték, sajátvektor, sajátaltér Kf81 2018-11-20
1. Bevezetés A félév anyaga. Lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció
λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)
Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények
DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1
DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet
1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek
7 Elsőrendű lineáris differenciálegyenlet-rendszerek Legyen n N, I R intervallum és A: I M n n (R), B: I R n folytonos függvények, és tekintsük az { y (x) = A(x)y(x) + B(x) y(ξ) = η kezdeti érték problémát,
Az egydimenziós harmonikus oszcillátor
Az egydimenziós harmonikus oszcillátor tárgyalása az általános formalizmus keretében November 7, 006 Példaképpen itt megmutatjuk, hogyan lehet a kvantumos egydimenziós harmonikus oszcillátort tárgyalni
SZABÁLYOZÁSI KÖRÖK 2.
Irányítástechnika (BMEGERIA35I) SZABÁLYOZÁSI KÖRÖK 2. 2010/11/1. félév Dr. Aradi Petra Zárt szabályozási körrel szemben támasztott követelmények tulajdonság időtartományban frekvenciatartományban pontosság
Matematika elméleti összefoglaló
1 Matematika elméleti összefoglaló 2 Tartalomjegyzék Tartalomjegyzék... 2 1. Sorozatok jellemzése, határértéke... 3 2. Függvények határértéke és folytonossága... 5 3. Deriválás... 6 4. Függvényvizsgálat...
MECHATRONIKA Mechatronika alapképzési szak (BSc) záróvizsga kérdései. (Javítás dátuma: )
MECHATRONIKA 2010 Mechatronika alapképzési szak (BSc) záróvizsga kérdései (Javítás dátuma: 2016.12.20.) A FELKÉSZÜLÉS TÉMAKÖREI A számozott vizsgakérdések a rendezett felkészülés érdekében vastag betűkkel
Eddig csak a polinom x-ben felvett értékét kerestük
Interpolációs polinom együtthatói Eddig csak a polinom x-ben felvett értékét kerestük Ez jó, ha kevés x-re kell kiértékelni Ha sok ismeretlen f (x)-et keresünk, akkor jobb kiszámolni az együtthatókat,