Numerikus módszerek beugró kérdések
|
|
- Ágoston Pap
- 6 évvel ezelőtt
- Látták:
Átírás
1 1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl: Gépi számhalmaz: ( : mantissza, : mantissza hossza, : karakterisztika) 2. Írja le a gépi számhalmaz nevezetes számait! (3 pont) Legnagyobb pozitív szám: Legkisebb pozitív szám: Relatív hibakorlát: az 1-et követő gépi szám 1 3. Definiálja az input függvény fogalmát írja le a hibájára vonatkozó tételt! (5 pont) Az -t input függvénynek nevezzük, ha Input hiba: esetén Következmény: ha. Azaz az ábrázolt szám relatív hibakorlátja, vagyis csak -től, a mantissza méretétől függ. 4. Adja meg a hibaszámítás alapfogalmait: hiba, abszolút-, relatív hiba korlátjaik! (5 pont) : pontos érték, : közelítő érték A közelítő érték (pontos) hibája: A közelítő érték abszolút hibája: A közelítő érték egy abszolút hibakorlátja: A közelítő érték relatív hibája: A közelítő érték relatív hibakorlátja: 1
2 5. Írja le az alapműveletek abszolút hibakorlátjaira vonatkozó képleteket! (3 pont) 6. Írja le az alapműveletek relatív hibakorlátjaira vonatkozó képleteket! (3 pont) 7. Írja le a függvényérték abszolút hibakorlátjára vonatkozó összefüggt! (3 pont), ekkor, ahol 8. Írja le a függvényérték abszolút- relatív hibakorlátjára vonatkozó összefüggt (a függvényről kétszer folytonosan deriválhatóságot feltételezve)! (5 pont), ekkor, ahol 9. Definiálja az függvény pontbeli kondíciószámát! (2 pont) A mennyiséget az függvény -beli kondíciószámának nevezzük. 10. Mennyi a Gauss-elimináció illetve a visszahelyettesít műveletigénye? (2 pont) GE: VH: 11. Írja fel az mátrixot, melyet -re alkalmazva a Gauss-elimináció egy lépét kapjuk! (3 pont) Adjon elégséges feltételt az LU-felbontás létezére egyértelműségére! (Gauss-eliminációval) (1 pont) Az LU felbontás GE végrehajtható sor oszlopcsere nélkül. 13. Adjon elégséges feltételt az LU-felbontás létezére egyértelműségére! (Gauss-elimináció nélkül) (3 pont) Jelöljük -val a. főminort. Ha, akkor felbontás 2
3 14. Mennyi az LU-felbontás illetve egy háromszög mátrixú LER megoldásának műveletigénye? LU: (2 pont) LER: 15. Mikor nevezzük -t szimmetrikus pozitív definit mátrixnak? (2 pont) szimmetrikus, ha. pozitív definit, ha. 16. Mikor nevezzük -t a soraira (oszlopaira) nézve szigorúan diagonálisan dominánsnak? (2 pont) soraira nézve szigorúan diagonálisan domináns, ha oszlopaira nézve szigorúan diagonálisan domináns, ha 17. Definiálja fél sávszélességét! (2 pont) fél sávszélessége, ha, de. 18. Definiálja profilját! (2 pont) profilja a (sorra) (oszlopra) számok, ha rögzített,, de rögzített,, de. 19. Definiálja az mátrix -re vonatkozó Schur-komplementerét! (2 pont) Tfh invertálható. Ekkor az az mátrix -re vonatkozó Schur-komplementere. 20. Mondja ki a Gauss-elimináció (legalább) 4 tulajdonságának megmaradási tételét! (4 pont) szimmetrikus is szimmetrikus 2) pozitív definit is pozitív definit 4) fél sávszélessége fél sávszélessége 5) -ben az értékek nem csökkennek. 21. Definiálja a Cholesky-felbontást! (2 pont) 0, ahol szimmetrikus. 22. Milyen tételt tanult a Cholesky-felbontásról? (3 pont) Ha szimmetrikus pozitív definit, akkor felbontás. 23. Mennyi a Cholesky-felbontás műveletigénye? (2 pont) 24. Milyen tételt tanult a QR-felbontásról? (3 pont) Ha oszlopai lineárisan függetlenek, akkor felbontás. Ha feltesszük, hogy -ra, akkor egyértelmű is. 3
4 25. Mennyi a QR-felbontás műveletigénye? (2 pont) 26. Definiálja a Householder mátrixot! (2 pont) Ha, melyre, akkor -t Householder mátrixnak nevezzük. Jelöl: 27. Írja le a Householder-transzformáció 4 tanult tulajdonságát! (4 pont) szimmetrikus mátrix 2) ortogonális mátrix 4) 28. Adja meg azt a Householder mátrixot, melyre az azonos hosszúságú vektorok esetén. (2 pont) 29. Írja le a vektornorma definiáló tulajdonságait! (3 pont) A fv-t vektornormának nevezzük, ha 2) 4) 30. Írja le a mátrixnorma definiáló tulajdonságait! (4 pont) A fv-t mátrixnormának nevezzük, ha 2) 4) 5) 31. Írja le az indukált mátrixnormáról tanult tételt! (2 pont) Legyen tetszőleges vektornorma. Ekkor az mennyiség mátrixnormát definiál. 32. Mit jelent az illeszked normák esetén? (2 pont) A mátrixnorma illeszkedik -hoz, ha 33. Írja le az Frobenius mátrixnormát! (4 pont) 4
5 34. Mit nevezünk egy mátrix spektrálsugarának? (2 pont) A mennyiséget az spektrálsugarának nevezzük, ahol az sajátértéke. 35. Definiálja a kondíciószámot mátrixok esetén! Mikor értelmezhető? (2 pont) A az kondíciószáma. Csak invertálható mátrixra értelmezhető. 36. Írja le a LER jobboldalának változásakor érvényes perturbációs tételt! (4 pont) Ha invertálható, indukált mátrixnorma, akkor 37. Írja le a LER mátrixának változásakor érvényes perturbációs tételt! (4 pont) Ha invertálható,, akkor 38. Írja le a kondíciószám (legalább) 4 tulajdonságát! (4 pont) invertálható: 2) ortogonális (unitér): 4) szimmetrikus: 5) szimmetrikus pozitív definit: 6) invertálható: 39. Írja le a kontrakció fogalmát függvény esetén! (2 pont) kontrakció, ha 40. Írja le a Banach-féle fixponttételt -re! (5 pont) Ha kontrakció, akkor 2) kezdővektorra: iterációs sorozat konvergál Hibabecslek: ( :. hiba, : kontrakciós együttható) 41. Adjon elégséges feltételt az alakú iterációk konvergenciájára! (2 pont) Ha, akkor kezdővektorra az iterációs sorozat konvergál az megoldásához. 42. Írja le az indukált normák a spektrálsugár kapcsolatáról tanult lemmát! (2 pont) azaz indukált norma: 43. Adjon szükséges elégséges feltételt az alakú iterációk konvergenciájára! (2 pont) kezdővektorra az iterációs sorozat konvergál az megoldásához 5
6 44. Írja le a Jacobi- a csillapított Jacobi-módszer iterációját! (3 pont) Jacobi ( ): Csillapított Jacobi ( ): 45. Adjon elégséges feltételt a Jacobi-módszer a csillapított Jacobi-módszer konvergenciájára! (2 pont) Ha szigorúan diagonálisan domináns a soraira (oszlopaira) nézve, akkor azaz a iteráció konvergens. Ha konvergens, akkor -re a is konvergens. 46. Írja le a Gauss-Seidel-iterációt (a koordinátás alakot is)! (2 pont) Koordinátás alak: 47. Írja le a Gauss-Seidel relaxációs módszert (a koordinátás alakot is)! (2 pont) Koordinátás alak: 48. Milyen szükséges elégséges feltételt tanult a Gauss-Seidel relaxáció konvergenciájáról? (3 pont) Ha szimmetrikus pozitív definit, akkor: konvergens 49. Szigorúan diagonálisan domináns mátrix esetén mit tud mondani a Jacobi- a Gauss-Seideliteráció konvergenciájáról? (2 pont) Ha szigorúan diagonálisan domináns a soraira (oszlopaira), akkor azaz az konvergens legalább olyan gyors, mint a Jacobi. 50. Milyen tételt tanult szimmetrikus, pozitív definit tridiagonális mátrixok esetén a,, módszerekről? (5 pont), -re konvergens. 2) -ra az optimális paraméter értéke: Ha, akkor 4) Ha, akkor 6
7 51. Vezesse le a Richardson-típusú iterációk alakját! (2 pont) 52. Milyen tételt tanult a Richardson-típusú iterációkról? (4 pont) szimmetrikus, pozitív definit a következő állítás igaz a sajátértékeire: Ekkor pontosan a paraméterekre konvergens az iteráció. Az optimális paraméter: 53. Definiálja a J pozíció halmazra illeszkedő rzleges LU-felbontást! (3 pont) A a mátrix elemek pozícióinak egy rzhalmaza, melyre -re, azaz a főátlót nem tartalmazza. Az mátrix pozíció halmazra illeszkedő rzleges LU felbontásán olyan felbontást értünk, melyre a szokásos -re, -re. 54. Írja le az ILU-felbontás algoritmusát (L,U Q előállításának felírása)! (5 pont),. lép: ( szétbontás, ahol -ban,,,. -ban,,,. (2), azaz elvégezzük a. Gauss-eliminációs lépt. Ekkor az felbontásra: 55. Adjon elégséges feltételt az ILU-felbontás létezére egyértelműségére! (1 pont) Ha szigorúan diagonálisan domináns, akkor az ILU felbontás egyértelműen létezik. 56. Vezesse le az ILU-algoritmust! A reziduum vektor bevezetével írja fel a gyakorlatban használt alakot is. (4 pont) alakból 7
8 Algoritmus: LER mo. 57. Írja le a Bolzano-tételt! (3 pont) 58. Írja le az intervallum-felez algoritmusát hibabecslét! (3 pont). lép: Hibabecsl: Spórolós megoldás: 59. Írja le a Brouwer-féle fixponttételt! (3 pont) 60. Írja le a fixponttételt az *a;b+ intervallumra! (5 pont) kontrakció -n. Ekkor 2) iterációs sorozat konvergens Hibabecsl: ( : kontrakciós együttható) 61. Adjon meg elégséges feltételt a kontrakcióra! (2 pont) kontrakció -n 62. Definiálja a konvergencia rend fogalmát! (2 pont) Az konvergens sorozat -adrendben konvergens, ha 8
9 63. Írja le az -ed rendű konvergenciára vonatkozó tételt! (4 pont) Tfh. az iteráció konvergál -hoz,, továbbá Ekkor az, de. sorozat -adrendben konvergens hibabecsle: Numerikus módszerek beugró kérdek ahol 64. Vezesse le a Newton-módszer képletét! (3 pont) -ra tetszőleges kezdőérték A. lépben az érintő: ponton átmenő érintővel közelítjük az -et. : az érintőnek az x tengellyel vett metszpontja. x tengellyel vett metszpont: 65. Írja le a Newton-módszer monoton konvergencia tételét! (5 pont) Tfh. 2) állandó előjelű (egymástól független) Ekkor az -ból indított Newton-módszer monoton konvergál -hoz. 66. Írja le a Newton-módszer lokális konvergencia tételét! (5 pont) Tfh. 2) állandó előjelű 4) 5) Ekkor az -ból indított Newton-módszer másodrendben konvergens hibabecsle: 67. Definiálja a húr-módszert! (2 pont) -ra,. lép: Az pontokon átmenő egyenessel közelítjük -et, ahol a legnagyobb indexű pont, melyre. : egyenes metszpontja az x tengellyel 9
10 68. Definiálja a szelő-módszert! (1 pont),. lép: pontokon átmenő egyenessel közelítjük -et. 69. Írja le a szelő-módszer lokális konvergencia tételét! (5 pont) Tfh. 2) állandó előjelű 4) 5) Ekkor a szelőmódszer konvergens rendben hibabecsle: 70. Vezesse le a többváltozós Newton-módszer képletét! (3 pont) -nek az elsőfokú Taylor-polinomja: : Taylor-polinom LER megoldása Ez a végrehajtása. Ahol a derivált mátrix. 71. Milyen becslt tanult polinomok gyökeinek elhelyezkedéről? (4 pont),, A polinom bármely gyökére, ahol 10
11 72. Írja le a polinom helyettesíti értékeinek gyors számolására tanult Horner-algoritmust! (2 pont) Algoritmus: 11
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!
Numerikus módszerek 1.
Numerikus módszerek 1. Tantárgy kódja: IP-08bNM1E, IP-08bNM1G (2+2) Az elsajátítandó ismeretanyag rövid leírása: A lebegıpontos számábrázolás egy modellje. A hibaszámítás elemei. Lineáris egyenletrendszerek
alakú számot normalizált lebegőpontos számnak nevezik, ha ,, és. ( : mantissza, : mantissza hossza, : karakterisztika) Jelölés: Gépi számhalmaz:
1. A lebegőpontos számábrázolás egy modellje. A normalizált lebegőpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl)
Tétel: Ha,, akkor az ábrázolt szám hibája:
1. A lebegpontos számábrázolás egy modellje. A normalizált lebegpontos szám fogalma, a legnagyobb, legkisebb pozitív szám, a relatív pontosság az M(t,-k,+k) gépi számhalmazban. Az input függvény (fl) fogalma,
NUMERIKUS MÓDSZEREK I. TÉTELEK
NUMERIKUS MÓDSZEREK I. TÉTELEK Szerkesztette: Balogh Tamás 014. január 19. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
1 Lebegőpontos számábrázolás
Tartalom 1 Lebegőpontos számábrázolás... 2 2 Vektornormák... 4 3 Indukált mátrixnormák és tulajdonságaik... 5 4 A lineáris rendszer jobboldala hibás... 6 5 A kondíciószám és tulajdonságai... 7 6 Perturbációs
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
Numerikus Analízis. Király Balázs 2014.
Numerikus Analízis Király Balázs 2014. 2 Tartalomjegyzék 1. A hibaszámítás elemei 7 1.1. A matematika modellezés folyamata és a hibaforrások megjelenése.. 7 1.2. Lebegőpontos számábrázolás.......................
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Táblán. Numerikus módszerek 1. előadás (estis), 2017/2018 ősz. Lócsi Levente. Frissült: december 1.
Táblán Numerikus módszerek 1. előadás (estis), 2017/2018 ősz Lócsi Levente Frissült: 2017. december 1. Ebben az írásban a 2017/2018 őszi félév estis Numerikus módszerek 1. előadásának a diasorban nem szereplő,
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások
Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
Numerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
NUMERIKUS MÓDSZEREK PÉLDATÁR
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó................................................ VEKTOR- ÉS MÁTRIXNORMÁK,
Numerikus módszerek 1.
Numerikus módszerek 1. 11. előadás: A Newton-módszer és társai Lócsi Levente ELTE IK 2013. november 25. Tartalomjegyzék 1 A Newton-módszer és konvergenciatételei 2 Húrmódszer és szelőmódszer 3 Általánosítás
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
Numerikus módszerek I. zárthelyi dolgozat, 2009/10. I. félév, A. csoport, MEGOLDÁSOK
Numerikus módszerek I. zárthelyi dolgozat, 9/. I. félév, A. csoport, MEGOLDÁSOK. Feladat. Az a. választás mellett A /( a) értéke.486. Határozzuk meg mi is A értékét egy tizes számrendszerű, hatjegyű mantisszás
Numerikus módszerek 1.
Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció
Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
Tárgymutató I Címszavak jegyzéke
9. Tárgymutató I 9.1. Címszavak jegyzéke adaptív integrációs módszer, 350 Aitken-féle eljárás, 350 Aitken Neville-eljárás, 324 alappontok, 250, 334 szabálytalanul elhelyezkedő, 317 algoritmus, 17 abszolút,
Numerikus módszerek példatár
Numerikus módszerek példatár Faragó István, Fekete Imre, Horváth Róbert 2013. július 5. Tartalomjegyzék Előszó 2 Feladatok 4 1. Előismeretek 4 1.1. Képletek, összefüggések............................ 4
A CSOPORT 4 PONTOS: 1. A
A CSOPORT 4 PONTOS:. A szám: pí= 3,459265, becslése: 3,4626 abszolút hiba: A szám és a becslés özti ülönbség abszolút értée Pl.: 0.000033 Relatív hiba: Az abszolút hiba osztva a szám abszolút értéével
Gauss-eliminációval, Cholesky felbontás, QR felbontás
Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei
Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév
Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?
NUMERIKUS MÓDSZEREK PÉLDATÁR
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó............................................... 6. GÉPI SZÁMÁBRÁZOLÁS
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
Numerikus módszerek 1.
Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák
Eötvös Loránd Tudományegyetem Természettudományi Kar
Eötvös Loránd Tudományegyetem Természettudományi Kar Alapvető iterációs eljárások lineáris egyenletrendszerek megoldására Szakdolgozat Ruzsics László Matematika B.Sc., elemző szakirány Témavezető: Kurics
Lineáris algebra és mátrixok alkalmazásai
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Lineáris algebra és mátrixok alkalmazásai Szakdolgozat Készítette: Ruzsányi Orsolya Matematika BSc, matematikai elemző szakirány Témavezető: Fialowski
12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?
Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
KÖZELÍTŐ ÉS SZIMBOLIKUS SZÁMÍTÁSOK FELADATGYŰJTEMÉNY
Írta: MIHÁLYKÓ CSABA VIRÁGH JÁNOS KÖZELÍTŐ ÉS SZIMBOLIKUS SZÁMÍTÁSOK FELADATGYŰJTEMÉNY Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Mihálykó Csaba, Pannon Egyetem Műszaki Informatikai Kar Matematika
ANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
Numerikus Analízis I.
Numerikus Analízis I. Sövegjártó András Jegyzet másodéves programozó és programtervező matematikus szakos hallgatóknak 2003. ,,A sikerhez és tudáshoz vezető út senki előtt sincs zárva, akiben van bátorság
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
NUMERIKUS MÓDSZEREK PÉLDATÁR
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó................................................ GÉPI SZÁMÁBRÁZOLÁS
Lineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
Legkisebb négyzetek módszere, Spline interpoláció
Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
Numerikus módszerek példatár
Numerikus módszerek példatár Faragó István, Fekete Imre, Horváth Róbert 2013. június Tartalomjegyzék El szó 5 Feladatok 9 1. El ismeretek 9 1.1. Képletek, összefüggések............................ 9 1.2.
Numerikus módszerek 1.
Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
Lineáris algebrai egyenletrendszerek direkt és iterációs megoldási módszerei
Eötvös Loránd Tudományegyetem Természettudományi Kar Lineáris algebrai egyenletrendszerek direkt és iterációs megoldási módszerei BSc Szakdolgozat Készítette: Laki Annamária Matematika BSc Matematikai
Ipari matematika 2. gyakorlófeladatok
Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Összeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK
MÉSZÁROS JÓZSEFNÉ, NUmERIKUS módszerek 9 FÜGGVÉNYKÖZELÍTÉSEK IX. SPLINE INTERPOLÁCIÓ 1. SPLINE FÜGGVÉNYEK A Lagrange interpolációnál említettük, hogy az ún. globális interpoláció helyett gyakran célszerű
Bevezetés az algebrába 2
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc
Analízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
1. zárthelyi,
1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y
1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei
Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Tartalomjegyzék 1 BEVEZETÉS 2
Tartalomjegyzék BEVEZETÉS FELADATOK. Lebegőpontos számok.............................. Normák, kondíciószámok........................... 5. Lineáris egyenletredszerek megoldása, mátrixok felbontása........
Hatványsorok, Fourier sorok
a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés
LINEÁRIS ALGEBRAI EGYENLETRENDSZEREK
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR LINEÁRIS ALGEBRAI EGYENLETRENDSZEREK DIREKT ÉS ITERATÍV MEGOLDÁSI MÓDSZEREI BSc szakdolgozat Készítette: Várhegyi Bence Matematika BSc Matematikai elemző
Lineáris algebra numerikus módszerei
Bevezetés Szükségünk van a komplex elemű mátrixok és vektorok bevezetésére. A komplex elemű n-dimenziós oszlopvektorok halmazát C n -el jelöljük. Hasonlóképpen az m n méretű komplex elemű mátrixok halmazát
Modellek és Algoritmusok - 2.ZH Elmélet
Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)
Analízis I. Vizsgatételsor
Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2
2. előadás. Lineáris algebra numerikus módszerei. Mátrixok Mátrixműveletek Speciális mátrixok, vektorok Norma
Mátrixok Definíció Az m n típusú (méretű) valós A mátrixon valós a ij számok alábbi táblázatát értjük: a 11 a 12... a 1j... a 1n.......... A = a i1 a i2... a ij... a in........... a m1 a m2... a mj...
A Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
41. Szimmetrikus mátrixok Cholesky-féle felbontása
Benyújtja: Kaszaki Péter (KAPMAAT.SZE) 2005 november 21. 1.oldal Tartalomjegyzék 1. Bevezetés 4 2. A Gauss elimináció és az LU felbontás 4 2.1. Gauss elimináció 4 2.1.2. A Gauss elimináció mátrixos alakban
Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.
Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.
Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
Lineáris algebrai egyenletrendszerek iteratív megoldási módszerei
Eötvös Loránd Tudományegyetem Természettudományi kar Lineáris algebrai egyenletrendszerek iteratív megoldási módszerei Szakdolgozat Készítette: Kis Ágnes Matematika Bsc. Matematikai elemző szakirány Témavezető:
Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája
Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Tasnádi Tamás 2014. szeptember 11. Kivonat A tárgy a BME Fizika BSc szak kötelező, alapozó tárgya a képzés 1. félévében. A tárgy
MODELLEK ÉS ALGORITMUSOK ELŐADÁS
MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?
= komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz
9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz. Mindkét eliminációs módszer műveletigénye sokkal kisebb, mint a Cramer-szabályé:
2014. november 5-7. Dr. Vincze Szilvia
24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével
Numerikus integrálás április 20.
Numerikus integrálás 2017. április 20. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó
FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart
Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35
Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28
Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek
Bevezetés az algebrába 2 Vektor- és mátrixnorma
Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
Gauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
Szinguláris érték felbontás Singular Value Decomposition
Szinguláris érték felbontás Singular Value Decomposition Borbély Gábor 7. április... Tétel (teljes SVD. Legyen A C m n mátrix (valósra is jó, ekkor léteznek U C m m és V C n n unitér mátrixok (valósban
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai
Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál
ANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
2012. október 2 és 4. Dr. Vincze Szilvia
2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex
Lineáris algebra Gyakorló feladatok
Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések