A mechanika alapjai. A pontszerű testek dinamikája

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A mechanika alapjai. A pontszerű testek dinamikája"

Átírás

1 A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v / 26

2 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26

3 Bevezetés alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. megértéséhez szükségesek voltak mindazok, amit a kinematikából eddig megtanultunk. 3 / 26

4 Bevezetés alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. megértéséhez szükségesek voltak mindazok, amit a kinematikából eddig megtanultunk. alapit Isaac Newton fedezte fel az 1600-as évek végén. Természetesen alapozott sokak munkájára, de nála állt össze egy rendszerré a mechanika. 3 / 26

5 Bevezetés alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. megértéséhez szükségesek voltak mindazok, amit a kinematikából eddig megtanultunk. alapit Isaac Newton fedezte fel az 1600-as évek végén. Természetesen alapozott sokak munkájára, de nála állt össze egy rendszerré a mechanika. A mechanika alapi azóta is a Newton-k, melyeket a következőkben tárgyalunk. (Newton nem pontosan ebben a formában mondta ki őket, de mindezek benn vannak műveiben.) 3 / 26

6 Newton I. alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Található olyan vonatkoztatási rendszer, amelyből nézve minden magára hagyott test állandó sebességvektorral mozog. 4 / 26

7 Newton I. alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Található olyan vonatkoztatási rendszer, amelyből nézve minden magára hagyott test állandó sebességvektorral mozog. Megjegyzések: Az ilyen rendszert inerciarendszernek nevezzük. 4 / 26

8 Newton I. alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Található olyan vonatkoztatási rendszer, amelyből nézve minden magára hagyott test állandó sebességvektorral mozog. Megjegyzések: Az ilyen rendszert inerciarendszernek nevezzük. Magára hagyott test alatt olyan testet értünk, mely nincs kölcsönhatásban más testekkel. 4 / 26

9 Newton I. alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Található olyan vonatkoztatási rendszer, amelyből nézve minden magára hagyott test állandó sebességvektorral mozog. Megjegyzések: Az ilyen rendszert inerciarendszernek nevezzük. Magára hagyott test alatt olyan testet értünk, mely nincs kölcsönhatásban más testekkel. Nem minden vonatkoztatási rendszer inerciarendszer! 4 / 26

10 Newton I. alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Található olyan vonatkoztatási rendszer, amelyből nézve minden magára hagyott test állandó sebességvektorral mozog. Megjegyzések: Az ilyen rendszert inerciarendszernek nevezzük. Magára hagyott test alatt olyan testet értünk, mely nincs kölcsönhatásban más testekkel. Nem minden vonatkoztatási rendszer inerciarendszer! Sok rossz megfogalmazása létezik Newton I. törvényének! Általában elfelejtik megjegyezni, hogy ez csak bizonyos rendszerekben teljesül. 4 / 26

11 Newton I. alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Található olyan vonatkoztatási rendszer, amelyből nézve minden magára hagyott test állandó sebességvektorral mozog. Megjegyzések: Az ilyen rendszert inerciarendszernek nevezzük. Magára hagyott test alatt olyan testet értünk, mely nincs kölcsönhatásban más testekkel. Nem minden vonatkoztatási rendszer inerciarendszer! Sok rossz megfogalmazása létezik Newton I. törvényének! Általában elfelejtik megjegyezni, hogy ez csak bizonyos rendszerekben teljesül. Newton többi csak inerciarendszerben teljesül! 4 / 26

12 Newton II. alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Minden testhez található egy olyan állandó m mennyiség, amit a test tömegének nevezünk, és a többi test hatása a vizsgált testre jellemezhető egy F úgynevezett erőfüggvénnyel, ami csak a test tömegétől, helyétől sebességétől és az időponttól függ, úgy, hogy ahol a a test gyorsulása. F = m a 5 / 26

13 Newton II. alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Minden testhez található egy olyan állandó m mennyiség, amit a test tömegének nevezünk, és a többi test hatása a vizsgált testre jellemezhető egy F úgynevezett erőfüggvénnyel, ami csak a test tömegétől, helyétől sebességétől és az időponttól függ, úgy, hogy ahol a a test gyorsulása. F = m a Newton szerint tehát a testek tömege állandó, független a test mozgásától és attól, milyen kölcsönhatásban vesz részt a test. 5 / 26

14 Newton II. alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Minden testhez található egy olyan állandó m mennyiség, amit a test tömegének nevezünk, és a többi test hatása a vizsgált testre jellemezhető egy F úgynevezett erőfüggvénnyel, ami csak a test tömegétől, helyétől sebességétől és az időponttól függ, úgy, hogy ahol a a test gyorsulása. F = m a Newton szerint tehát a testek tömege állandó, független a test mozgásától és attól, milyen kölcsönhatásban vesz részt a test. Másik elrejtett feltételezés, hogy a kölcsönhatások előre meghatározott módon mennek végbe, azaz az erő mindig ugyanaz, ha azonos körülmények közt megismétlek egy kísérletet. 5 / 26

15 ... alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Legnagyobb ötlet viszont, hogy a kölcsönhatás a test gyorsulását határozza meg. Korábban mindenki azt hitte, hogy a sebességet határozzák meg a körülmények. 6 / 26

16 ... alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Legnagyobb ötlet viszont, hogy a kölcsönhatás a test gyorsulását határozza meg. Korábban mindenki azt hitte, hogy a sebességet határozzák meg a körülmények. (Deriválás nélkül még a pillanatnyi sebesség is homályos fogalom volt, nemhogy a gyorsulás... ) 6 / 26

17 ... alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Legnagyobb ötlet viszont, hogy a kölcsönhatás a test gyorsulását határozza meg. Korábban mindenki azt hitte, hogy a sebességet határozzák meg a körülmények. (Deriválás nélkül még a pillanatnyi sebesség is homályos fogalom volt, nemhogy a gyorsulás... ) Newton II. törvényének jelentősége: Ha egy kölcsönhatás erőtörvényét egyszer megállapítom, és egy test tömegét lemérem, akkor Newton II. alapján megkapom a gyorsulást. Ebből a kinematika módszereivel a teljes mozgás visszakapható. 6 / 26

18 ... alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Legnagyobb ötlet viszont, hogy a kölcsönhatás a test gyorsulását határozza meg. Korábban mindenki azt hitte, hogy a sebességet határozzák meg a körülmények. (Deriválás nélkül még a pillanatnyi sebesség is homályos fogalom volt, nemhogy a gyorsulás... ) Newton II. törvényének jelentősége: Ha egy kölcsönhatás erőtörvényét egyszer megállapítom, és egy test tömegét lemérem, akkor Newton II. alapján megkapom a gyorsulást. Ebből a kinematika módszereivel a teljes mozgás visszakapható. Sok, korábban megmagyarázhatatlan dologra derült fény. (Bolygók mozgása, lövedék röppálya, gépek tervezési kérdései, stb.) 6 / 26

19 Newton III. alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Ha csak két test van egymással kölcsönhatásban, akkor ha az egyikre F 1 erő hat, akkor a másikra ható erő F 2 = F 1. 7 / 26

20 Newton III. alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Ha csak két test van egymással kölcsönhatásban, akkor ha az egyikre F 1 erő hat, akkor a másikra ható erő F 2 = F 1. Szokás ezt hatás-ellenhatás törvényének is nevezni. F 1 replacements F 2 = F 1 Sfrag 7 / 26

21 Newton IV. alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Ha egy testre több másik is hat egyszerre, akkor a test úgy mozog, mintha olyan kölcsönhatásban szerepelne, melynek ereje a különkülön kölcsönhatások erőinek vektori összege. 8 / 26

22 Newton IV. alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Ha egy testre több másik is hat egyszerre, akkor a test úgy mozog, mintha olyan kölcsönhatásban szerepelne, melynek ereje a különkülön kölcsönhatások erőinek vektori összege. Az erők tehát egymástól függetlenül hatnak, hatásuk egyszerű matematikai művelettel összegezhető. F + F 1 2 F 1 F 2 8 / 26

23 ... alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. Több kölcsönhatás esetére Newton II. törvényét szokás az alábbi alakok valamelyikében felírni: F 1 + F F n = m a n F i = F eredő = ma i=1 9 / 26

24 alapi 2 kölcsönható test esete a lendület fogalma 10 / 26

25 2 kölcsönható test esete alapi 2 kölcsönható test esete a lendület fogalma Vizsgáljunk két testet, amik erőt fejtenek ki egymásra, de más test nem hat erre a kettőre, azaz a két test zárt rendszert alkot. 11 / 26

26 2 kölcsönható test esete alapi 2 kölcsönható test esete a lendület fogalma Vizsgáljunk két testet, amik erőt fejtenek ki egymásra, de más test nem hat erre a kettőre, azaz a két test zárt rendszert alkot. Newton III. szerint a rájuk ható erők: F 1 = F 2 11 / 26

27 2 kölcsönható test esete alapi 2 kölcsönható test esete a lendület fogalma Vizsgáljunk két testet, amik erőt fejtenek ki egymásra, de más test nem hat erre a kettőre, azaz a két test zárt rendszert alkot. Newton III. szerint a rájuk ható erők: Egy igen kicsi t-re: F 1 = F 2 F 1 = m 1 v 1 t 11 / 26

28 2 kölcsönható test esete alapi 2 kölcsönható test esete a lendület fogalma Vizsgáljunk két testet, amik erőt fejtenek ki egymásra, de más test nem hat erre a kettőre, azaz a két test zárt rendszert alkot. Newton III. szerint a rájuk ható erők: Egy igen kicsi t-re: F 1 = F 2 F 1 = m 1 v 1 t Hasonló összefüggés igaz a második testre is. Ezért: m 1 v 1 t = m 2 v 2 t 11 / 26

29 2 kölcsönható test esete alapi 2 kölcsönható test esete a lendület fogalma Vizsgáljunk két testet, amik erőt fejtenek ki egymásra, de más test nem hat erre a kettőre, azaz a két test zárt rendszert alkot. Newton III. szerint a rájuk ható erők: Egy igen kicsi t-re: F 1 = F 2 F 1 = m 1 v 1 t Hasonló összefüggés igaz a második testre is. Ezért: m 1 v 1 t = m 2 v 2 t Innét: m 1 v 1 + m 2 v 2 = 0 11 / 26

30 ... alapi 2 kölcsönható test esete a lendület fogalma Mivel a tömegek állandóak, ezért nyilvánvalóan (m 1 v 1 ) + (m 2 v 2 ) = 0 (m 1 v 1 + m 2 v 2 ) = 0 12 / 26

31 ... alapi 2 kölcsönható test esete a lendület fogalma Mivel a tömegek állandóak, ezért nyilvánvalóan (m 1 v 1 ) + (m 2 v 2 ) = 0 (m 1 v 1 + m 2 v 2 ) = 0 azaz m 1 v 1 + m 2 v 2 = állandó 12 / 26

32 ... alapi 2 kölcsönható test esete a lendület fogalma Mivel a tömegek állandóak, ezért nyilvánvalóan (m 1 v 1 ) + (m 2 v 2 ) = 0 (m 1 v 1 + m 2 v 2 ) = 0 azaz m 1 v 1 + m 2 v 2 = állandó Az mv mennyiségek összege tehát állandó, ezért ez fontos mennyiség lehet, hisz minden körülmények közt megmarad. 12 / 26

33 a lendület fogalma alapi 2 kölcsönható test esete a lendület fogalma Célszerű tehát elnevezni valaminek a tömeg és a sebesség szorzatát: Egy m tömegű, v sebességű test lendületének (vagy impulzusának) nevezzük a p = mv mennyiséget. 13 / 26

34 a lendület fogalma alapi 2 kölcsönható test esete a lendület fogalma Célszerű tehát elnevezni valaminek a tömeg és a sebesség szorzatát: Egy m tömegű, v sebességű test lendületének (vagy impulzusának) nevezzük a p = mv mennyiséget. Nemcsak 2, hanem n testre is bizonyítható, hogyha zárt rendszert alkotnak, összlendületük állandó: n i=1 m i v i = n p i = áll. i=1 13 / 26

35 a lendület fogalma alapi 2 kölcsönható test esete a lendület fogalma Célszerű tehát elnevezni valaminek a tömeg és a sebesség szorzatát: Egy m tömegű, v sebességű test lendületének (vagy impulzusának) nevezzük a p = mv mennyiséget. Nemcsak 2, hanem n testre is bizonyítható, hogyha zárt rendszert alkotnak, összlendületük állandó: n m i v i = n p i = áll. i=1 i=1 Könnyen bebizonyítható, hogy a lendület idő szerinti deriváltja az erő: dp dt = F 13 / 26

36 alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák 14 / 26

37 a munka alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Fizikában a munka jelentése sokkal körülhatároltabb, mint a köznapi nyelvben. Ha egy test r elmozdulása során a rá ható erő folytonosan F, akkor ez alatt az erő testen végzett munkája: W = F r 15 / 26

38 a munka alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Fizikában a munka jelentése sokkal körülhatároltabb, mint a köznapi nyelvben. Ha egy test r elmozdulása során a rá ható erő folytonosan F, akkor ez alatt az erő testen végzett munkája: W = F r Itt a F r szorzat a vektorok skaláris szorzatát jelöli. 15 / 26

39 a munka alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Fizikában a munka jelentése sokkal körülhatároltabb, mint a köznapi nyelvben. Ha egy test r elmozdulása során a rá ható erő folytonosan F, akkor ez alatt az erő testen végzett munkája: W = F r Itt a F r szorzat a vektorok skaláris szorzatát jelöli. A munka ilyen értelmezése mellett az alábbi alapvető dolgokat érdemes megjegyezni: W = 0, ha F és r merőlegesek. Tehát ha az erő és az elmozdulás merőlegesek egymásra, nincs munkavégzés. 15 / 26

40 a munka alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Fizikában a munka jelentése sokkal körülhatároltabb, mint a köznapi nyelvben. Ha egy test r elmozdulása során a rá ható erő folytonosan F, akkor ez alatt az erő testen végzett munkája: W = F r Itt a F r szorzat a vektorok skaláris szorzatát jelöli. A munka ilyen értelmezése mellett az alábbi alapvető dolgokat érdemes megjegyezni: W = 0, ha F és r merőlegesek. Tehát ha az erő és az elmozdulás merőlegesek egymásra, nincs munkavégzés. W < 0, ha F és r szöge tompaszög. Ezt úgy is szokták mondani, hogy a test végez munkát azon a testen, ami hat rá. 15 / 26

41 a munkavégzés másik alakja alapi Az előző formula csak akkor használható, ha az erő állandó. a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák 16 / 26

42 a munkavégzés másik alakja alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Az előző formula csak akkor használható, ha az erő állandó. A pillanatnyi sebesség bevezetéséhez hasonlóan itt is elmondható, hogy kellően rövid idő alatt a mozgás paraméterei állandónak vehetők. 16 / 26

43 a munkavégzés másik alakja alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Az előző formula csak akkor használható, ha az erő állandó. A pillanatnyi sebesség bevezetéséhez hasonlóan itt is elmondható, hogy kellően rövid idő alatt a mozgás paraméterei állandónak vehetők. Ilyenkor a helyett formálisan d-t írunk. Azaz a munkavégzés egy kis elemi idő alatt: dw = F dr 16 / 26

44 a munkavégzés másik alakja alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Az előző formula csak akkor használható, ha az erő állandó. A pillanatnyi sebesség bevezetéséhez hasonlóan itt is elmondható, hogy kellően rövid idő alatt a mozgás paraméterei állandónak vehetők. Ilyenkor a helyett formálisan d-t írunk. Azaz a munkavégzés egy kis elemi idő alatt: dw = F dr (Most nem törődünk a nagyon precíz matematikai megfogalmazással.) 16 / 26

45 a mozgási energia alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A munka előző definícióját osszuk el formálisan egy elemi időintervallum hosszával: dw dt = F dr dt 17 / 26

46 a mozgási energia alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A munka előző definícióját osszuk el formálisan egy elemi időintervallum hosszával: dw dt = F dr dt Vegyük észre a bal oldalon a sebesség felbukkanását: dw dt = F v 17 / 26

47 a mozgási energia alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A munka előző definícióját osszuk el formálisan egy elemi időintervallum hosszával: dw dt = F dr dt Vegyük észre a bal oldalon a sebesség felbukkanását: dw dt = F v Newton II. szerint F = m a = m (dv/dr), ezért: dw dt = m dv dt v illetve a rövidebb alakot használva a deriválásra: W = m v v 17 / 26

48 ... alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Vegyük észre, hogy a szorzatfüggvény deriválási szabályai miatt: ( 1 2 v2 ) = 1 2 (vv) = 1 2 (v v + vv ) = v v 18 / 26

49 ... alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Vegyük észre, hogy a szorzatfüggvény deriválási szabályai miatt: ( ) 1 2 v2 = 1 2 (vv) = 1 2 (v v + vv ) = v v Ezt beírva az előző összefüggésbe: W = m v v = 1 2 m ( v 2) 18 / 26

50 ... alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Vegyük észre, hogy a szorzatfüggvény deriválási szabályai miatt: ( ) 1 2 v2 = 1 2 (vv) = 1 2 (v v + vv ) = v v Ezt beírva az előző összefüggésbe: W = m v v = 1 2 m ( v 2) Kihasználva, hogy a tömeg és az 1/2-es szorzó állandó: W = ( ) 1 2 mv2 18 / 26

51 ... alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Vegyük észre, hogy a szorzatfüggvény deriválási szabályai miatt: ( ) 1 2 v2 = 1 2 (vv) = 1 2 (v v + vv ) = v v Ezt beírva az előző összefüggésbe: W = m v v = 1 2 m ( v 2) Kihasználva, hogy a tömeg és az 1/2-es szorzó állandó: W = ( ) 1 2 mv2 Bármilyen mozgás esetén tehát a munka időegység alatti megváltozása megegyezik az (1/2)mv 2 mennyiség változásával. 18 / 26

52 a mozgási energia definíciója alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A munka és az (1/2)mv 2 mennyiség tehát egyforma módon változik, de utóbbit pontról pontra meg lehet határozni, a munkát viszont csak a pálya és az a mentén ható erők folytonos nyomon követésével. 19 / 26

53 a mozgási energia definíciója alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A munka és az (1/2)mv 2 mennyiség tehát egyforma módon változik, de utóbbit pontról pontra meg lehet határozni, a munkát viszont csak a pálya és az a mentén ható erők folytonos nyomon követésével. Ezért az E m = (1/2)mv 2 mennyiség megérdemli, hogy nevet kapjon: mozgási energia. 19 / 26

54 a munkatétel alapi Mivel a fentiek szerint minden időpontban W = E m, ezért a munka és a mozgási energia csak egy hozzáadható állandóval (W 0 ) térhet el egymástól: a munka a munkavégzés másik alakja W = E m + W 0 definíciója a munkatétel a potenciális energia példák 20 / 26

55 a munkatétel alapi Mivel a fentiek szerint minden időpontban W = E m, ezért a munka és a mozgási energia csak egy hozzáadható állandóval (W 0 ) térhet el egymástól: a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák W = E m + W 0 Kellemetlen, hogy az ismeretlen W 0 állandó felbukkant. Ezért ezt az összefüggést írjuk fel két időpont között és vonjuk ki egymásból: W (t 2 ) W (t 1 ) = E m (t 2 ) E m (t 1 ) 20 / 26

56 a munkatétel alapi Mivel a fentiek szerint minden időpontban W = E m, ezért a munka és a mozgási energia csak egy hozzáadható állandóval (W 0 ) térhet el egymástól: a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák W = E m + W 0 Kellemetlen, hogy az ismeretlen W 0 állandó felbukkant. Ezért ezt az összefüggést írjuk fel két időpont között és vonjuk ki egymásból: W (t 2 ) W (t 1 ) = E m (t 2 ) E m (t 1 ) W (t 2 ) W (t 1 ) nyilván a testen a t 1 és t 2 közt végzett munka. Beírva a mozgási energia formuláját a munkatételt kapjuk: W 2,1 = 1 2 mv mv / 26

57 a potenciális energia alapi A munkatétel alkalmazása sokszor azért nehéz, mert egy pontról-pontra változó erő esetén egy bonyolult pályán való mozgáskor nehéz kiszámolni a munkavégzést, azaz W 2,1 -et. a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák 21 / 26

58 a potenciális energia alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A munkatétel alkalmazása sokszor azért nehéz, mert egy pontról-pontra változó erő esetén egy bonyolult pályán való mozgáskor nehéz kiszámolni a munkavégzést, azaz W 2,1 -et. (Ehhez magasabb matematikai ismeretek szükségesek általános esetben.) 21 / 26

59 a potenciális energia alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A munkatétel alkalmazása sokszor azért nehéz, mert egy pontról-pontra változó erő esetén egy bonyolult pályán való mozgáskor nehéz kiszámolni a munkavégzést, azaz W 2,1 -et. (Ehhez magasabb matematikai ismeretek szükségesek általános esetben.) Szerencsére a gyakorlatban sok kölcsönhatás olyan, hogy esetükben a munkavégzés független a test mozgásának pályájától, csak a kezdő- és végponttól függ. 21 / 26

60 a potenciális energia alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A munkatétel alkalmazása sokszor azért nehéz, mert egy pontról-pontra változó erő esetén egy bonyolult pályán való mozgáskor nehéz kiszámolni a munkavégzést, azaz W 2,1 -et. (Ehhez magasabb matematikai ismeretek szükségesek általános esetben.) Szerencsére a gyakorlatban sok kölcsönhatás olyan, hogy esetükben a munkavégzés független a test mozgásának pályájától, csak a kezdő- és végponttól függ. Egy erőt potenciállal rendelkezőnek nevezünk, ha az általa végzett munka csak a kezdő- és végponttól függ. 21 / 26

61 a potenciális energia alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A munkatétel alkalmazása sokszor azért nehéz, mert egy pontról-pontra változó erő esetén egy bonyolult pályán való mozgáskor nehéz kiszámolni a munkavégzést, azaz W 2,1 -et. (Ehhez magasabb matematikai ismeretek szükségesek általános esetben.) Szerencsére a gyakorlatban sok kölcsönhatás olyan, hogy esetükben a munkavégzés független a test mozgásának pályájától, csak a kezdő- és végponttól függ. Egy erőt potenciállal rendelkezőnek nevezünk, ha az általa végzett munka csak a kezdő- és végponttól függ. Ilyen pl. a gravitációs erő, a nyugvó töltésekből származó erő, a rugalmas alakváltozásokkor fellépő erők. 21 / 26

62 a potenciális energia alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A munkatétel alkalmazása sokszor azért nehéz, mert egy pontról-pontra változó erő esetén egy bonyolult pályán való mozgáskor nehéz kiszámolni a munkavégzést, azaz W 2,1 -et. (Ehhez magasabb matematikai ismeretek szükségesek általános esetben.) Szerencsére a gyakorlatban sok kölcsönhatás olyan, hogy esetükben a munkavégzés független a test mozgásának pályájától, csak a kezdő- és végponttól függ. Egy erőt potenciállal rendelkezőnek nevezünk, ha az általa végzett munka csak a kezdő- és végponttól függ. Ilyen pl. a gravitációs erő, a nyugvó töltésekből származó erő, a rugalmas alakváltozásokkor fellépő erők. Nem ilyen a súrlódási és közegellenállási erő. 21 / 26

63 ... alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A potenciál szokásos jele a V. Akkor van tehát egy erőnek potenciálja, ha bármely 2 pont között bármilyen pályán mozgatva a testet teljesül, hogy: W 2,1 = V (r 1 ) V (r 2 ) 22 / 26

64 ... alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A potenciál szokásos jele a V. Akkor van tehát egy erőnek potenciálja, ha bármely 2 pont között bármilyen pályán mozgatva a testet teljesül, hogy: W 2,1 = V (r 1 ) V (r 2 ) Ezt a munkatétellel összevetve könnyen bebizonyítható, hogy potenciálos erő esetén tetszőleges két pont közt: V (r 1 ) mv2 1 = V (r 2) mv / 26

65 ... alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A potenciál szokásos jele a V. Akkor van tehát egy erőnek potenciálja, ha bármely 2 pont között bármilyen pályán mozgatva a testet teljesül, hogy: W 2,1 = V (r 1 ) V (r 2 ) Ezt a munkatétellel összevetve könnyen bebizonyítható, hogy potenciálos erő esetén tetszőleges két pont közt: V (r 1 ) mv2 1 = V (r 2) mv2 2 azaz a potenciál és a mozgási energia összege állandó. Ezért V -t szokás potenciális energiának is nevezni. 22 / 26

66 ... alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák A potenciál szokásos jele a V. Akkor van tehát egy erőnek potenciálja, ha bármely 2 pont között bármilyen pályán mozgatva a testet teljesül, hogy: W 2,1 = V (r 1 ) V (r 2 ) Ezt a munkatétellel összevetve könnyen bebizonyítható, hogy potenciálos erő esetén tetszőleges két pont közt: V (r 1 ) mv2 1 = V (r 2) mv2 2 azaz a potenciál és a mozgási energia összege állandó. Ezért V -t szokás potenciális energiának is nevezni. Fontos újra megjegyezni, hogy nem minden erő rendelkezik potenciális energiával, így a mozgási- és potenciális energiák összege nem mindig állandó. 22 / 26

67 a potenciál és az erő kapcsolata alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Bebizonyítható, hogy a V (r) potenciál-függvény ismeretében a testre ható erő könnyen kiszámolható komponensenként: F x = dv dx, F y = dv dy, F z = dv dz 23 / 26

68 a potenciál és az erő kapcsolata alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Bebizonyítható, hogy a V (r) potenciál-függvény ismeretében a testre ható erő könnyen kiszámolható komponensenként: F x = dv dx, F y = dv dy, F z = dv dz Ez az egyenlet lehetővé teszi a potenciál ismeretében az erő kiszámítását. 23 / 26

69 a potenciál és az erő kapcsolata alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Bebizonyítható, hogy a V (r) potenciál-függvény ismeretében a testre ható erő könnyen kiszámolható komponensenként: F x = dv dx, F y = dv dy, F z = dv dz Ez az egyenlet lehetővé teszi a potenciál ismeretében az erő kiszámítását. Sajnos, a fordított irány bonyolultabb, tehát egy tetszőleges F (r) erőfüggvény esetén eldönteni, van-e potenciálja és ha igen, az mi: magasabb matematikai ismereteket igényel. 23 / 26

70 a potenciál és az erő kapcsolata alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák Bebizonyítható, hogy a V (r) potenciál-függvény ismeretében a testre ható erő könnyen kiszámolható komponensenként: F x = dv dx, F y = dv dy, F z = dv dz Ez az egyenlet lehetővé teszi a potenciál ismeretében az erő kiszámítását. Sajnos, a fordított irány bonyolultabb, tehát egy tetszőleges F (r) erőfüggvény esetén eldönteni, van-e potenciálja és ha igen, az mi: magasabb matematikai ismereteket igényel. Egyszerűbb esetekben azonban találgatással is jó eredményt érhetünk el. 23 / 26

71 példák alapi 1. V (r) = m g z, ahol m a test tömege, g egy állandó, z pedig r 3. koordinátája. a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák 24 / 26

72 példák alapi 1. V (r) = m g z, ahol m a test tömege, g egy állandó, z pedig r 3. koordinátája. Ekkor V független x-től és y-tól, ezért nyilván F x = F y = 0. a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák 24 / 26

73 példák alapi 1. V (r) = m g z, ahol m a test tömege, g egy állandó, z pedig r 3. koordinátája. Ekkor V független x-től és y-tól, ezért nyilván F x = F y = 0. a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák F z = d(mgz) dz = mg 24 / 26

74 példák alapi a munka a munkavégzés másik alakja definíciója 1. V (r) = m g z, ahol m a test tömege, g egy állandó, z pedig r 3. koordinátája. Ekkor V független x-től és y-tól, ezért nyilván F x = F y = 0. F z = d(mgz) dz = mg A testre tehát z irányban mg nagyságú erő hat. a munkatétel a potenciális energia példák 24 / 26

75 példák alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák 1. V (r) = m g z, ahol m a test tömege, g egy állandó, z pedig r 3. koordinátája. Ekkor V független x-től és y-tól, ezért nyilván F x = F y = 0. F z = d(mgz) dz = mg A testre tehát z irányban mg nagyságú erő hat. Ez a Föld felszín közelében a gravitációs erőtér esete. 2. Mozogjon a test csak az x tengely mentén és legyen V (x) = (1/2)Dx / 26

76 példák alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák 1. V (r) = m g z, ahol m a test tömege, g egy állandó, z pedig r 3. koordinátája. Ekkor V független x-től és y-tól, ezért nyilván F x = F y = 0. F z = d(mgz) dz = mg A testre tehát z irányban mg nagyságú erő hat. Ez a Föld felszín közelében a gravitációs erőtér esete. 2. Mozogjon a test csak az x tengely mentén és legyen V (x) = (1/2)Dx 2. F x = Dx 24 / 26

77 példák alapi a munka a munkavégzés másik alakja definíciója a munkatétel a potenciális energia példák 1. V (r) = m g z, ahol m a test tömege, g egy állandó, z pedig r 3. koordinátája. Ekkor V független x-től és y-tól, ezért nyilván F x = F y = 0. F z = d(mgz) dz = mg A testre tehát z irányban mg nagyságú erő hat. Ez a Föld felszín közelében a gravitációs erőtér esete. 2. Mozogjon a test csak az x tengely mentén és legyen V (x) = (1/2)Dx 2. Ez a rugón rezgő test esete. F x = Dx 24 / 26

78 alapi a newtoni mechanika 25 / 26

79 a newtoni mechanika alapi nagy sikereket ért el. (Mérnöki gyakorlat, bolygópályák számítása, új bolygók felfedezése, stb.) a newtoni mechanika 26 / 26

80 a newtoni mechanika alapi nagy sikereket ért el. (Mérnöki gyakorlat, bolygópályák számítása, új bolygók felfedezése, stb.) Kb. 100 éve ismerünk olyan jelenségeket, melyek esetén mérhető hibát ad a Newton-féle mechanika alkalmazása. a newtoni mechanika 26 / 26

81 a newtoni mechanika alapi a newtoni mechanika nagy sikereket ért el. (Mérnöki gyakorlat, bolygópályák számítása, új bolygók felfedezése, stb.) Kb. 100 éve ismerünk olyan jelenségeket, melyek esetén mérhető hibát ad a Newton-féle mechanika alkalmazása. A fő csoportok: A fény sebességével összemérhető sebességek világa. (Ezzel a speciális relativitáselmélet foglalkozik.) 26 / 26

82 a newtoni mechanika alapi a newtoni mechanika nagy sikereket ért el. (Mérnöki gyakorlat, bolygópályák számítása, új bolygók felfedezése, stb.) Kb. 100 éve ismerünk olyan jelenségeket, melyek esetén mérhető hibát ad a Newton-féle mechanika alkalmazása. A fő csoportok: A fény sebességével összemérhető sebességek világa. (Ezzel a speciális relativitáselmélet foglalkozik.) Rendkívül nagy tömegű testekhez közeli tartományok. (Általános relativitáselmélet.) 26 / 26

83 a newtoni mechanika alapi a newtoni mechanika nagy sikereket ért el. (Mérnöki gyakorlat, bolygópályák számítása, új bolygók felfedezése, stb.) Kb. 100 éve ismerünk olyan jelenségeket, melyek esetén mérhető hibát ad a Newton-féle mechanika alkalmazása. A fő csoportok: A fény sebességével összemérhető sebességek világa. (Ezzel a speciális relativitáselmélet foglalkozik.) Rendkívül nagy tömegű testekhez közeli tartományok. (Általános relativitáselmélet.) Az anyag elemi részeinek méretén lezajló folyamatok. (Kvantummechanika.) 26 / 26

84 a newtoni mechanika alapi a newtoni mechanika nagy sikereket ért el. (Mérnöki gyakorlat, bolygópályák számítása, új bolygók felfedezése, stb.) Kb. 100 éve ismerünk olyan jelenségeket, melyek esetén mérhető hibát ad a Newton-féle mechanika alkalmazása. A fő csoportok: A fény sebességével összemérhető sebességek világa. (Ezzel a speciális relativitáselmélet foglalkozik.) Rendkívül nagy tömegű testekhez közeli tartományok. (Általános relativitáselmélet.) Az anyag elemi részeinek méretén lezajló folyamatok. (Kvantummechanika.) Ezekkel később röviden találkozni fogunk. 26 / 26

85 a newtoni mechanika alapi a newtoni mechanika nagy sikereket ért el. (Mérnöki gyakorlat, bolygópályák számítása, új bolygók felfedezése, stb.) Kb. 100 éve ismerünk olyan jelenségeket, melyek esetén mérhető hibát ad a Newton-féle mechanika alkalmazása. A fő csoportok: A fény sebességével összemérhető sebességek világa. (Ezzel a speciális relativitáselmélet foglalkozik.) Rendkívül nagy tömegű testekhez közeli tartományok. (Általános relativitáselmélet.) Az anyag elemi részeinek méretén lezajló folyamatok. (Kvantummechanika.) Ezekkel később röviden találkozni fogunk. A mindennapokban a newtoni mechanika pontatlansága kimérhetetlenül kicsi, ezért többnyire bátran alkalmazhatjuk. 26 / 26

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29. A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek. Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.

Részletesebben

Komplex természettudomány 3.

Komplex természettudomány 3. Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Newton törvények és a gravitációs kölcsönhatás (Vázlat)

Newton törvények és a gravitációs kölcsönhatás (Vázlat) Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test

Részletesebben

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:... 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika ZH NÉV:.. 2018. október 18. Neptun kód:... g=10 m/s 2 Előadó: Márkus/Varga Az eredményeket a bekeretezett részbe be kell írni! 1. Egy m=3

Részletesebben

PÉLDÁK ERŐTÖRVÉNYEKRE

PÉLDÁK ERŐTÖRVÉNYEKRE PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

Speciális mozgásfajták

Speciális mozgásfajták DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően

Részletesebben

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten

Részletesebben

DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST

DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST Előszó a Fizika című tankönyvsorozathoz Előszó a Fizika I. (Klasszikus

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben

Fizika 1 Mechanika órai feladatok megoldása 7. hét

Fizika 1 Mechanika órai feladatok megoldása 7. hét Fizika 1 Mechanika órai feladatok megoldása 7. hét Az F erő által végzett munka, ha a test adott pályán mozog az r 1 helyvektorú P 1 pontból az r helyvektorú P pontba, az alábbi vonalintegrállal számolható:

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

Speciális relativitás

Speciális relativitás Bevezetés a modern fizika fejezeteibe 3. (b) Speciális relativitás Relativisztikus dinamika Utolsó módosítás: 2013 október 15. 1 A relativisztikus tömeg (1) A bevezetett Lorentz-transzformáció biztosítja

Részletesebben

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti

Részletesebben

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N IPULZUS OENTU Impulzusnyomaték, perdület, jele: N Definíció: Az (I) impulzussal rendelkező test impulzusmomentuma egy tetszőleges O pontra vonatkoztatva: O I r m Az impulzus momentum vektormennyiség: két

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

DINAMIKA ALAPJAI. Tömeg és az erő

DINAMIKA ALAPJAI. Tömeg és az erő DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK január 30.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK január 30. Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. január 30. Tapasztalatok az erővel kapcsolatban: elhajított kő, kilőtt nyílvessző, ásás, favágás Aristoteles: az erő a mozgás fenntartója Galilei: a mozgás

Részletesebben

A mechanikai alaptörvények ismerete

A mechanikai alaptörvények ismerete A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 20.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 20. Fizika Nyitray Gergely (Ph) PTE PMMIK 2017. február 20. A mechanikai energia megmaradás törvénye K(A)+V (A) = K(B)+V (B) K A +V A = K B +V B A mechanikai energia megmaradása rendkívül fontos. Csak olyan

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Mérnöki alapok 1. előadás

Mérnöki alapok 1. előadás Mérnöki alapok 1. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008 Égi mechanika tesztkérdések A hallgatók javaslatai 2008 1 1 Albert hajnalka 1. A tömegközéppont körüli mozgást leíró m 1 s1 = k 2 m 1m 2 r,m s r 2 r 2 2 = k 2 m 1m 2 r r 2 r mozgásegyenletek ekvivalensek

Részletesebben

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03 Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő

Részletesebben

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés. SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi

Részletesebben

Speciális relativitás

Speciális relativitás Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

Kinematika. A mozgás matematikai leírása, a mozgást kiváltó ok feltárása nélkül.

Kinematika. A mozgás matematikai leírása, a mozgást kiváltó ok feltárása nélkül. Kinematika A mozgás matematikai leírása, a mozgást kiváltó ok feltárása nélkül. Helyvektor és elmozdulás Egy test helyzetét és helyzetváltozását csak más testekhez viszonyítva írhatjuk le. Ezért először

Részletesebben

Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI

Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI Kvantumszimulátorok Szirmai Gergely MTA SZFKI Graphics: Harald Ritsch / Rainer Blatt, IQOQI A kvantummechanika körülvesz tranzisztor számítógép, mobiltelefon A kvantummechanika körülvesz tranzisztor számítógép,

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma

Részletesebben

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15 Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont

Részletesebben

A MECHANIKAI ENERGIA

A MECHANIKAI ENERGIA A MECHANIKAI ENERGIA. A mechanika munkatétele A mechanika munkatétele Newton második axiómájából következik. Newton második axiómája egyetlen tömegre (vagy tömegpontra): F d r ma m, (.) mely általános

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

A világtörvény keresése

A világtörvény keresése A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)

Részletesebben

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd

Részletesebben

Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki!

Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki! 1 Lövés csúzlival Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. A feladat Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

Fizika alapok. Az előadás témája

Fizika alapok. Az előadás témája Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ... Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár

Részletesebben

0. Teszt megoldás, matek, statika / kinematika

0. Teszt megoldás, matek, statika / kinematika 0. Teszt megoldás, matek, statika / kinematika Mechanika (ismétlés) statika, kinematika Dinamika, energia Áramlástan Reológia Optika find x Teszt: 30 perc, 30 kérdés Matek alapfogalmak: Adattípusok: Természetes,

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,

Részletesebben

Rezgőmozgás, lengőmozgás

Rezgőmozgás, lengőmozgás Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást

Részletesebben

Dinamika. p = mυ = F t vagy. = t

Dinamika. p = mυ = F t vagy. = t Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus

Részletesebben

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek 1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és

Részletesebben

A modern fizika születése

A modern fizika születése MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,

Részletesebben

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%)

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) A vizsga értékelése: Elégtelen: ha az írásbeli és a szóbeli rész összesen nem éri el a

Részletesebben

Newton törvények, lendület, sűrűség

Newton törvények, lendület, sűrűség Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

2 óra szeminárium, kedd 10 óra, 3/II terem. Elektronikus anyag: comodi.phys.ubbcluj.ro/elmeletifizika

2 óra szeminárium, kedd 10 óra, 3/II terem. Elektronikus anyag: comodi.phys.ubbcluj.ro/elmeletifizika Tematika: AZ ELMÉLETI FIZIKA ALAPJAI Kódszám: FLM1303 Kreditszám: 6 Órarend:3 óra előadás, hétfő 10 óra, 243A. terem 2 óra szeminárium, kedd 10 óra, 3/II terem Oktató: Lázár Zsolt József adjunktus főépület

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) Tasnádi Tamás 1 2015. április 17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Vektorok és axiálvektorok Forgómozgás, pörgettyűk

Részletesebben

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA 1. A kinematika és a dinamika tárgya. Egyenes onalú egyenletes mozgás a) Kísérlet és a belőle leont köetkeztetés b) A mozgás jellemző grafikonjai

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

V e r s e n y f e l h í v á s

V e r s e n y f e l h í v á s A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Sárospataki Református Kollégium Gimnáziumában TÁMOP-3.1.3-11/2-2012-0021 V e r s e n y f e l h í v á s A Sárospataki Református

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes

Részletesebben

A lengőfűrészelésről

A lengőfűrészelésről A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású

Részletesebben

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül. 01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj

Részletesebben