Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium"

Átírás

1 Klasszikus Térelmélet október 01.

2 Tartalom: Jelölések bevezetése Kovariáns deriváltak kommutátora és a Riemann-tenzor Vektor megváltozása zárt görbe mentén Riemann-tenzor és a Stokes-tétel Geodetikus elhajlás Példák kétdimenziós sík és görbe felületekre

3 Jelölések: Riemann-geometria (általános): Dv k = dv k δv k = dv k + Γ k lm v l dx m m v k = m v k + Γ k lm v l m v k = m v k Γ l km v l

4 bevezetése: Definíció: tenzor alatt a T k lm = Γ k lm Γ k ml kifejezést értjük. fizikai tartalma: Ezzel a torziós konnexióval vezetjük be a kovariáns deriváltat: m v k = m v k + Γ k lm v l k Φ = k Φ l k Φ = l k Φ Γ m kl mφ és k l Φ = k l Φ Γ m lk mφ,ahol Φ egy skalármező. [ k, l ]Φ = ( Γ m kl Γ m lk ) mφ = T m lk mφ

5 Vizsgálódjunk tovább egy metrikával ellátott Riemann-geometriában. ds 2 = g kl dx k dx l Ez automatikusan definiál egy torziómentes metrikát, ha feltesszük a következőt: m g kl = 0 Amiből következik, hogy: Γ k lm = 1 2 g kp ( m g pl + l g pm p g ml ) Γ k lm = Γk ml Metrikus struktúrával ellátott Riemann-geometriában (ahol a metrikus tenzor tudja azt, m g kl = 0) a torzió tenzor mindenhol eltűnik, vagyis torziómentes a geometria.

6 Kis érdekesség: Legyen Γ a Levi-Civita konnexió és definiáljunk egy új konnexiót a következő módon: Ekkor:,ahol Φ egy skalármező és Γ k lm = Γk lm + C k lm [ l, m ]Φ = T k lm kφ m g kl = Q klm T klm = C klm C kml és Q klm = C klm + C lkm Most követeljük meg ennek a konnexiónak a torzió mentességét, ekkor C szimmetrikus lesz utolsó két indexében. De ez Q értékét nem befolyásolta, vagyis egy torziómentes konnexióból nem származik metrika, csak fordítva.

7 Általános relativitáselméletben egy pszeudo-riemann-geometriát használunk, ahol a konnexió a metrikus tenzorból származtatható. Ennek a feltétele: T klm = 0 és Q klm = 0 C klm = C lkm = C lmk = C mlk = C mkl = C kml = C klm Vagyis C klm = 0, amiből következik, hogy Γ k lm = Γk lm Tehát a Levi-Civita konnexió az egyetlen ami tudja a m g kl = 0 -t. Mostantól metrikus-, és Levi-Civita konnexiós struktúrával ellátott pszeudo-riemann-geometriában dolgozunk tovább.

8 Riemann-tenzor definíciója: Nézzük meg a kovariáns deriváltak kommutátorát egy adott v k vektormező esetén. l v k = l v k + Γ k ml v m m l v k = m l v k + m Γ k ql v q + Γ k ql mv q Γ p lm pv k Γ p lm Γk qpv q + Γ k qm l v q + Γ k pmγ p ql v q Most mindenki cserélje ki m és l indexeket.

9 Most képezzük a kommutátorát a kovariáns deriváltaknak: R k mql [ m, l ]v k = [ {}}{ m Γ k ql lγ k qm + Γ k pmγ p ql ] Γk pl Γp qm v q R k mql = m Γ k ql lγ k qm + Γ k pmγ p ql Γk pl Γp qm Felső-indexes metrikus tenzor deriváltjaira szükség lesz, mert a konnexiós együtthatók deriváltjaiban az jelenik meg: g kl g lm = δ k m Ezt deriválva megkapjuk a keresett mennyiséget: p g kl = g ml g kq p g qm Ekkor már R is kifejezhető a metrikus tenzorral: R(g, g, g)

10 Ekkor már R is kifejezhető a metrikus tenzorral: R(g, g, g) Írjuk is ki a komponenseket: R kmql = 1 2 ( m q g kl + k l g mq k m g ql q l g km )+g st (Γ s mqγ t kl Γt ml Γs kq )

11 Riemann-tenzor fizikai jelentése I. Vegyünk egy infinitezimálisan kis zárt hurkot (x k (τ)), és egy olyan vektormezőt (v k (x(τ))), hogy miközben körbejárjuk a görbét azt minden pontban ugyanannak a vektornak lássuk. Ekkor a vektormezőt egy adott (belső) pont körül sorba fejthetjük: v k (x) = v k + m v k x m + O(x 2 ) A vektormező megváltozását a következő módon kapjuk: v k = dτ d dτ v k( x(τ) ) = dτ dx m dτ mv k( x(τ) )

12 Dv k 0 m v k = Γ k lm v l v k = dτ Γ k dx m lm dτ v l Most pedig helyettesítsük be v l és a Γ sorfejtett alakját, majd vegyük figyelembe, hogy infinitezimálisan kis hurok mentén x(τ) is kicsi és O(x 2 ) elhanyagolható. v k = dτ (Γ k lm + qγ k lm x q ) dx m dτ (v l + m v l x m ) Belátható, hogy a következő eredményre jutunk: v k = 1 ( x q dx m ) 2 dτ dτ Rlmq k v l Itt is azt kapjuk, hogy R antiszimmetrikus a két megfelelő indexében, ugyan is: x q dx m dτ dτ + x m dx q dτ dτ = 0

13 Riemann-tenzor fizikai jelentése II. Riemann-tenzor és a Stokes-tétel: Ismét azt szeretnénk kiszámítani, hogy változik meg egy vektor, miközben körbemegyünk egy zárt görbén. δa k = Γ l km A ldx m és x k (p) x(0) = x(1) A k = Γ l ( ) ( )dx m km x(p) Al x(p) dp dp Stokes-tétel több dimenzióban: v l dx l = 1 df kl( ) k v l l v k 2,melyben df kl dx k dx k = du dw dx l dx dudw,ahol a felületet u és w-vel l du dw paramétereztük.

14 Alkalmazzuk a Stokes-tételt a mi esetünkben: A k = df kl[ ( p Γ l kq) Al + Γ l kq pa l ( q Γ l ) ] kp Al + Γ l kp qa l Most feltesszük, hogy a görbénk infinitezimálisan kicsi és kihasználjuk az előző levezetésben szereplő összefüggést: DA k 0 vagyis da k = δa k = Γ l km A ldx m tehát da k dx m = ma k = Γ l km A l Ezt behelyettesítve kapjuk az egyenletet, amiben megtalálható a görbületi-tenzor: A k = 1 2 Rl pkq A l df kl

15 Riemann-tenzor fizikai jelentése III. Geodetikus elhajlás: Vegyünk egy görbét és ennek egy pontjában egy vektort. Toljuk ezt a vektort a görbe mentén w-vel arrébb. Ezt az eltolást a görbe paraméterezése alapján értelmezzük. Indítsunk, minden pontból olyan geodetikusokat,amiknek az érintője a megadott vektor eltoltja. Paraméterezzük ezeket a görbéket például a sajátidővel (s). Ekkor egy x k pont két paraméterrel adható meg (s, w).

16 Definiáljuk a következő vektorokat: u k = xk s és v k = xk w. Adott (infinitezimális) dw esetén értelmezzük két geodetikus pontját összekötő "vektort": η k = xk w dw = ηk (s) Vizsgáljuk a 2 η k s 2 mennyiséget, ami azt jellemzi milyen gyorsulással közelednek/távolodnak a szomszédos geodetikusokon az ugyanolyan sajátidőhöz tartozó pontok. Lemma (bizonyítás nélkül): v k k u l = u k k v l

17 Most mégsem 2 η k D 2 v k ds 2 s 2 mennyiséget. 2 η k s 2 D2 v k ds 2 mennyiséget számítjuk ki, hanem a vele arányos = D ds ( D ds v k) = x l }{{} s u l D dx l }{{} l ( Dv k ) = ds = u l l (u m m v k ) = u l l (v m m u k ) = (u l l v m )( m u k )+u l v m l m u k lemma Felhasználjuk, hogy l m u k = R k lpm up + m l u k és úgy választjuk, hogy D ds uk = 0, akkor azt kapjuk, hogy D 2 v k ( ds 2 = Rlpm k ul u p) v m

18 Riemann-tenzor fizikai jelentése IV. R kmql 0 akkor és csak akkor, ha választható olyan koordinátázás, hogy a metrikus tenzor konstans legyen, vagyis sík geometrián vagyunk! Riemann-tenzor szimmetriái: R kmql = R qmkl = R klqm R kmql = R mklq R kmql + R klmq + R kqlm = 0 p R kmql + m R klqp + l R kpqm = 0 n dimenzióban a görbületi-tenzornak n2 (n 2 1) 12 független komponense van a szimmetriái miatt. 4D-ben ez 20 komponenst jelent, 2D-ben pedig 1 szám.

19 Vezessünk be néhány később még fontos fogalmat: Ricci-tenzor: R lm = R k klm Ricci-skalár: R = R k k Két dimenzióban éppen a Ricci-skalár az a szám, ami jellemzi a görbületet, és ez éppen kétszerese a Gauss-görbületnek, ami a felület egy adott pontjában a két főgörbület reciprokának a szorzata.

20 Sík (merőleges koordinátázással): ds 2 = dx 2 + dy 2 ( ) 1 0 g ij = Γ = 0 R = 0 0 1

21 Sík (polár koordinátázással): g ij = ds 2 = dr 2 + r 2 dϕ 2 ) g ij = ( r 2 ( r 2 r g ϕϕ = 2r és r g ϕϕ = 2 r 3 Kis számolással megmutatható, hogy: ) R i j = 0 R = 0

22 Hengerfelület: g ij = ds 2 = ϱ 2 dϕ 2 + dz 2 ) g ij = ( ϱ ( 1 ϱ Mivel a metrikus tenzor konstans, így minden deriváltja nulla Γ = 0 Rj i = 0 R = 0, vagyis a henger nem görbült, más szóval kiteríthető síkká. Ugyan ez megmutatható a kúpfelületről is. Kúpfelület (ds 2 = dr 2 + r 2 sin 2 ϕ c dϑ 2 ) metrikus tenzora: ( ) 1 0 g ij = 0 r 2 sin 2 ϕ c )

23 Gömb felület: ds 2 = rc 2 dϑ 2 + rc 2 sin 2 ϑdϕ 2 ( ) g ij = rc sin 2 g ij = 1 ( 1 0 ϑ rc sin 2 ϑ Számítsunk ki néhány mennyiséget: ϑ g ϕϕ = 2r 2 c sin ϑ cos ϑ ϑ g ϕϕ = 2 cos ϑ r 2 c sin 3 ϑ Γ ϑ ϕϕ = sin ϑ cos ϑ Γ ϕ ϑϕ = Γϕ ϕϑ = cos ϑ sin ϑ ϑ Γ ϑ ϕϕ = sin 2 ϑ cos 2 ϑ ϑ Γ ϕ ϑϕ = ϑγ ϕ ϕϑ cos2 ϑ R ij = ( sin 2 ϑ ) R = 2K = 2 r 2 c ) sin 2 ϑ 1

24 Köszönöm a figyelmet! Felhasznált irodalom: Reed College - Physics Classical Mechanics II/Lecture 13 academic.reed.edu/physics/courses/physics411/html/page2/files/lecture.13.pdf Sean M. Carrol - Lecture Notes on General Relativity/Lecture 3 preposterousuniverse.com/grnotes/grnotes-three.pdf Gerard t Hooft - Introduction to General Relativity Matthias Blau - Lecture Notes on General Relativity L.D.Landau-E.M.Lifsic - Elméleti fizika II Valek Béla - Általános Relativitáselmélet

Bevezetés a görbe vonalú geometriába

Bevezetés a görbe vonalú geometriába Bevezetés a görbe vonalú geometriába Metrikus tenzor, Christoffel-szimbólum, kovariáns derivált, párhuzamos eltolás, geodetikus Pr hle Zsóa A klasszikus térelmélet elemei (szeminárium) 2012. október 1.

Részletesebben

1. FELADATSOR. x = u + v 2, y = v + z 2, z = z. u y + z. u x + y. v x + y. v y + z. w x + y. w y + z

1. FELADATSOR. x = u + v 2, y = v + z 2, z = z. u y + z. u x + y. v x + y. v y + z. w x + y. w y + z 1. FELADATSOR 1-0: Írjuk le az R3 euklideszi tér Riemann-metrikáját az u, v, z koordináták használatával, ahol x = u + v, y = v + z, z = z. Megoldás. (L. Gy.) 1. változat: Az eredeti metrika a x, x x,

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

Riemanngeometria 1 c. gyakorlat A Riemann-terekkel kapcsolatos fogalmak, jelölések

Riemanngeometria 1 c. gyakorlat A Riemann-terekkel kapcsolatos fogalmak, jelölések A Riemann-terekkel kapcsolatos fogalmak, jelölések Az R m euklideszi tér természetes bázisának az e 1 = (1, 0,..., 0),..., e m = (0,..., 0, 1) vektorokból álló bázist mondjuk. Legyen M egy összefügg nyílt

Részletesebben

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó

Részletesebben

Friedmann egyenlet. A Friedmann egyenlet. September 27, 2011

Friedmann egyenlet. A Friedmann egyenlet. September 27, 2011 A September 27, 2011 A 1 2 3 4 A 1 2 3 4 A Robertson-Walker metrika Konvenció: idő komponenseket 4. helyre írom. R-W metrika: R(t) 2 0 0 0 1 kr 2 g = 0 R(t) 2 0 0 0 0 R(t) 2 r 2 sin 2 (Θ) 0 0 0 0 1 Ugyanez

Részletesebben

= e i1 e ik e j 1. tenzorok. A k = l = 0 speciális esetben e az R egységeleme. A. e q 1...q s. = e j 1...j l q 1...q s

= e i1 e ik e j 1. tenzorok. A k = l = 0 speciális esetben e az R egységeleme. A. e q 1...q s. = e j 1...j l q 1...q s 3. TENZORANALÍZIS Legyen V egy n-dimenziós vektortér, V a duális tere, T (k,l) V = V V V V a (k, l)-típusú tenzorok tere. Megállapodás szerint T (0,0) V = R (általában az alaptest). Ha e 1,..., e n V egy

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

3. FELADATSOR. n(n 1) Meggondolható, hogy B képtere az összes alternáló 4-lineáris függvény tere, magja pedig R. Hesse(f)(X, Y ) = X(Y (f)) X Y (f).

3. FELADATSOR. n(n 1) Meggondolható, hogy B képtere az összes alternáló 4-lineáris függvény tere, magja pedig R. Hesse(f)(X, Y ) = X(Y (f)) X Y (f). 011/1 I. félév 3. FELADATSOR 3-1: Legyen R T 0,4 V az algebrai görbületi tenzorok tere az n-dimenziós V vektortér felett. Mennyi R dimenziója? Mennyi a 0 Ricci-tenzorú görbületi tenzorok terének dimenziója?

Részletesebben

Az Einstein egyenletek alapvet megoldásai

Az Einstein egyenletek alapvet megoldásai Friedmann- és Schwarzschild-megoldás Klasszikus Térelméletek Elemei Szeminárium, 2016. 11. 30. Vázlat Einstein egyenletek Robertson-Walker metrika és a tökéletes folyadékok energia-impulzus tenzora Friedmann

Részletesebben

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek 1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és

Részletesebben

Serret-Frenet képletek

Serret-Frenet képletek Serret-Frenet képletek Vizsgáljuk meg az e n normális- és e b binormális egységvektorok változását. e n = αe t + βe n + γe b, e t e n e n = 1 e n e n = 0 β = 0 e n e t = e n e t illetve a α = 1/R. Ugyanakkor

Részletesebben

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P

Részletesebben

METRIKA. 2D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva:

METRIKA. 2D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva: METRIKA D sík, két közeli pont közötti távolság, Descartes-koordinátákkal felírva: dl = dx + dy Általános alak ha nem feltétlenül Descartes-koordinátákat használunk: dl =... dx 1 +... dx +...dx 1 dx +...dx

Részletesebben

Gravitációs fényelhajlás gömbszimmetrikus téridőkben

Gravitációs fényelhajlás gömbszimmetrikus téridőkben SZEGEDI TUDOMÁNYEGYETEM Természettudományi és Informatikai Kar ELMÉLETI FIZIKA TANSZÉK Fizika BSc Szakdolgozat Gravitációs fényelhajlás gömbszimmetrikus téridőkben Deák Bence Témavezető: Dr. Keresztes

Részletesebben

Az elméleti fizika alapjai házi feladat

Az elméleti fizika alapjai házi feladat Az elméleti fizika alapjai házi feladat A jellel ellátott feladatok opcionálisak és plusz pontot érnek. A határidőn túl leadott házi feladatok is pontot érnek, még ha kevesebbet is. Pl. az 1. házi feladat

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő

Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő 1 / 32 Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő Fodor Gyula MTA KFKI Részecske- és Magfizikai Kutatóintézet Integrálhatóság Nyári Iskola Budapest, 2008 augusztus 25 Bevezetés 2 / 32

Részletesebben

Analízis III. gyakorlat október

Analízis III. gyakorlat október Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

TENZORSZÁMÍTÁS INDEXES JELÖLÉSMÓDBAN

TENZORSZÁMÍTÁS INDEXES JELÖLÉSMÓDBAN Kozák Imre Szeidl György TENZORSZÁMÍTÁS INDEXES JELÖLÉSMÓDBAN Második, bővített kiadás MISKOLC 2013 Kozák Imre Szeidl György TENZORSZÁMÍTÁS INDEXES JELÖLÉSMÓDBAN Második, bővített kiadás MISKOLC 2013

Részletesebben

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Tasnádi Tamás 2014. szeptember 11. Kivonat A tárgy a BME Fizika BSc szak kötelező, alapozó tárgya a képzés 1. félévében. A tárgy

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 7 VII VEkTORANALÍZIS 1 ELmÉLETI ALAPOk Az u függvényt skalár-vektor függvénynek nevezzük, ha értelmezési tartománya a háromdimenziós tér vektorainak halmaza, a függvényértékek

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes

Részletesebben

Geometriai alapok Felületek

Geometriai alapok Felületek Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus

Részletesebben

mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati

mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati ϕ t + j ϕ = 0 mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati sűrűsége j ϕ - a ϕ-hez tartozó áramsűrűség j ϕ = vϕ + j rev + j irr vϕ - advekció j rev - egyéb reverzibilis áram

Részletesebben

u u IR n n = 2 3 t 0 <t T

u u IR n n = 2 3 t 0 <t T IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε

Részletesebben

Szakdolgozat. Geodetikusok görbületének és torziójának vizsgálata a Sol homogén 3-geometriában. Virosztek Dániel. Konzulens:

Szakdolgozat. Geodetikusok görbületének és torziójának vizsgálata a Sol homogén 3-geometriában. Virosztek Dániel. Konzulens: Szakdolgozat Geodetikusok görbületének és torziójának vizsgálata a Sol homogén 3-geometriában Virosztek Dániel Konzulens: Dr. Szilágyi Brigitta adjunktus Geometria Tanszék, BME Matematika Intézet BME 211

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

1. Algebra Elemek Műveletek. Tenzor algebra és analízis Einstein-féle konvencióval

1. Algebra Elemek Műveletek. Tenzor algebra és analízis Einstein-féle konvencióval Indexes deriválás Tenzor algebra és analízis Einstein-féle konvencióval Készítette: Kómár Péter, 200 Az indexes írásmód ill. deriválás egy eszköz, amely tenzorok analízisét teszi egyszerűbbé a fizikai

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

A klasszikus mechanika matematikai módszerei

A klasszikus mechanika matematikai módszerei A klasszikus mechanika matematikai módszerei Házi feladatok 2015/16 tavasz A feladatok közül szabadon lehet választani. Az összpontszám alapján alakul ki az érdemjegy a szokásos ponthatárokkal: 40-55-70-85.

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

Kevert állapoti anholonómiák vizsgálata

Kevert állapoti anholonómiák vizsgálata Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Vontatás III. A feladat

Vontatás III. A feladat Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat

Részletesebben

A dobó-topa-transzformáció egy újabb tulajdonságáról

A dobó-topa-transzformáció egy újabb tulajdonságáról Dobó Andor A dobó-topa-transzformáció egy újabb tulajdonságáról Az [1]-ben említést tettünk az affin transzformációk néhány fontosabb alcsoportjáról. Az alábbiakban ezekhez tartozóan bevezetünk egy újabb

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015 Rugalmasságtan Műszaki Mechanikai Intézet attila.baksa@uni-miskolc.hu Miskolci Egyetem 2015 Egyenletek a hengerkoordináta-rendszerben (HKR) SP = OQ = r z QP = z e r = cos ϕ e x + sin ϕ e y e ϕ = sin ϕ

Részletesebben

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n. 1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az

Részletesebben

ERŐ-E A GRAVITÁCIÓ? 1. példa:

ERŐ-E A GRAVITÁCIÓ? 1. példa: ERŐ-E A GRAVITÁCIÓ? 1 Inerciarendszer (IR): olyan vonatkoztatási r rendszer, ahol érvényes Newton első törvénye ( F e = 0 " a r = 0) 1. példa: ez pl. IR (Newton és Einstein egyetért) Inerciarendszerben

Részletesebben

A Descartes derékszög½u koordinátarendszert az i; j; k ortonormált bázis feszíti ki. Egy

A Descartes derékszög½u koordinátarendszert az i; j; k ortonormált bázis feszíti ki. Egy 8 Görbevonalú koordináták A Descartes derékszög½u koordinátarendszert az i; j; k ortonormált bázis feszíti ki. Egy tetsz½oleges pont helyvektora ebben a bázisban r =xi+yj+zk ahol x; y; z a pont ún. Descartes-féle

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Görbék, felületek Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 20 TARTALOMJEGYZÉK 0.0.. Serret-Frenet képletek.........................

Részletesebben

Áramlások fizikája

Áramlások fizikája Bene Gyula Eötvös Loránd Tudományegyetem, Elméleti Fizikai Tanszék 7 Budapest, Pázmány Péter sétány /A 6. Előadás 6.. smétlés Példák a konform leképezések alkalmazására: áramlás sarok/él körül, áramlás

Részletesebben

Wigner tétele kvantummechanikai szimmetriákról

Wigner tétele kvantummechanikai szimmetriákról Szegedi Tudományegyetem, Bolyai Intézet és MTA-DE "Lendület" Funkcionálanalízis Kutatócsoport, Debreceni Egyetem 2014. Október 30. Elméleti Fizika Szeminárium A tétel története Wigner tétele Tétel Legyen

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

MUNKA- ÉS ENERGIATÉTELEK

MUNKA- ÉS ENERGIATÉTELEK MUNKA- ÉS ENERGIAÉELEK 1. előadás: Alapfogalmak; A virtuális elmozdulások tétele 2. előadás: Alapfogalmak; A virtuális erők tétele Elmozdulások számítása a virtuális erők tétele alapján 3. előadás: Az

Részletesebben

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 13. Előadás

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 13. Előadás Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 13. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2009. december 7. Gráfok sajátértékei Definíció. Egy G egyszerű gráf sajátértékei az A G

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

Modern differenciálgeometria Sokaságok és a Riemann-geometria elemei Szilasi József

Modern differenciálgeometria Sokaságok és a Riemann-geometria elemei Szilasi József Modern differenciálgeometria Sokaságok és a Riemann-geometria elemei Szilasi József DE, Matematikai Intézet 2015-16. 2. félév Tartalomjegyzék Panoráma 0 Jelölések, megállapodások, előismeretek 1 Sima sokaságok

Részletesebben

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól Ellipsis.tex, February 9, 01 Az ellipszis Az ellipszis leírása Az ellipszis szerkesztése és tulajdonságai Az ellipszis kanonikus egyenlete A kör vetülete ellipszis Az ellipszis polárkoordinátás egyenlete

Részletesebben

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Merev test mozgása Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 011 TARTALOMJEGYZÉK 0.1. Alapfogalmak,jelölések............................

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy

Részletesebben

Klasszikus differenciálgeometria

Klasszikus differenciálgeometria Klasszikus differenciálgeometria Verhóczki László Eötvös Loránd Tudományegyetem Természettudományi Kar 2013 Tartalomjegyzék Bevezető 3 1. Alapfogalmak és tételek a geometriából és az analízisből 5 1.1.

Részletesebben

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény. Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13.

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13. 2015 május 13. Kétváltozós függvény kettősintegráljának definíciója Legyen f (x, y), R 2 R korlátos függvény egy T korlátos és mérhető területű tartományon. Vegyük a T tartomány egy felosztását T 1, T

Részletesebben

Skalár: egyetlen számadattal (+ mértékegység) jellemezhető mennyiség. Azonos dimenziójú skalár mennyiségek - mértékegység-konverzió után -

Skalár: egyetlen számadattal (+ mértékegység) jellemezhető mennyiség. Azonos dimenziójú skalár mennyiségek - mértékegység-konverzió után - 1 ALAPFOGALMAK Vektoranalízis 1. Alapfogalmak Skalár: egyetlen számadattal (+ mértékegység) jellemezhető mennyiség. Azonos dimenziójú skalár mennyiségek - mértékegység-konverzió után - összehasonlíthatóak

Részletesebben

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

n m db. szám a i R Lehet a k, vagy a α. i, α szabad index a ij két indexű mennyiség (i sor index, j oszlop index) a ib j

n m db. szám a i R Lehet a k, vagy a α. i, α szabad index a ij két indexű mennyiség (i sor index, j oszlop index) a ib j a R 1 db. szám a 1, a 2,..., a n {a i} i=1,n a i R Lehet a k, vagy a α. i, α szabad index a 11 a 12... a 1m a 21 a 22... a 2m........ a n1 a n2... a nm {a ij} i=1,n,j=1,m R a ij két indexű mennyiség (i

Részletesebben

Geodetikus gömbök metszetér l. Horváth Márton

Geodetikus gömbök metszetér l. Horváth Márton Geodetikus gömbök metszetér l doktori értekezés Horváth Márton Témavezet : Csikós Balázs tanszékvezet egyetemi docens a matematikai tudományok kandidátusa Matematika Doktori Iskola iskolavezet : Laczkovich

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

24 műhold (6 pályasíkban 4-4) & % ( )M * 26600km. T m. # 3870 m v m "1.29 #10 $5. # 460 m T a s

24 műhold (6 pályasíkban 4-4) & % ( )M * 26600km. T m. # 3870 m v m 1.29 #10 $5. # 460 m T a s A GPS-nél fellépő relativisztikus effektusok. 4 műhold 6 pályasíkban 4-4 T m = 1 óra " Mm r m = mr m % T m T r m = m % M * 66km " v m [ m s ] = r m" 87 m v m "1.9 1 5 T m s Az Egyenlítőn álló vevőkészülék:

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest. 2015. június 20.

Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest. 2015. június 20. A görbületek világa 1 Kristály Sándor Babeş-Bolyai Tudományegyetem, Kolozsvár & Óbudai Egyetem, Budapest 2015. június 20. 1 Az MTA Bolyai János Kutatói Ösztöndíj által támogatott kutatás. Eukleidészi világnézet

Részletesebben

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét!

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! 5. gyakorlat Lineáris leképezések Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! f : IR IR, f(x) 5x Mit rendel hozzá ez a függvény két szám összegéhez? x, x IR, f(x +

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

7. GRAVITÁCIÓS ALAPFOGALMAK

7. GRAVITÁCIÓS ALAPFOGALMAK 7. GRAVITÁCIÓS ALAPFOGALMAK A földi nehézségi erőtérnek alapvetően fontos szerepe van a geodéziában és a geofizikában. A geofizikában a Föld szerkezetének tanulmányozásában és különféle ásványi nyersanyagok

Részletesebben

A hullámegyenlet megoldása magasabb dimenziókban

A hullámegyenlet megoldása magasabb dimenziókban A hullámegyenlet megoldása magasabb dimenziókban Orbán Ágnes Fábián Gábor Kolozsi Zoltán 2009. október 29. A hullámegyenlet Hullámegyenletnek nevezzük a következ lineáris parciális dierenciálegyenletet:

Részletesebben

Eötvös Loránd Tudományegyetem

Eötvös Loránd Tudományegyetem Eötvös Loránd Tudományegyetem Természettudományi Kar Matematikai Intézet Az n-dimenziós hiperbolikus tér izometria csoportjának konjugált osztályai SZAKDOLGOZAT Szerző Harsányi Tamás Témavezető: Szeghy

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően

Részletesebben

O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 )

O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 ) 1. feladat Írjuk föl a következő vektorokat! AC, BF, BG, DF, BD, AG, GB Írjuk föl ezen vektorok egységvektorát is! a=3 m b= 4 m c= m Írjuk föl az egyes pontok koordinátáit: O ( 0, 0, 0 ) A ( 4, 0, 0 )

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854): " ' #$ * $ ( ' $* " ' #µ

Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854):  ' #$ * $ ( ' $*  ' #µ Emlékeztető: az -dimeziós sokaság görbültségét kifejező meyiség a Riema-tezor (Riema, 1854: ' ( ' $ ' #µ $ µ# ahol a ú. koexiós koefficiesek (vagy Christoffel-szimbólumok a metrikus tezor g # x $ kompoeseiből

Részletesebben

Mit l kompatibilis az alakváltozás?

Mit l kompatibilis az alakváltozás? Mit l kompatibilis az alakváltozás? On the compatibility conditions of nite deformations PERE Balázs, PhD, egyetemi docens Széchenyi István Egyetem, 9026 Gy r, Egyetem tér 1., e-mail: perebal@sze.hu Abstract

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

Végeselem modellezés alapjai 1. óra

Végeselem modellezés alapjai 1. óra Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,

Részletesebben