2 óra szeminárium, kedd 10 óra, 3/II terem. Elektronikus anyag: comodi.phys.ubbcluj.ro/elmeletifizika

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2 óra szeminárium, kedd 10 óra, 3/II terem. Elektronikus anyag: comodi.phys.ubbcluj.ro/elmeletifizika"

Átírás

1 Tematika: AZ ELMÉLETI FIZIKA ALAPJAI Kódszám: FLM1303 Kreditszám: 6 Órarend:3 óra előadás, hétfő 10 óra, 243A. terem 2 óra szeminárium, kedd 10 óra, 3/II terem Oktató: Lázár Zsolt József adjunktus főépület 203. terem zsolt.lazar@phys.ubbcluj.ro Elektronikus anyag: comodi.phys.ubbcluj.ro/elmeletifizika 1. Vizsga (60%) Parciális (írásbeli) 50% (1.-7. előadások anyagából) Félév végi (írásbeli) 50% ( előadások anyagából). 2. Tevékenység (40%) Házi feladatok (70%) Felmérők (30%)

2 A tudomány módszerei A természetben ritkák az egyszerű folyamatok, többnyire több hatás keveredik. absztrakció (elvonatkoztatás) szükséges. Pl. Newton szerint a magukra hagyott testek egyenes vonalú egyenletes mozgást végeznek. Nehéz ilyen feltételeknek eleget tevő testet megfigyelni.

3 Megtalálni, mi lényeges, mi nem (megfigyelés) Kapcsolatot keresni a lényeges jellemzők között (megfigyelés) Általánosítani (logika) Megkeresni a talált törvény érvényességi körét (megfigyelés) Nem kielégítő eredmény esetén visszatérni valamely korábbi lépéshez. indukció Az indukció nem szavatolja az igazság megtalálását. Pl: Arisztotelész szerint minden mozgást élőlény kell, hogy elindítson. A mozgásnak lényeges jellemzője, hogy az azt végző rendszer élő vagy élettelen.

4 Simonyi Károly: A fizika kultúrtörténete, Akadémiai Kiadó (2011)

5 Simonyi Károly: A fizika kultúrtörténete, Akadémiai Kiadó (2011)

6 Simonyi Károly: A fizika kultúrtörténete, Akadémiai Kiadó (2011)

7 megismerés, megismételhető(!!), obiektív(!!) tapasztalat minőségi mennyiségi jellemzés. A mennyiségi jellemzés egyértelmű.

8 megismerés, megismételhető(!!), obiektív(!!) tapasztalat minőségi mennyiségi jellemzés. A mennyiségi jellemzés egyértelmű. A reáltudományok egyértelműségre törekszenek. MATEMATIKA

9 megismerés, megismételhető(!!), obiektív(!!) tapasztalat minőségi mennyiségi jellemzés. A mennyiségi jellemzés egyértelmű. A reáltudományok egyértelműségre törekszenek. MATEMATIKA matematika: két értelmezés i. a természet nyelve ii gondolkodásunk (agyunk) képessége mely csodálatos módon messzire jut a természet megértésében modellek: fizikai model matematikai model elméletek

10 Az előadás célja Elsősorban nem a mechanikai problémák leírása, hanem olyan módszereknek a megismerése melyek alkalmazhatósága a fizika összes/számos területére kiterjed: Lagrange és Hamilton formalizmus kontinuumok leírása több szabadságfokú rendszerek leírása perturbációszámítás (???) ütközések, szórások (???)

11 Amit nem feszegetünk világ szerkezete és működése automatikusan időt feltételez a tér jellemzői: euklideszi (korlátlan, kompakt valós vektortér, euklideszi metrikával) idő jellemzői: független a tértől, kauzalitás (a fizika minden területén), megfordíthatóság (mechanikában) vonatkoztatási rendszer

12 A peripatetikus dinamika Arisztotelész (i.e ) rendszerezte a dinamikai ismereteket. Sétálás közben (=peripatetomai) tanította tanítványait és ők írták le azt. Nem mondhatni túl sikeresnek az elmélet. Mégis vannak érdemei: Megpróbálta rendszerezni az ismereteket. Néhány területen (pl. emelők) jó eredményeket adott. Sajnos, sok évszázadig Arisztotelész tekintélye miatt nehéz volt túllépni rajta.

13 Alapgondolatok Az égi és a földi mozgások más természetűek: az égiek örökké tartanak, a földiek hamar megállnak. A földi tárgyak természetes állapota a nyugalom. A földi tárgyaknak megvan a természetes helye. Anyag építőelemei: 4 alapelem: föld, víz, levegő, tűz. A természet rendje: az előző sorrend alulról felfelé értendő. Mozgások típusai: Égi mozgások (mozgás az örök rend szerint körpályákon) Földi mozgások: élőlények mozgása természetes mozgás (a rend helyreálĺıtására törekvés) kényszerített mozgás

14 mozgástörvény Le nem írt alapegyenlet: sebesség Newton kb év múlva: ható ok ellenállás, dv dt = F m v F R Peripatetikus dinamika: a közegellenállásos végsebességre kvalitatíve jó kép. Mai jelöléssel: F e = F R v Végsebességnél F e = 0, azaz F = Rv, azaz az arisztotelészi dinamikánál vagyunk. Sok megoldatlan probléma. Pl. miért repül a nyílvessző, miután kilőtték Magyarázat: a levegő közvetíti a hatást. Teljesen téves, de nehéz cáfolni.

15 Newton törvényei Tömegpont (részecske) méretei elhanyagolhatók mozgásának leírása szempontjából. A tömegpont helyzete a térben r x, y, z Descartes-koordináták. v dr dt ṙ, a dr 2 dt 2 r a részecske sebessége illetve gyorsulása. Newton, 1687-ben, Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapjai) három törvény, melyek a részecskék mozgását irányítják. Vonatkoztatási rendszer = koordináta-rendszer + a rendszerhez rögzített órák együttese. A különböző vonatkoztatási rendszerekben általában különbözők a mozgástörvények. Olyan vonatkoztatási rendszert keresünk, amelyben a mechanikai törvények a legegyszerűbb alakúak.

16 Első főtörvény(a tehetetlenség elve) Minden magára hagyott test megőrzi nyugalmi állapotát vagy egyenesvonalú egyenletes mozgását. tehetetlenségi vonatkoztatási rendszer, másszóval inerciarendszer. Az inerciarendszerhez képest gyorsulva mozgó, vagy forgó vonatkoztatási rendszerek nem inerciarendszerek, mivel ezekben nem teljesül a tehetetlenség fenti törvénye. - magára hagyott test = messze van más testektől. Példa forgószínpad + teniszlabda ballisztikus pályája

17 Első főtörvény(a tehetetlenség elve) Minden magára hagyott test megőrzi nyugalmi állapotát vagy egyenesvonalú egyenletes mozgását. tehetetlenségi vonatkoztatási rendszer, másszóval inerciarendszer. Az inerciarendszerhez képest gyorsulva mozgó, vagy forgó vonatkoztatási rendszerek nem inerciarendszerek, mivel ezekben nem teljesül a tehetetlenség fenti törvénye. - magára hagyott test = messze van más testektől. Példa forgószínpad + teniszlabda ballisztikus pályája NEM JÓ! forgószínpad + atomi szinten zajló folyamatok

18 Első főtörvény(a tehetetlenség elve) Minden magára hagyott test megőrzi nyugalmi állapotát vagy egyenesvonalú egyenletes mozgását. tehetetlenségi vonatkoztatási rendszer, másszóval inerciarendszer. Az inerciarendszerhez képest gyorsulva mozgó, vagy forgó vonatkoztatási rendszerek nem inerciarendszerek, mivel ezekben nem teljesül a tehetetlenség fenti törvénye. - magára hagyott test = messze van más testektől. Példa forgószínpad + teniszlabda ballisztikus pályája NEM JÓ! forgószínpad + atomi szinten zajló folyamatok JÓ! talaj + teniszlabda ballisztikus pályája

19 Első főtörvény(a tehetetlenség elve) Minden magára hagyott test megőrzi nyugalmi állapotát vagy egyenesvonalú egyenletes mozgását. tehetetlenségi vonatkoztatási rendszer, másszóval inerciarendszer. Az inerciarendszerhez képest gyorsulva mozgó, vagy forgó vonatkoztatási rendszerek nem inerciarendszerek, mivel ezekben nem teljesül a tehetetlenség fenti törvénye. - magára hagyott test = messze van más testektől. Példa forgószínpad + teniszlabda ballisztikus pályája NEM JÓ! forgószínpad + atomi szinten zajló folyamatok JÓ! talaj + teniszlabda ballisztikus pályája JÓ! talaj + távolhordó ágyúk ballisztikájának, főbb szélrendszerek (passzát) dinamikája

20 Első főtörvény(a tehetetlenség elve) Minden magára hagyott test megőrzi nyugalmi állapotát vagy egyenesvonalú egyenletes mozgását. tehetetlenségi vonatkoztatási rendszer, másszóval inerciarendszer. Az inerciarendszerhez képest gyorsulva mozgó, vagy forgó vonatkoztatási rendszerek nem inerciarendszerek, mivel ezekben nem teljesül a tehetetlenség fenti törvénye. - magára hagyott test = messze van más testektől. Példa forgószínpad + teniszlabda ballisztikus pályája NEM JÓ! forgószínpad + atomi szinten zajló folyamatok JÓ! talaj + teniszlabda ballisztikus pályája JÓ! talaj + távolhordó ágyúk ballisztikájának, főbb szélrendszerek (passzát) dinamikája NEM JÓ!

21 Tapasztalat: mozgásállapot (sebesség) módosul az elszenvedett erőhatások mértékének függvényében ugyanazon erőhatás különböző testek esetén eltérő mértékű sebességváltozást okoz tehetetlenség, mértéke a tömeg. az erő egy vektoriális mennyiség Az erőnek a mozgásra kifejtett hatásának leírására bevezetjük a impulzus(mozgásmennyiség) fogalmát. p = mv.

22 Második főtörvény(a mozgástörvény) Ha egy részecskére egy F erő hat, akkor a mozgás során az impulzusvektor idő szerinti deriváltja megegyezik az F erővel. Matematikai alakja F = dp dt. (1) Ha a test tömege állandó a mozgás során F = m dv dt = m d 2 r dt 2 = ma, a = F m,

23 Harmadik törvény (a kölcsönhatás törvénye) Ha két részecske erővel hat egymásra, akkor az erők a részecskéket összekötő egyenes mentén hatnak, azonos nagyságúak és ellentétes irányításúak. F AB = F BA, F AB + F BA = 0

24 Az erőhatások szuperpozíciójának elve Ha egy részecskére egyidőben két erő F 1 és F 2 is hat, akkor ezek helyettesíthetők egyetlen olyan F erővel, melyet az összetevő erők vektori összegeként kapunk: ahol F az F 1 és F 2 erők eredője. F 1 + F 2 = F, matematikai indukcióval kiterjeszthető tetszőleges számú erőre is. az elv fordítottja is érvényes, azaz bármely erő felbontható több, egyidőben ható erőre, amennyiben ezek eredője kiadja az eredeti erőt.

25 Az anyagi pont mozgása során bizonyos mechanikai mennyiségek időben állandók maradnak, melyeket a megmaradási tételekkel fejezünk ki. f (t, r, ṙ) = C, a mozgásegyenletek primintegráljai, elsőrendű(!) differenciálegyenletek. Segítségükkel a rendszer leírható másodrendű differenciálegyenletének megoldása nélkül. A dinamika második törvénye is megmaradási tétel: dp dt = 0, azaz p = állandó. A fenti egyenlet fejezi ki az impulzusmegmaradás tételét.

26 A Galilei-féle relativitási elv Ha adott egy inerciarendszer, akkor a hozzá képest egyenesvonalú egyenletesen mozgó vonatkoztatási rendszerek is inerciarendszerek végtelen sok inerciarendszerünk van. A természettörvények valamennyi inerciarend- A relativitás elve szerben azonosak. a természettörvényeket kifejező egyenletek változatlanok maradnak, ha egy adott inerciarendszerről egy másikra térünk át.

27 K inerciarendszer + ehhez képest állandó V sebességgel mozgó K inerciarendszer. t = 0-ban O és O vonatkoztatási pont egybeesett. t idő múlva az O elmozdulása O-hoz képest OO = V t P pont a helye r illetve r r = r + OO = r + V t Az idő minden vonatkoztatási rendszerben ugyanaz: t = t Galilei-transzformáció

28 ṙ = ṙ + V v = v + V, r = r a = a a tömegpont gyorsulása, a két inerciarendszerben ugyanaz. ma = F mozgásegyenlet változatlanul érvényes a K rendszerben is : és ma = F F = F. a mozgástörvények ugyanolyan alakúak a két inerciarendszer egyenértékű mechanikai szempontból. Galilei-féle relativitási elv,

29 Mechanikai munka és energia Egy részecskére ható F erő munkája egy C görbe két A és B pontja: W (C AB ) = F dr. (2) C AB Elemi elmozdulásnak megfelelő mechanikai munka: dw = F dr. Az elmozdulásra merőleges erők nem végeznek mechanikai munkát. Az erők szuperpozíciójának elve az elmozdulás irányába mutató (tangenciális) F t + merőleges erő F n erőre. Az elemi munka: dw = (F t + F n ) dr = F t dr = F t dr, csak a mozgás pályájához érintőleges irányú összetevő végez munkát.

30 B A F = m dv dt F dr = m kinetikus-(mozgási-)energia, és dr = vdt, tb t A dv dt vdt = m 2 (v 2 B v 2 A). (3) T = mv 2 2 A kinetikus energia változásának tétele W (C AB ) = T (B) T (A) A fenti összefüggés mindenféle erő esetén érvényes. Általános esetben a végzett munka és következésképpen a mozgási energia változása függhet az útvonaltól. Nem konzervatív erők a súrlódási erő és a közegellenállási erők illetve időtől függő potenciálterek

31 Konzervatív erőtér (időfüggetlen potenciáltér) Ha két pont között végzett munka értéke nem függ a pontokat összekötő görbétől csak a végpontok helyzetétől, (pl. elektrosztatikus és gravitációs erőterek). bármilyen zárt C görbére: F dr = 0. C Ez azt jelenti, hogy F dr egy skalár ú.n. potenciális energia függvény teljes differenciálja: F dr = du(r) U(r) dr. F = U, azaz F x = U x, F y = U y, F z = U z. Ellenőrzési mód: F = 0. A fenti háromféle feltétele a konzervatívitásnak egyenértékű.

32 A mechanikai munka konzervatív erőtérben: W AB = B A F dr = B A U dr = U(A) U(B) ahol U(A) U(r A ), U(B) U(r B ) a potenciális energia értékei, az A és B pontokban. Az energiamegmaradás tétele Konzervativ erőtérben mozgó részecske kinetikus és potenciális energiájának összege, az E a teljes energia, időben állandó: T (A) + U(A) = T (B) + U(B) = E Ha nemkonzervatív F nk erők is hatnak akkor a a részecske teljes energiaváltozásának tétele: E(B) E(A) = W n.k. (C AB ).

33 Impulzusnyomaték impulzusnyomatéka az O pontra nézve erőnyomatéka ugyanarra az O pontra vonatkozóan. J = r p (4) N = r F (5) dj dt = d dt (r mv) = v mv + r d dt (mv) = N J = N. N = 0 egy újabb megmaradási tétel: Az impulzusnyomatékmegmaradás tétele Ha egy részecskére ható erőnyomaték N nulla akkor annak J impulzusnyomatéka állandó

34 Az erőnyomaték nulla, ha F = 0 r = 0 F r Az r helyzetnek az F -re merőleges összetevőjét az erő karjának nevezzük. Az impulzusnyomaték úgy a koordinátarendszer, mint a vonatkoztatási rendszer sebességének megválasztásától nagymértékben függ.

35 Centrális erőtér m tömegű részecske U(r) = U(r) centrális erőtérben. A részecskére ható erő: F (r) = U(r) = U(r) = du r r dr r r Ennek nagysága az erőtér középpontjától mért távolságtól függ, az iránya pedig párhuzamos a részecske helyzetvektorával. J = M = r F = 0. J pályaimpulzusnyomaték vektora állandó. Az impulzusnyomatékvektor és az r helyzetvektor merőlegességének következményeként a részecske mozgása az impulzusnyomatékvektorra merőleges síkban történik. Centrális erőtérben a mozgás mindig síkmozgás (f = 2).

36 Pontrendszerek mechanikája N darab részecske m i, v i illetve p i = m i v i. Az egyes részecskékre hasson az F i külső erő, míg a j részecske részéről az f ij belső erő. i, j = 1, N Newton harmadik törvénye értelmében: Newton második törvénye értelmében f ij r i r j, (6) f ij = f ji. (7) ṗ i = F i + j f ij, Vezessük be a P i p i vektorösszeget.

37 Ṗ = i ṗ i = i F i + i,j f ij = = i = i F i + 1 (f ij + f ji ) = 2 }{{} i,j =0 F i = F (8) F a rendszerre ható külső erők eredője P mennyiségre hasonló törvény érvényes, mint az egyes részecskékre P a rendszer impulzusa és idő szerinti deriváltja egyenlő a külső erők eredőjével.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós

Részletesebben

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek. Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy

Részletesebben

Speciális mozgásfajták

Speciális mozgásfajták DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális

Részletesebben

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Az elméleti mechanika newtoni alapjai Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 2011 TARTALOMJEGYZÉK 1. El szó 7 2. Newton törvényei

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

Komplex természettudomány 3.

Komplex természettudomány 3. Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott

Részletesebben

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Newton törvények és a gravitációs kölcsönhatás (Vázlat)

Newton törvények és a gravitációs kölcsönhatás (Vázlat) Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások

Részletesebben

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N IPULZUS OENTU Impulzusnyomaték, perdület, jele: N Definíció: Az (I) impulzussal rendelkező test impulzusmomentuma egy tetszőleges O pontra vonatkoztatva: O I r m Az impulzus momentum vektormennyiség: két

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

DINAMIKA ALAPJAI. Tömeg és az erő

DINAMIKA ALAPJAI. Tömeg és az erő DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban

Részletesebben

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés. SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK január 30.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK január 30. Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. január 30. Tapasztalatok az erővel kapcsolatban: elhajított kő, kilőtt nyílvessző, ásás, favágás Aristoteles: az erő a mozgás fenntartója Galilei: a mozgás

Részletesebben

Newton törvények, lendület, sűrűség

Newton törvények, lendület, sűrűség Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja

Részletesebben

A világtörvény keresése

A világtörvény keresése A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév)

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) Dinamika Pontszám 1. A mechanikai mozgás fogalma (1) 2. Az anyagi pont pályája (1) 3. A mozgástörvény

Részletesebben

PÉLDÁK ERŐTÖRVÉNYEKRE

PÉLDÁK ERŐTÖRVÉNYEKRE PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,

Részletesebben

A mechanikai alaptörvények ismerete

A mechanikai alaptörvények ismerete A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára

Részletesebben

Kinematika. A mozgás matematikai leírása, a mozgást kiváltó ok feltárása nélkül.

Kinematika. A mozgás matematikai leírása, a mozgást kiváltó ok feltárása nélkül. Kinematika A mozgás matematikai leírása, a mozgást kiváltó ok feltárása nélkül. Helyvektor és elmozdulás Egy test helyzetét és helyzetváltozását csak más testekhez viszonyítva írhatjuk le. Ezért először

Részletesebben

Fizika alapok. Az előadás témája

Fizika alapok. Az előadás témája Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális

Részletesebben

Tartalomjegyzék. A mechanika elvei. A virtuális munka elve. A TételWiki wikiből 1 / 6

Tartalomjegyzék. A mechanika elvei. A virtuális munka elve. A TételWiki wikiből 1 / 6 1 / 6 A TételWiki wikiből Tartalomjegyzék 1 A mechanika elvei 2 A virtuális munka elve 3 d'alembert elv és a Lagrange-féle elsőfajú egyenletek 4 A Gauss-féle legkisebb kényszer 5 Általános koordináták

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Speciális relativitás

Speciális relativitás Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

Speciális relativitás

Speciális relativitás Bevezetés a modern fizika fejezeteibe 3. (b) Speciális relativitás Relativisztikus dinamika Utolsó módosítás: 2013 október 15. 1 A relativisztikus tömeg (1) A bevezetett Lorentz-transzformáció biztosítja

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

A MECHANIKAI ENERGIA

A MECHANIKAI ENERGIA A MECHANIKAI ENERGIA. A mechanika munkatétele A mechanika munkatétele Newton második axiómájából következik. Newton második axiómája egyetlen tömegre (vagy tömegpontra): F d r ma m, (.) mely általános

Részletesebben

DR. BUDO ÁGOSTON ' # i. akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA. Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST

DR. BUDO ÁGOSTON ' # i. akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA. Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST DR. BUDO ÁGOSTON ' # i akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST 1991 TARTALOMJEGYZÉK Bevezette 1.. A klasszikus mechanika feladata, érvényességi határai

Részletesebben

1. NEWTONI POSZTULÁTUMOK ÉS ÉRTELMEZÉSÜK

1. NEWTONI POSZTULÁTUMOK ÉS ÉRTELMEZÉSÜK Bevezetés A mechanika történetében három nagy periódus különíthető el. Az első, átfogó kvalitatív vizsgálatokat jelentő hosszú periódus Kepler és Galilei munkásságával zárul. A második ún. kvantitatív

Részletesebben

DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST

DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST Előszó a Fizika című tankönyvsorozathoz Előszó a Fizika I. (Klasszikus

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. EGYSZERŰ GÉPEK Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. Az egyszerű gépekkel munkát nem takaríthatunk meg, de ugyanazt a munkát kisebb

Részletesebben

S Y L L A B U S. 1. Általános információk az előadásokról, szemináriumokról, szak vagy laborgyakorlatokról

S Y L L A B U S. 1. Általános információk az előadásokról, szemináriumokról, szak vagy laborgyakorlatokról Babeş Bolyai Tudományegyetem Kolozsvár Kar: Fizika Egyetemi év: 2008/2009 Félév: I. S Y L L A B U S 1. Általános információk az előadásokról, szemináriumokról, szak vagy laborgyakorlatokról Tantárgy neve:

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%)

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) A vizsga értékelése: Elégtelen: ha az írásbeli és a szóbeli rész összesen nem éri el a

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Newton törvények, erők

Newton törvények, erők Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső

Részletesebben

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:... 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika ZH NÉV:.. 2018. október 18. Neptun kód:... g=10 m/s 2 Előadó: Márkus/Varga Az eredményeket a bekeretezett részbe be kell írni! 1. Egy m=3

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA 1. A kinematika és a dinamika tárgya. Egyenes onalú egyenletes mozgás a) Kísérlet és a belőle leont köetkeztetés b) A mozgás jellemző grafikonjai

Részletesebben

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések . REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

1 2. Az anyagi pont kinematikája

1 2. Az anyagi pont kinematikája 1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

Newton törvények, erők

Newton törvények, erők Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

2.3 Newton törvények, mozgás lejtőn, pontrendszerek Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat

Részletesebben

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B= Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

V e r s e n y f e l h í v á s

V e r s e n y f e l h í v á s A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Sárospataki Református Kollégium Gimnáziumában TÁMOP-3.1.3-11/2-2012-0021 V e r s e n y f e l h í v á s A Sárospataki Református

Részletesebben

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008 Égi mechanika tesztkérdések A hallgatók javaslatai 2008 1 1 Albert hajnalka 1. A tömegközéppont körüli mozgást leíró m 1 s1 = k 2 m 1m 2 r,m s r 2 r 2 2 = k 2 m 1m 2 r r 2 r mozgásegyenletek ekvivalensek

Részletesebben

Mérnöki alapok 1. előadás

Mérnöki alapok 1. előadás Mérnöki alapok 1. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29. A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /

Részletesebben

Merev testek kinematikája

Merev testek kinematikája Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk

Részletesebben

Mechanika - Versenyfeladatok

Mechanika - Versenyfeladatok Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény BABEȘ-BOLYAI TUDOMÁNYEGYETEM 1.2 Kar FIZIKA 1.3 Intézet A MAGYAR TAGOZAT FIZIKA INTÉZETE 1.4 Szakterület FIZIKA / ALKALMAZOTT

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

Bevezetés Statika Kinematika Dinamika Egyéb eredmények Késői eredmények. Az ókori mechanika. SZE, Fizika és Kémia Tsz. v 1.0

Bevezetés Statika Kinematika Dinamika Egyéb eredmények Késői eredmények. Az ókori mechanika. SZE, Fizika és Kémia Tsz. v 1.0 Fizikatörténet Az ókori mechanika Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Bevezetés Az ókorban sok gyakorlati problémát jól oldottak meg. (Piramisépítés, csatornázás, szekerek építése, stb.) Biztos,

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

TANTÁRGYI ADATLAP. Mechatronika/Mechatronikus mérnök Végzettség. 2.5 Félév 1. 2.6. Számonkérés módja

TANTÁRGYI ADATLAP. Mechatronika/Mechatronikus mérnök Végzettség. 2.5 Félév 1. 2.6. Számonkérés módja TANTÁRGYI ADATLAP 1. A tanulmányi program jellemzői 1.1 A felsőoktatási intézmény Sapientia Erdélyi Magyar Tudományegyetem 1.2 Kar Marosvásárhelyi Műszaki és Humán Tudományok Kar 1.3 Tanszék Gépészmérnöki

Részletesebben

6. A Lagrange-formalizmus

6. A Lagrange-formalizmus Drótos G.: Fejezetek az elméleti mechanikából 6. rész 1 6. A Lagrange-formalizmus A Lagrange-formalizmus alkalmazásával bizonyos fizikai rendszerek mozgásegyenleteit írhatjuk fel egyszerű módon. Az alapvető

Részletesebben

FIZIKA VIZSGATEMATIKA

FIZIKA VIZSGATEMATIKA FIZIKA VIZSGATEMATIKA osztályozó vizsga írásbeli szóbeli időtartam 60p 10p arány az értékelésnél 60% 40% A vizsga értékelése jeles (5) 80%-tól jó (4) 65%-tól közepes (3) 50%-tól elégséges (2) 35%-tól Ha

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Mechanika. I. előadás február 25. Mechanika I. előadás február / 31

Mechanika. I. előadás február 25. Mechanika I. előadás február / 31 Mechanika I. előadás 2019. február 25. Mechanika I. előadás 2019. február 25. 1 / 31 Elérhetőségek, információk Tantárgy: Mechanika (GEMET266-ZD-B) Előadó: Dr. Lengyel Ákos József Elérhetőségek: Iroda:

Részletesebben

Speciális relativitás

Speciális relativitás Bevezetés a modern fizika fejezeteibe 3. (a) Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2015. január 11.. 1 Egy egyszerű probléma (1) A K nyugvó vonatkoztatási rendszerben tekintsünk

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti

Részletesebben

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ... Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár

Részletesebben

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15 Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont

Részletesebben

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes

Részletesebben