Alkalmazott algebra. Lineáris leképezések EIC. Wettl Ferenc ALGEBRA TANSZÉK BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK )

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Alkalmazott algebra. Lineáris leképezések EIC. Wettl Ferenc ALGEBRA TANSZÉK BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK )"

Átírás

1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Alkalmazott algebra BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK ) Lineáris leképezések EIC Wettl Ferenc ALGEBRA TANSZÉK 1

2 Ismeretek, képességek, célok Lineáris leképezés különböző ekvivalens definíciói. Lineáris transzformáció mátrixa különböző bázisokban. Hasonlóság és a hasonlóságra invariáns tulajdonságok. Vetítés, merőleges vetítés mátrixa. Legjobb közelítés tétele. Egyenletrendszer optimális megoldása, és annak kiszámítása. Lineáris és polinomiális regresszió. Pszeudoinverz tulajdonságai, kiszámítása, és az optimális megoldása kiszámítása. 2

3 Mátrixleképezés, lineáris leképezés

4 A mátrixleképezés fogalma D D A : R n R m ; x Ax képtér: Im(A) = O(A), magtér: Ker(A) = N (A) P a = (a 1, a 2, a 3 ) R 3, A : R 3 R 3 : x a x. M Az a x vektori szorzat koordinátás alakban: a 1 x y = a x = a 2 1 a x 2 = 2 x 3 a 3 x 2 a 3 x 1 a 1 x 3 a 3 x 3 a 1 x 2 a 2 x 1 a 3 x 2 + a 2 x 3 0 a = a 3 x 1 a 1 x 3 = 3 a 2 a 3 0 a 1 a 2 x 1 + a 1 x 2 a 2 a 1 0 x 1 x 2 x 3 3

5 Műveletek mátrixleképezések között Á A + B = C A + B = C Á ca = C ca = C Á XY = Z X Y = Z Á B = A 1 B = A 1 4

6 Mátrixleképezések tulajdonságai Á Á A : R n R m egy tetszőleges mátrixleképezés, x, y R n, c, d R: A(cx + dy) = ca(x) + da(y), (A megőrzi a lineáris kombinációt) A(cx) = ca(x), (a leképezés homogén) A(x + y) = A(x) + A(y), (a leképezés additív) Á A0 = 0 Á Á Tetszőleges altér képe altér. Tetszőleges affin altér képe affin altér. 5

7 Lineáris leképezés D Legyen V és W két F test fölötti vektortér. Azt mondjuk, hogy az A : V W leképezés lineáris, ha homogén és additív, lineáris transzformáció, ha V = W. P deriválás: D : V W : f D(f) = f D(cf) = (cf) = cf = cd(f), és D(f + g) = (f + g) = f + g = D(f) + D(g). P P integrálás: cf = c f, és 0 1 Síkbeli forgatás, tükrözés, vetítés. 0 (f + g) = f + g. 0 6

8 Vektortérből vektortérbe képző lineáris leképezések T Ekvivalens állítások: A : V W lineáris (homogén és additív). Tetszőleges x, y V, c, d F esetén A(cx + dy) = ca(x) + da(y) Tetszőleges x, y V és c F esetén A(cx + y) = ca(x) + A(y) x 1,..., x k V, c 1, c 2,..., c k F A(c 1 x c k x k ) = c 1 Ax c k Ax k. 7

9 Lineáris R n R m leképezések T A : R n R m egy tetszőleges függvény. Az A pontosan akkor lineáris, ha létezik egy olyan A m n mátrix, hogy az A függvény megegyezik az x Ax leképezéssel. Ekkor az e i standard egységvektorokkal A = [Ae 1 Ae 2... Ae n ], B Ax = A(x 1 e 1 + x 2 e x n e n ) = x 1 Ae 1 + x 2 Ae x n Ae n x ] 1 = [Ae 1 Ae 2... Ae n. = Ax x n 8

10 A mátrixleképezés hatásának szemléltetései x Ax Bx Cx Dx A = [ ] B = [ ] C = [ ] D = [ ] R n R m Im(A) 0 Ker(A) 0 9

11 Lineáris transzformáció mátrixa különböző bázisokban Legyen L : V V egy lineáris transzformáció, A és B a V két bázisa. Az L mátrixa e bázisokban L A és L B. [x] B L B [Lx] B [x] B L B [Lx] B C B A C B A C B A C A B = C 1 B A [x] A L A [Lx] A [x] A L A [Lx] A L B C B A = C B A L A L A = C A B L B C B A = C 1 B A L BC B A 10

12 Valami hasonló a Rubik-kockán T C T C 1 D Az n n-es A mátrix hasonló a B mátrixhoz, ha létezik olyan invertálható C mátrix, hogy B = C 1 AC. Jelölés: A B. 11

13 Hasonlóság T B T Hasonló mátrixok hatása Két mátrix pontosan akkor hasonló, ha van két olyan bázis, melyekben e két mátrix ugyanannak a lineáris leképezésnek a mátrixa. B = C 1 E C AC E C. Hasonlóságra invariáns tulajdonságok Ha A és B hasonló mátrixok, azaz A B, akkor 1. r(a) = r(b), 2. dim(n (A)) = dim(n (B)), 3. det(a) = det(b), 4. trace(a) = trace(b). 12

14 Alkalmazás: differenciálhatóság

15 Vektor-vektor függvények differenciálhatósága m D = lim h 0 f(x+h) f(x) h D lim h 0 f(x+h) f(x) Dh h = 0. lim h 0 f(x+h) f(x) Dh h = 0 Azt mondjuk, hogy az f : R n R m függvény differenciálható az x helyen, ha létezik olyan D f,x : R n R m lineáris leképezés, melyre f(x + h) f(x) D f,x h lim = 0. h 0 h A D f,x leképezést az f függvény x ponthoz tartozó deriváltleképezésének nevezzük. 13

16 Derivált y dy dy y x x + dx dx x 14

17 Derivált x f(x) zoom=1.50 f(x) x f(x) zoom=3.75 f(x) 15

18 Jacobi-mátrix T (Jacobi-mátrix) Ha az f : R n R m ; (x 1, x 2,..., x n ) (f 1, f 2,..., f m ) függvény differenciálható az x helyen, akkor a lineáris D f,x deriváltleképezés mátrixa a következő, ún. Jacobi-mátrix: f 1 x D f,x = (f 1 (x) 1, f 2,..., f m ) f 2 (x 1, x 2,..., x n ) (x) = x 1 (x). f m x 1 (x) f 1 f x 2 (x)... 1 x n (x) f 2 f x 2 (x)... 2 x n (x)..... f m f x 2 (x)... m x n (x) 16

19 Jacobi-determináns és az integrál transzformációja ϑ y ϑ r r ϑ r x 17

20 Függvények kompozíciójának deriváltja T (Láncszabály) Legyen f : R k R m, g : R n R k két függvény. Ha g differenciálható az x helyen, és f a g(x) helyen, akkor f g differenciálható az x helyen, és deriváltleképezése, illetve annak mátrixa: D f g,x = D f,g(x) D g,x, illetve D f g,x = D f,g(x) D g,x. 18

21 Lineáris trafók 2D-ben és 3D-ben

22 Forgatás Á Á T [ ] [ ] cos α sin α Forgatás 2D-ben: Ai Aj = sin α cos α Forgatás tengely körül 3D-ben: cos α sin α cos α 0 sin α sin α cos α 0, 0 cos α sin α, sin α cos α sin α 0 cos α Rodrigues-formula: e R 3 egységvektor egyenese körül α szöggel ahol R = I + sin α[e] + (1 cos α)[e] 2 az x e x leképezés mátrixa. = I + sin α[e] + (1 cos α)(ee T I) 0 e 3 e 2 [e] = e 3 0 e 1. e 2 e

23 Kvaterniók Sir William Rowan Hamilton 1843 október 16. Kvaterniók: a + bi + cj + dk alakú számok, ahol a, b, c, d R, i, j, k olyan imaginárius számok, melyekre i 2 = j 2 = k 2 = ijk = 1, ij = k, ji = k, jk = i,, összeadás koordinátánként, szorzás az előző szabályok szerint: az u = u 1 i + u 2 j + u 3 k, v = v 1 i + v 2 j + v 3 k jelöléssel (a + u)(b + v) = ab u v + av + bu + u v. Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication T i 2 = j 2 = k 2 = ijk = 1 & cut it on a stone of this bridge. Forgatás kvaterniókkal: q = cos α 2 + (e 1i + e 2 j + e 3 k) sin α 2 a forgatást jellemző kvaternió, a (v 1, v 2, v 3 )-hoz tartozó kvaternió v = v 1 i + v 2 j + v 3 k. Az elforgatott: qvq 1, ahol q 1 = cos α 2 (e 1i + e 2 j + e 3 k) sin α 2 20

24 Merőleges vetítés és tükrözés Á Egyenesre való merőleges vetítés mátrixa P = 1 b T b bbt (P = ee T ). Á Síkra való merőleges vetítés mátrixa P = I nn T. Á Síkbeli tükrözés [ mátrixa az ] x-tengellyel α/2 szöget bezáró cos α sin α egyenesre:. sin α cos α Á Síkra való tükrözés mátrixa P = I 2nn T. 21

25 Eltolás Á Á 2D: (x, y) (x + a, y + b) a z = 1 egyenletű síkban: x x + az T y = y + bz z z mátrixa [ ] T = T i j k = 1 0 a 0 1 b D: (x, y, z) (x + a, y + b, z + c) eltolás: a x a x x + a T = b c, T y z = b y c z = y + b z + c

26 Merőleges vetítés, legjobb közelítés

27 Alterek direkt összege D V U és W U két tetszőleges altér. Azt mondjuk, hogy W a V kiegészítő altere, vagy komplementer altér, ha T V W = {0}, V + W = U, és azt mondjuk, hogy U a V és W alterek direkt összege, amit V W jelöl. Ekvivalens állítások: V W = {0} és V + W = U, azaz V és W kiegészítő alterek, U minden vektora egyértelműen áll elő egy V- és egy W-beli vektor összegeként, V W = {0} és dim V + dim W = n. P ha A R m n, akkor S(A) N (A) = R n, O(A) N (A T ) = R m. 23

28 Merőleges vetítés R n egy alterére T Ha W az R n egy altere, és az A mátrix oszlopvektorai a W egy bázisát alkotják (A teljes oszloprangú), akkor a W altérre való merőleges vetítés, azaz a proj W leképezés mátrixa A(A T A) 1 A T. B Legyen a v R n vektor W-re eső merőleges vetülete w. A oszloptere W, ezért létezik olyan x vektor, hogy Ax = w. W = O(A), így W = N (A T ), tehát v w benne van A T nullterében. Eszerint A T (v w) = 0, azaz A T (v Ax) = 0, innen A T Ax = A T v. Az A mátrix teljes oszloprangú, így A T A invertálható, azaz x = (A T A) 1 A T v, amiből proj W v = w = Ax = A(A T A) 1 A T v. 24

29 Melyik mátrix merőleges vetítés mátrixa? T Egy P mátrix pontosan akkor merőleges vetítés mátrixa, ha P = P T = P 2. P = A(A T A) 1 A T ( P 2 = A(A T A) 1 A T) 2 = A(A T A) 1 A T A(A T A) 1 A T = P, P T = (A(A T A) 1 A T) T ( = A (A T A) 1) T A T = A(A T A) 1 A T = P. Tegyük fel, hogy P = P T = P 2. Megmutatjuk, hogy P az O(P)-re való merőleges vetítés mátrixa. Ehhez elég megmutatnunk, hogy az x Px vektor merőleges O(P)-re bármely x vektor esetén. A P 2 = P feltétel miatt P(x Px) = Px P 2 x = 0, tehát x Px N (P), de P = P T, így x Px N (P T ). Ez épp azt jelenti, hogy x Px merőleges O(P)-re, és ezt akartuk belátni. 25

30 Altértől való távolság D T B x R n, W R n altér. x-nek a W altértől való távolságán a W altér x-hez legközelebbi w vektorának tőle való távolságát értjük. Legjobb közelítés tétele: Az x vektornak egyetlen W-beli legjobb ˆx közelítése van, nevezetesen ˆx = proj W x. x w = (x proj W x) + (proj W x w). első kifejezés W, a második W eleme! (x proj W x) (proj W x w) Pithagorász: x w 2 = x proj W x 2 + proj W x w 2. x w 2 x proj W x 2 egyenlőség csak akkor állhat fönn, ha w = ˆx = proj W x K R n = W W. 26

31 Altértől való távolság P Bontsuk fel az x = (8, 4, 2, 1) vektort W = span((1, 1, 1, 0), (0, 1, 1, 0))-be eső és W-re merőleges vektorok összegére. M A W-re való merőleges vetítés mátrixa P = W(W T W) 1 W T, ahol W két oszlopa a megadott két bázisvektor: W = , amiből Px = 0 1/2 1/ /2 1/2 0 2 = proj W x = Px = (8, 1, 1, 0) és x proj W x = (0, 3, 3, 1). 27

32 Egyenletrendszer optimális megoldása D T Az Ax = b optimális megoldásain az Ax = proj O(A) b megoldásait értjük. Az Ax = b egyenletrendszer optimális megoldásai megegyeznek az A T Aˆx = A T b egyenletrendszer megoldásaival (normálegyenlet-rendszer). Ezek közül egyetlen egy esik az A mátrix sorterébe, a legkisebb abszolút értékű. 28

33 Lineáris és polinomiális regresszió T Az (x i, y i ) (i = 1, 2,... n) párokhoz tartozó, y = â + ˆbx egyenletű regressziós egyenes paraméterei kielégítik az alábbi egyenletet, mely egyértelműen megoldható, ha van legalább két különböző x i érték. [ ] [â ] [ ] n xi yi = xi x 2 i ˆb xi y i B Megoldandó: 1 x x n [ ] a = b y 1.. A hozzá tartozó normálegyenlet-rendszer [ ] 1 x 1 [â ] [ ] y x 1 x 2... x.. = n ˆb x 1 x 2... x.. n 29 1 x n y n y n

34 D Polinomiális regresszióról beszélünk, ha az y = a 0 + a 1 x + + a k x k egyenlet a i együtthatóira keresünk optimális becslést a legkisebb négyzetek módszerével, ismert (x i, y i ) párok sorozata mellett, ahol i = 1, 2,... n. m Keresendő az n egyenletből álló k + 1-ismeretlenes a 0 + a 1 x a k x k 1 = y 1 a 0 + a 1 x a k x k 2 = y a 0 + a 1 x n a k x k n = y n egyenletrendszer megoldása az a 0, a 1,, a k ismeretlenekre. 1 x 1... x k 1 a 0 y 1 1 x 2... x k 2 a 1 y 2. = x n... x k n a k y n Optimális megoldása a normálegyenletből megkapható. 30

35 P Másodfokú regresszió: Az x, y változók között egy y = a + bx + cx 2 összefüggés együtthatóit keressük. n = 4 mérést végzünk, a mért adatok k x k y k Keressük meg az a, b, c legkisebb négyzetek elve szerinti legjobb becslését. M A megadott adatok közti összefüggés mátrixszorzat alakja: a + bx + cx 2 = y az együtthatómátrix k-adik sorvektora (1, x k, x 2 k ): a b = c

36 - A normálegyenlet a b = c 8 Ennek megoldása (a, b, c) = 1 4 (3, 5, 3), tehát a másodfokú polinom, mely legjobban illeszkedik a megadott (x k, y k ) pontokra y = x x2. 32

37 Vetítés D U = V W, így bármely u U egyértelműen előáll u = v + w alakban, ahol v V, w W. A v vektor az u vektornak a V altérre W mentén való (vele párhuzamosan vett) vetülete. D E lineáris transzformációt vetítésnek vagy projekciónak nevezzük. m minden P vetítés az Im P-re Ker P mentén való vetítés. Á Mátrixa: U = R n, V bázisa { v 1,..., v r }, W bázisa { w 1,..., w n r }. Legyen U = [v 1 v 2... v r w 1 w 2... w n r ] = [V W]. Mivel Pv i = v i (i = 1, 2,..., r) és Pw j = 0 (j = 1, 2,..., n r), ezért a P leképezés P mátrixára U invertálható, ezért PU = P[V W] = [PV PW] = [V O]. P = [V O]U 1 = [V O][V W] 1. 33

38 Vetítés T A projekció tulajdonságai: Legyen P : R n R n egy projekció. 1. R n -nek van olyan bázisa, melyben a mátrixa P = diag(1, 1,..., 1, 0,..., 0). 2. I P is projekció: Ker(I P) = Im P, Im(I P) = Ker P, 3. r(p) = trace(p). 34

39 Pszeudoinverz

40 A pszeudoinverz fogalma Á D A sortér és az oszloptér közt létezik természetes kölcsönösen egyértelmű megveleltetés (Ax = b egyetlen sortérbe eső mo-a). R n S(A) 0 A A + R m O(A) 0 ˆx x 0 S(A) N (A) N (A T ) b ˆb 0 O(A) = S(A T ) Az A mátrix (Moore Penrose-féle) pszeudoinverze az az A + mátrix, melyre tetszőleges b esetén az Ax = b egyenletrendszer minimális abszolút értékű optimális megoldása A + b. 35

41 T T A pszeudoinverz létezése Jelölje az Ax = b egyenletrendszer egyetlen sortérbe eső optimális megoldását ˆx. Az A + : b ˆx függvény lineáris leképezés, így van mátrixa, melyet A + jelöl. Pszeudoinverz hatása a kitüntetett altereken Legyen A valós vagy komplex mátrix. 1. Az X mátrix pontosan akkor pszeudoinverze A-nak, (a) ha x N (A) esetén X(Ax) = x, és (b) ha z O(A) esetén Xz = Ha A + az A pszeudoinverze, akkor AA + = proj O(A) és A + A = proj O(A T ). Tehát AA +, illetve A + A merőlegesen vetít az A, illetve az A T oszlopterére. 36

42 Néhány pszeudoinverz Á A + = A 1, ha A invertálható, Á O + m n = O n m, Á [a] + = [ 1 /a], ha a 0, és [0] + = [0], Á (A + ) + = A, Á ha a ii 0 (i = 1, 2,..., r), akkor + 1 a a O = a rr O O m n a a O a rr O O n m 37

43 A pszeudoinverz létezése és kiszámítása T B Ha a valós A teljes oszloprangú, akkor A + = (A T A) 1 A T, ha teljes sorrangú, akkor A + = A T (AA T ) 1. Ha A = BC, ahol B teljes oszlop-, C teljes sorrangú (ld. bázisfelbontás), akkor A + = C + B + = C T (CC T ) 1 (B T B) 1 B T = C T (B T AC T ) 1 B T. Ha A teljes oszloprangú, akkor R n = S(A), és A T A invertálható: (A T A) 1 A T Ax = x. Meg kell még mutatnunk, hogy ha z N (A T ), vagyis ha A T z = 0, akkor A + z = 0: (A T A) 1 A T z = (A T A) 1 0 = 0. Ha A teljes sorrangú, akkor O(A) = R m : y-ra Ax = y konzisztens. Jelölje ˆx az egyetlen sortérbe eső megoldást, így minden más x megoldásra proj S(A) x = ˆx. A + -ra fenn kell álljon A + y = ˆx: ( proj S(A) x = A T (AA T ) 1 Ax = A T (AA T ) 1) (Ax) = A + y. 38

44 Példák - Számítsuk ki a következő mátrixok pszeudoinverzét! 0 1 [ ] B = 1 1, C = és M = B teljes oszloprangú, így [ ] 1 [ ] B + = (B T B) 1 B T = [ ] [ ] [ ] 2/3 = 1 / = 1 /3 1/3 2/3. 1 /3 2/ /3 1/3 1 /3 - A C mátrix teljes sorrangú, így 1 0 [ ] 1 C + = C T (CC T ) = 0 1 = /3 1 /3 1 /3 2/3 1/3 1/3. 39

45 - M bázisfelbontása BC: - vagy M + = C + B + = 2/3 1 /3 [ ] 1 /3 2/3 1/3 1/3 2/3 2/3 1/3 1/3 1/3 1 /3 = M + = C T (B T MC T ) 1 B T 1 0 ] = 0 1 [ [0 ] =

46 A pszeudoinverz tulajdonságai T Moore Penrose-tétel: A valós A mátrixnak X pontosan akkor pszeudoinverze, ha az alábbi négy feltétel mindegyike fennáll: a) AXA = A, b) XAX = X, c) (AX) T = AX, d) (XA) T = XA. K Tetszőleges A R m n mátrix esetén A + A = proj S(A) és AA + = proj O(A). Tehát A + A az R n teret merőlegesen vetíti A sorterére, míg AA + az R m teret merőleges vetíti A oszlopterére. 41

47 A pszeudoinverz és a min. absz. értékű opt. megoldás P Keressük a minimális abszolút értékű optimális megoldást! y + z = 3 x + y + 2z = 2 x + z = M Inkonzisztens, ui.: Pszeudoinverzzel ˆx = A + b = =

Haladó lineáris algebra

Haladó lineáris algebra B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Lineáris leképezések H607 2018-02-05, 07, 09 Wettl

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2. Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35 Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek

Részletesebben

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28 Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

A lineáris algebra forrásai: egyenletrendszerek, vektorok

A lineáris algebra forrásai: egyenletrendszerek, vektorok A lineáris algebra forrásai: egyenletrendszerek, vektorok 2016. február 23. A lineáris algebra forrásai: egyenletrendszerek, vektorok 2016. február 23. 1 / 75 Tartalom 1 Vektor A 2- és 3-dimenziós tér

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Bevezetés az algebrába 2 Vektor- és mátrixnorma

Bevezetés az algebrába 2 Vektor- és mátrixnorma Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41 Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Alkalmazott algebra. Vektorterek, egyenletrendszerek :15-14:00 EIC. Wettl Ferenc ALGEBRA TANSZÉK

Alkalmazott algebra. Vektorterek, egyenletrendszerek :15-14:00 EIC. Wettl Ferenc ALGEBRA TANSZÉK B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Alkalmazott algebra BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK ) Vektorterek,

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Sajátérték, sajátvektor, sajátaltér Kf87 2017-11-21

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:

Részletesebben

3. el adás: Determinánsok

3. el adás: Determinánsok 3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

1. Bázistranszformáció

1. Bázistranszformáció 1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Mat. A2 3. gyakorlat 2016/17, második félév

Mat. A2 3. gyakorlat 2016/17, második félév Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Sajátérték, sajátvektor, sajátaltér Kf81 2018-11-20

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Determinánsok H406 2017-11-27 Wettl Ferenc ALGEBRA

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egyenletrendszerek H406 2016-10-03 Wettl Ferenc

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Lineáris algebra. =0 iє{1,,n}

Lineáris algebra. =0 iє{1,,n} Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15 Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont

Részletesebben

FELVÉTELI VIZSGA, szeptember 12.

FELVÉTELI VIZSGA, szeptember 12. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy

Részletesebben

Transzformációk síkon, térben

Transzformációk síkon, térben Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Differencia- és differenciálegy.-rsz. H607 2017-04-05

Részletesebben

1. feladatsor: Vektorfüggvények deriválása (megoldás)

1. feladatsor: Vektorfüggvények deriválása (megoldás) Matematika A gyakorlat Energetika és Mechatronika BSc szakok 016/17 ősz 1. feladatsor: Vektorfüggvények deriválása megoldás) 1. Tekintsük azt az L : R R lineáris leképezést ami az 1 0) vektort az 1 0 )

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai Matematika előadás elméleti kérdéseinél kérdezhető képletek Lineáris Algebra GEMAN 203-B A három dimenziós tér vektorai, egyenesei, síkjai a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25) I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf87 2017-09-05

Részletesebben

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22 Mátrixfüggvények Wettl Ferenc 2016. április 28. Wettl Ferenc Mátrixfüggvények 2016. április 28. 1 / 22 Tartalom 1 Diagonalizálható mátrixok függvényei 2 Mátrixfüggvény a Jordan-alakból 3 Mátrixfüggvény

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

XI A MÁTRIX INVERZE 1 Az inverzmátrix definíciója Determinánsok szorzástétele Az egységmátrix definíciója: 1 0 0 0 0 1 0 0 E n = 0 0 1 0 0 0 0 1 n-edrenű (azaz n n típusú) mátrix E n -nel bármely mátrixot

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

1. Az euklideszi terek geometriája

1. Az euklideszi terek geometriája 1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz

Részletesebben

Valasek Gábor Informatikai Kar. 2016/2017. tavaszi félév

Valasek Gábor Informatikai Kar. 2016/2017. tavaszi félév Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016/2017. tavaszi félév Tartalom 1 Motiváció 2 Transzformációk Transzformációk általában 3 Nevezetes

Részletesebben

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0 Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a

1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a 1. 1. hét 1.1. Alapfogalmak Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a (2, 3) Egyenes normál vektora egy pontban: egy olyan vektor

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

Geometria II gyakorlatok

Geometria II gyakorlatok Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2012. május 8. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Budapesti Műszaki Főiskola, Neumann János Informatikai Kar. Vektorok. Fodor János

Budapesti Műszaki Főiskola, Neumann János Informatikai Kar. Vektorok. Fodor János Budapesti Műszaki Főiskola, Neumann János Informatikai Kar Lineáris algebra 1. témakör Vektorok Fodor János Copyright c Fodor@bmf.hu Last Revision Date: 2006. szeptember 11. Version 1.1 Table of Contents

Részletesebben

Lin.Alg.Zh.1-2 feladatok

Lin.Alg.Zh.1-2 feladatok Lin.Alg.Zh.- feladatok. Lin.Alg.Zh. feladatok.. d vektorok Adott három vektor ā b c az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b + + 8. Mennyi az n ā b vektoriális

Részletesebben

Tartalom. Nevezetes affin transzformációk. Valasek Gábor 2016/2017. tavaszi félév

Tartalom. Nevezetes affin transzformációk. Valasek Gábor 2016/2017. tavaszi félév Tartalom Motiváció Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016/2017. tavaszi félév Transzformációk Transzformációk általában Nevezetes affin

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Lineáris algebra. (közgazdászoknak)

Lineáris algebra. (közgazdászoknak) Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben