v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M"

Átírás

1 Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P MV, M = m A V = P M = állandó (2) sebességre P = 0. mndg létezk egy olyan K vonatkoztatás rendszer, melyben a rendszer mpulzusa nulla (nyugalomban van). V a mechanka rendszer egységes egészként való mozgásának sebessége.

2 Pontrendszer tömegközéppontja ( N =1 m r ) V = d dt M Legyen a rendszer N =1 R m r, M ún. tömegközéppont vektora V = Ṙ a tömegközéppont állandó sebességvektora. R Vt = R 0. Ez a pontrendszer újabb három prmntegrálját adja.

3 Pontrendszer energája W (C AB ) = B A B (F + j f j ) dr = m v v dt = m 2 B B A m v dr = = d(v 2 ) = A A = T (B) T (A), ahol T = 1 m v 2 2 Mképpen vselkedk a T a különböző vonatkoztatás rendszerekben? (1) Galle-transzformácót követően K -ben... T = 1 m v 2 1 = m v m V = T + MV 2 P V 2 m v V = (3)

4 Legyen K a tömegközéppont vonatkoztatás rendszer, azaz V = P/M a rendszer, mnt egész, nyugalomban van E b T belső energa T = MV E b, ahol V a tömegközéppont sebesség Koeng másodk tétele.

5 Legyenek az erők konzervatívak, F = U, f j = j U j ( r r j ) azaz f j d(r r j ) = du j ( r r j ),j B A B A f j dr = 1 2 F dr =,j B A B A U dr = (f j dr + f j dr j ) = 1 2,j B A 2 U, ntegrál független az úttól. A rendszer teljes potencáls energája : U = U ( r ) + 1 U j ( r r j ) 2 j 1 f j d(r r j ) A teljes energa : T + U = E = állandó

6 Pontrendszer mpulzusnyomatéka dj dt = = = = dj dt = d dt (r p ) = ṙ p + r ṗ }{{} = =0 r F + r f j = r F + 1 (r f j + r j f j ) = 2,j,j r F + 1 (r r j ) f j = r F = 2 }{{},j =0 M = M A teljes mpulzusnyomaték megmaradásának tétele : Ha a rendszere ható eredő M erőnyomaték nulla, akkor a rendszer J teljes mpulzusnyomatéka állandó.

7 Impulzusnyomaték eltolás esetén Az mpulzusnyomaték függ a koordnáta-rendszer kezdőpontjának megválasztásától. Olyan koordnáta-rendszerekben, amelyeknek kezdőpontja a távolságra van egymástól: r = r + a J = r p = r p + a p, J = J + a P. Abban az esetben nem függ a koordnáta-rendszer kezdőpontjának a megválasztásától, ha az anyag rendszer mnt egységes egész nyugalomban van (azaz P = 0).

8 Impulzusnyomaték sebességeltolás esetén Egymáshoz képest V sebességgel mozgó K és K nercarendszerek v = v + V J = m r v = m r v + m r V. J = J + MR V. (4) Ha K a rendszer mnt egységes egész nyugalomban van, akkor Va tömegközéppont sebessége J = J + R P. (5) a mechanka rendszer mpulzusnyomatéka két részből tehető össze: a rendszer saját mpulzusnyomatéka abban a vonatkoztatás rendszerben, amelyben nyugalomban van a másk a rendszernek mnt egésznek a mozgásából adódó R P mpulzusnyomaték.

9 Görbék Háromdmenzós eukldesz tér, P pont helyzete egy rögzített O ponthoz vszonyítva OP = r helyvektor. A vektor folytonosan függ egy w valós skalár paramétertől. Az r : [w 1, w 2] R R 3. Descartes- koordnáta rendszerben r(w) = x(w)e x + y(w)e y + z(w)e z = (x(w), y(w), z(w)), ahol e x, e y és e z a egységvektorok. A vektorfüggvény derváltja egy adott P pontban ṙ(w) dr(w) dw = lm r(w) w 0 w = lm r(w + w) r(w) = w 0 w = ẋ(w)e x + ẏ(w)e y + ż(w)e z A dervált s egy vektor, mely érntő a görbéhez a P pontban. 1. d dw (a b) = ȧ b + a ḃ 2. d (a b) = ȧ b + a ḃ dw 3. d (ϕa) = ϕa + ϕȧ dw ahol ϕ = ϕ(w) egy skalár függvény.

10 A görbe mentén történő nfntezmáls elmozdulás (dw 0) dr = ṙdw = dxe x + dye y + dze z dl 2 = dr dr = dx 2 + dy 2 + dz 2 = ( ẋ 2 + ẏ 2 + ż 2) dw 2 = ṙ 2 dw 2. (6) elem ívhossz ṙ = dl dw A görbe P(w 1 ) és P(w 2 ) pontja között szakasz ívhossza l = w2 w 1 dl = Ha w = φ(u) bjektív megfeleltetés: w2 dr dw = r (u) φ (u) w 1 ṙ dw (7) dl 2 = ṙ 2 dw 2 = r 2 du 2 (8) ahol dw = φ (u)du. Következésképpen a (14) feĺırása az ívhossznak bármely paraméterezés esetén azonos alakú.

11 természetes paraméterezés: a paraméter a görbe egy adott pontjától számított ívhossz. u l: dl 2 = r (l) 2 dl 2 ahonnan tehát r (l) = dr(l) dl = 1, e t r (l) (9) az érntő rányába mutató (tangencáls) egységvektor. Vzsgáljuk az e t ívhossztól való függését. e 2 t = 1, ezért merőleges derváltjára: de 2 t dl = 2e te t = 0.

12 Bevezetve a e t rányába mutató e n egységvektort fennáll, hogy: e t e n = 0. e e t (l) e t (l) θ t = lm = e n lm = e n lm l 0 l l 0 l l 0 l = e n R, ahol R annak a körnek a sugara, amely a legjobban lleszkedk a görbéhez a P pontban. Tehát e n = Re t = Rr, (10) ahol 1 R G = lm e t (l) l 0 l a görbe görbülete, R a megfelelő görbület sugara, C a görbület középpont ( PC = Re n ). Az egyenesnek nncsen görbülete (G = 0 R = ), az R sugarú kör görbülete annak mnden pontjában G = 1/R=állandó és görbület középpontja a kör középpontja.

13 Egy görbe pontjahoz tartozó görbület középpontok mértan helye a görbe evolutája. r C = r P + PC = r P + Re n a görbe evolutájának nevezzük. A görbe evolvensének azt a görbét nevezzük melyet úgy kapunk, hogy a görbére felcsévélünk egy fonalat, majd mndg feszesen tartva lecsévéljük róla. Végpontjának pályája a görbe evolvensét írja le. Pl. A kör evolvense a csgavonal. Egy görbe evolutájának az evolvense maga a görbe.

14 Az e t és e n egységvektorok által kfeszített síkra merőleges,bnormálsnak nevezett e b egységvektor: e b = e t e n (11) e t, e n, e b a görbe adott pontjához kötött lokáls koordnátarendszer, az ún. Frenet-féle tréder. Páronként a következő síkokat határozzák meg: 1. e t, e n : a görbe adott pontjának smuló síkja. Síkgörbék mnden pontjának smulósíkja azonos. 2. e n, e b : a görbére merőleges normálsík. 3. e b, e t : rektfkáló sík. (16), (15) és (11) felhasználásával: e b = Rr r, 1 R = r r. (12)

15 Mvel r = ṙ dw dl és r = d ( ṙ dw ) ( ) 2 dw dw dw dl dl = r + ṙ d dl 2 dw ( ) 2 dw, dl ahonnan a görbület Kfejtést követően 1 R ṙ r = dl 3. dw (ẋ R ẏ 2 + ż 2) 3 = (ẏ z ÿż) 2 + (żẍ zẋ) 2 + (ẋÿ ẍẏ) 2 Gyakran találkozunk a z =állandó, y = y(x) típusú síkgörbékkel. Ebben az esetben ( ) 1 + ẏ 2 3 R 2 = ÿ 2

16 dl 2 = dr dr = dx 2 + dy 2 + dz 2 = ( ẋ 2 + ẏ 2 + ż 2) dw 2 = ṙ 2 dw 2. (13) w2 w2 l = dl = w 1 w 1 ṙ dw (14) e t r (l) (15) e n = Re t = Rr, (16) 1 R = r r. (17)

17 Alkalmazás: anyag pont knematkája A mozgástörvényt r = r(t), t [t 1, t 2 ] alakban adjuk meg, ahol t az dőt jelöl. Az anyag pont sebességvektora (13) és (14) felhasználásával v ṙ = dr dt, (18) v = ve t, ahol v v = ẋ 2 + ẏ 2 + ż 2 = dl dt. Az anyag pont gyorsulása a dv dt = v = d 2 r = r (19) dt2

18 (18) alapján Mvel ezért a = a t + a n, ahol a = ve t + ve t = ė t = de t dl dl dt = e n R v, a t = ve t, és a n = v 2 R e n. a pont érntő- lletve normál centrpetáls gyorsulása. a = a = v 2 + v 4 R 2.

19 Síkmozgás: x, y Descartes- koordnátarendszer ρ, ϕ polárkoordnátákat: x = ρ cos ϕ, y = ρ sn ϕ. azaz ρ = x 2 + y 2 = r, tan ϕ = y x. Tehát r = xe x + ye y = r(cos ϕe x + sn ϕe y ) re r A sebesség polárkoordnátákban v = ṙe r + rė r v r e r + v ϕ e ϕ, ahol v r = ṙ, és v ϕ = ϕr, ugyanakkor e r = cos ϕe x + sn ϕe y, ė r = ϕe ϕ, e 2 r = e 2 ϕ = 1 e ϕ = sn ϕe x + cos ϕe y, ė ϕ = ϕe r, e ϕ = 0. (20) azaz a két új egységvektor s ortogonáls.

20 A gyorsulás a = v = v r e r + v r e r + v ϕ e ϕ + v ϕ e ϕ = a r e r + a ϕ e ϕ, ahol a (20) összefüggésekből a r = r r ϕ 2, a ϕ = r ϕ + 2ṙ ϕ = 1 r d ( r 2 ϕ ) dt A v r és a r radáls sebesség lletve gyorsulás, a v ϕ és a ϕ pedg azmutáls megfelelők. Másodrendű dfferencálegyenletrendszer, r(t 0 ) = r 0 és v(t 0 ) = v 0 kezdet feltételek. Adott a(t) gyorsulás esetén: t τ r(t) = r(t 0 ) + v(t 0 )(t t 0 ) + dτ dτ a(τ ). t 0 t 0 Sok esetben: r = a(t, r, v), analtkus vagy numerkus módszer révén kapható meg.

21 Terület sebesség A pont helyzetvektora a dr elem elmozdulás során egy df = 1 2 r dr felületet súrol. Az terület sebesség Ḟ = 1 2 r v, (21) Ḟ = 1 2 (xẏ yẋ) = 1 2 r 2 ϕ (22) Mvel d (r v) = r a, dt radáls gyorsulás esetén (r a) a (21) terület sebesség állandó. egy egyszerűen összetett D tartomány területe kfejezhető a pereme mentén végzett ntegrállal: F (D) = 1 xdy ydx. 2 D

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Görbék, felületek Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 20 TARTALOMJEGYZÉK 0.0.. Serret-Frenet képletek.........................

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

Serret-Frenet képletek

Serret-Frenet képletek Serret-Frenet képletek Vizsgáljuk meg az e n normális- és e b binormális egységvektorok változását. e n = αe t + βe n + γe b, e t e n e n = 1 e n e n = 0 β = 0 e n e t = e n e t illetve a α = 1/R. Ugyanakkor

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

A tárgy neve Meghirdető tanszék(csoport) Felelős oktató: Kredit Heti óraszám típus Számonkérés Teljesíthetőség feltétele Párhuzamosan feltétel

A tárgy neve Meghirdető tanszék(csoport) Felelős oktató: Kredit Heti óraszám típus Számonkérés Teljesíthetőség feltétele Párhuzamosan feltétel tárgy neve MTEMTIKI MÓDZEREK FIZIKÁBN. Megrdető tanszékcsoport ZTE TTK Elmélet Fzka Tanszék Felelős oktató: Dr. Gyémánt Iván Kredt 4 Het óraszám + típus Előadás+gyakorlat zámonkérés Kollokvum+gyakorlat

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy

Részletesebben

Fizika 1 Mechanika órai feladatok megoldása 7. hét

Fizika 1 Mechanika órai feladatok megoldása 7. hét Fizika 1 Mechanika órai feladatok megoldása 7. hét Az F erő által végzett munka, ha a test adott pályán mozog az r 1 helyvektorú P 1 pontból az r helyvektorú P pontba, az alábbi vonalintegrállal számolható:

Részletesebben

1 2. Az anyagi pont kinematikája

1 2. Az anyagi pont kinematikája 1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni

Részletesebben

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy

Részletesebben

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek 1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Matematika M1 1. zárthelyi megoldások, 2017 tavasz

Matematika M1 1. zárthelyi megoldások, 2017 tavasz Matematka M. zárthely megoldások, 7 tavasz A csoport Pontozás: + 7 + 7 + 7) + 3 + 6 5 pont.. Lehet-e az ux, y) e 3x cos3y) kétváltozós valós függvény egy regulárs komplex függvény valós része? Ha gen,

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 7 VII VEkTORANALÍZIS 1 ELmÉLETI ALAPOk Az u függvényt skalár-vektor függvénynek nevezzük, ha értelmezési tartománya a háromdimenziós tér vektorainak halmaza, a függvényértékek

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes

Részletesebben

Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium

Szeminárium. Kaposvári István október 01. Klasszikus Térelmélet Szeminárium Klasszikus Térelmélet 2012. október 01. Tartalom: Jelölések bevezetése Kovariáns deriváltak kommutátora és a Riemann-tenzor Vektor megváltozása zárt görbe mentén Riemann-tenzor és a Stokes-tétel Geodetikus

Részletesebben

2 óra szeminárium, kedd 10 óra, 3/II terem. Elektronikus anyag: comodi.phys.ubbcluj.ro/elmeletifizika

2 óra szeminárium, kedd 10 óra, 3/II terem. Elektronikus anyag: comodi.phys.ubbcluj.ro/elmeletifizika Tematika: AZ ELMÉLETI FIZIKA ALAPJAI Kódszám: FLM1303 Kreditszám: 6 Órarend:3 óra előadás, hétfő 10 óra, 243A. terem 2 óra szeminárium, kedd 10 óra, 3/II terem Oktató: Lázár Zsolt József adjunktus főépület

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

Vontatás III. A feladat

Vontatás III. A feladat Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat

Részletesebben

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Az elméleti mechanika newtoni alapjai Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 2011 TARTALOMJEGYZÉK 1. El szó 7 2. Newton törvényei

Részletesebben

,...,q 3N és 3N impulzuskoordinátával: p 1,

,...,q 3N és 3N impulzuskoordinátával: p 1, Louvlle tétele Egy tetszőleges klasszkus mechanka rendszer állapotát mnden t dőpllanatban megadja a kanónkus koordnáták összessége. Legyen a rendszerünk N anyag pontot tartalmazó. Ilyen esetben a rendszer

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13.

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13. 2015 május 13. Kétváltozós függvény kettősintegráljának definíciója Legyen f (x, y), R 2 R korlátos függvény egy T korlátos és mérhető területű tartományon. Vegyük a T tartomány egy felosztását T 1, T

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

A fenti funkcionál variációjakor a jobboldali két állandó eltűnik, tehát

A fenti funkcionál variációjakor a jobboldali két állandó eltűnik, tehát Vannak olyan esetek, amkor az F alapfüggvény alakjában eszközölt változtatások egyáltalán nem módosítják az Euler-Lagrange egyenletet. 1. Mvel az egyenlet lneárs F -ben, tetszőleges F = c F többszöröse

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Merev test mozgása Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 011 TARTALOMJEGYZÉK 0.1. Alapfogalmak,jelölések............................

Részletesebben

Felületek differenciálgeometriai vizsgálata

Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai értelemben Felület: Olyan alakzat, amely előállítható az (u,v) sík egy összefüggő tartományán értelmezett r(u,v) kétparaméteres

Részletesebben

A dinamikus geometriai rendszerek használatának egy lehetséges területe

A dinamikus geometriai rendszerek használatának egy lehetséges területe Fejezetek a matematika tanításából A dinamikus geometriai rendszerek használatának egy lehetséges területe Készítette: Harsányi Sándor V. matematika-informatika szakos hallgató Porcsalma, 2004. december

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

FIZIKA. Sörlei József (Zalaegerszeg) szerző: BME Gépészmérnöki Kar. főiskolai szintű képzés. kísérleti jegyzet

FIZIKA. Sörlei József (Zalaegerszeg) szerző: BME Gépészmérnöki Kar. főiskolai szintű képzés. kísérleti jegyzet FIZIKA BME Gépészmérnök Kar főskola szntű képzés kísérlet jegyzet szerző: Sörle József (Zalaegerszeg) Mechanka. Knematka.. Matematka alapsmeretek Koordnátarendszerek Egy geometra pont helyét ll. mozgását

Részletesebben

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév)

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) Dinamika Pontszám 1. A mechanikai mozgás fogalma (1) 2. Az anyagi pont pályája (1) 3. A mozgástörvény

Részletesebben

Analízis II. gyakorlat

Analízis II. gyakorlat Analízis II. gyakorlat Németh Adrián 4. január 7. Tartalomjegyzék Előszó.................................................... Ismétlés................................................... Integrálás...............................................

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

r a sugara, h a magassága a hengernek a maximalizálandó függvényünk a V (r, h) = πr 2 h. Az érintkezési pontokban x 2 + y 2 = r 2 és z = h/2.

r a sugara, h a magassága a hengernek a maximalizálandó függvényünk a V (r, h) = πr 2 h. Az érintkezési pontokban x 2 + y 2 = r 2 és z = h/2. Feltételes szélsőérték Keressük úgy egy kétváltozós f (x, y) függvény szélsőértékét, hogy közben eleget tegyünk egy másik, g(x, y) = 0 típusú megszorításnak. Példa Határozzuk meg egy forgásellipszoidba

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N IPULZUS OENTU Impulzusnyomaték, perdület, jele: N Definíció: Az (I) impulzussal rendelkező test impulzusmomentuma egy tetszőleges O pontra vonatkoztatva: O I r m Az impulzus momentum vektormennyiség: két

Részletesebben

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008 Égi mechanika tesztkérdések A hallgatók javaslatai 2008 1 1 Albert hajnalka 1. A tömegközéppont körüli mozgást leíró m 1 s1 = k 2 m 1m 2 r,m s r 2 r 2 2 = k 2 m 1m 2 r r 2 r mozgásegyenletek ekvivalensek

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n. 1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az

Részletesebben

Vektoranalízis Vektor értékű függvények

Vektoranalízis Vektor értékű függvények VS Vektor értékű üggvények VS A korábbi ejezetekben tanulmányoztuk azokat a üggvényeket, amelyek értékkészlete a valós számok halmazának egy részhalmaza. Ezek egyrészt az R R típusú egyváltozós, valós

Részletesebben

A bifiláris felfüggesztésű rúd mozgásáról

A bifiláris felfüggesztésű rúd mozgásáról 1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.

Részletesebben

Hajder Levente 2017/2018. II. félév

Hajder Levente 2017/2018. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer

Részletesebben

Vektoranalízis Vektor értékű függvények

Vektoranalízis Vektor értékű függvények Vektoranalízis VS Vektoranalízis Vektor értékű üggvények A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK engedélyével használhatók el! Vektoranalízis VS A korábbi ejezetekben tanulmányoztuk

Részletesebben

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15 Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont

Részletesebben

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein.

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein. Fzka I. Dr. Gugolya Zoltán egyete adjunktus Pannon Egyete Fzka Intézet N. ép. II. e. 39. szoba E-al: gug006@alos.ven.hu Tel: 88/64-783 Fzka I. Ajánlott rodalo: Vondervszt-Néeth-Szala: Fzka I. Veszpré Egyete

Részletesebben

ú Í ű ů ý ź ú ę ź ź ź ú ú ź źą ú ź ź ü ü ź ź ę Ĺ ź ü Ĺ ź ź ü ę ę ę ź ú ź źů ú ű ź

ú Í ű ů ý ź ú ę ź ź ź ú ú ź źą ú ź ź ü ü ź ź ę Ĺ ź ü Ĺ ź ź ü ę ę ę ź ú ź źů ú ű ź ź ü Ę ü ü Ĺ ü ť ü ú Í ü ź ú ź Í ú ű ü ź ź ü ź ú ů ü ű ď ü ü ę ű ű ź ú Ĺ ź ę ú ü ű ú Í ű ů ý ź ú ę ź ź ź ú ú ź źą ú ź ź ü ü ź ź ę Ĺ ź ü Ĺ ź ź ü ę ę ę ź ú ź źů ú ű ź ź ź ź ú ź ź ú ď ú ź ď ü ź ď ú Á ę ú ú

Részletesebben

Kalkulus 2., Matematika BSc 1. Házi feladat

Kalkulus 2., Matematika BSc 1. Házi feladat . Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben

Részletesebben

Mozgás centrális erőtérben

Mozgás centrális erőtérben Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

Differenciálgeometria feladatok

Differenciálgeometria feladatok Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R

Részletesebben

u u IR n n = 2 3 t 0 <t T

u u IR n n = 2 3 t 0 <t T IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε

Részletesebben

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy

Részletesebben

Elektromágnesség 1.versenyfeladatsor Varga Bonbien, VABPACT.ELTE

Elektromágnesség 1.versenyfeladatsor Varga Bonbien, VABPACT.ELTE . Feladat: Elektromágnesség.versenyfeladatsor Varga Bonbien, VABPACT.ELTE Akkor alakulhat ki egyenletes körmozgás, hogyha egy állandó nagyságú erő hat a q töltésre, és ez az erő biztosítja a körmozgáshoz

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomenergetikai alapismeretek 2. előadás Dr. Szieberth Máté Dr. Sükösd Csaba előadásanyagának felhasználásával Négyfaktor formula (végtelen kiterjedésű n-sokszorozó közeg) n Maghasadás (gyors neutronok)

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

Dierenciálgeometria feladatsor

Dierenciálgeometria feladatsor Dierenciálgeometria feladatsor 1. Görbék paraméterezése 1. Határozzuk meg az alábbi ponthalmazok egy paraméteres el állítását: a a, b középpontú, r sugarú kör a síkban; b y = mx + b egyenlettel leírt egyenes

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Analízis III. gyakorlat október

Analízis III. gyakorlat október Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben

Tehetetlenségi nyomatékok

Tehetetlenségi nyomatékok Tehetetlenségi nyomtékok 1 Htározzuk meg z m tömegű l hosszúságú homogén rúd tehetetlenségi nyomtékát rúd trtóegyenesét metsző tetszőleges egyenesre vontkozón, h rúd és z egyenes hjlásszöge α, rúd középpontjánk

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25) I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =

Részletesebben

1. Az előző előadás anyaga

1. Az előző előadás anyaga . Az előző előadás anyaga Egy fiú áll az A pontban és azt látja, hogy a barátnője fuldoklik a B pontban egy tóban. Milyen plyán kell a fiúnak mozognia, hogy a leggyorsabban a barátnőjéhez érjen, ha a parton

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

Koordinátarendszerek

Koordinátarendszerek Koordinátarendszerek KO 1 Koordinátarendszerek Ponthalmazok előállításai Koordinátarendszerek KO Két gyakran alkalmazott síkbeli koordinátarendszer Derékszögű (Descartes féle) koordinátarendszer Síkbeli

Részletesebben

Robotirányítási rendszer szimulációja SimMechanics környezetben

Robotirányítási rendszer szimulációja SimMechanics környezetben Robotrányítás rendszer szmulácója SmMechancs környezetben 1. A gyakorlat célja A SmMechancs szoftvereszköz megsmerése, alkalmazása robotka rendszerek rányításának szmulácójára. Két szabadságfokú kar PID

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

Merev test mozgása. A merev test kinematikájának alapjai

Merev test mozgása. A merev test kinematikájának alapjai TÓTH : Merev test (kbővített óraválat) Merev test mogása Eddg olyan dealált "testek" mogását vsgáltuk, amelyek a tömegpont modelljén alapultak E aal a előnnyel járt, hogy nem kellett foglalkon a test kterjedésével

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Egyenes és sík. Wettl Ferenc Wettl Ferenc () Egyenes és sík / 16

Egyenes és sík. Wettl Ferenc Wettl Ferenc () Egyenes és sík / 16 Egyenes és sík Wettl Ferenc 2012-09-20 Wettl Ferenc () Egyenes és sík 2012-09-20 1 / 16 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont távolsága 2 Sík Sík

Részletesebben

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29. A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /

Részletesebben

Budapesti Műszaki Főiskola, Neumann János Informatikai Kar. Vektorok. Fodor János

Budapesti Műszaki Főiskola, Neumann János Informatikai Kar. Vektorok. Fodor János Budapesti Műszaki Főiskola, Neumann János Informatikai Kar Lineáris algebra 1. témakör Vektorok Fodor János Copyright c Fodor@bmf.hu Last Revision Date: 2006. szeptember 11. Version 1.1 Table of Contents

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű

Részletesebben

d(f(x), f(y)) q d(x, y), ahol 0 q < 1.

d(f(x), f(y)) q d(x, y), ahol 0 q < 1. Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés

Részletesebben

1. NEWTONI POSZTULÁTUMOK ÉS ÉRTELMEZÉSÜK

1. NEWTONI POSZTULÁTUMOK ÉS ÉRTELMEZÉSÜK Bevezetés A mechanika történetében három nagy periódus különíthető el. Az első, átfogó kvalitatív vizsgálatokat jelentő hosszú periódus Kepler és Galilei munkásságával zárul. A második ún. kvantitatív

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben