A MECHANIKAI ENERGIA
|
|
- Ferenc Pásztor
- 10 évvel ezelőtt
- Látták:
Átírás
1 A MECHANIKAI ENERGIA. A mechanika munkatétele A mechanika munkatétele Newton második axiómájából következik. Newton második axiómája egyetlen tömegre (vagy tömegpontra): F d r ma m, (.) mely általános esetben háromdimenziós vektoregyenlet, matematikai megnevezése: csatolt, közönséges másodrendű differenciálegyenlet-rendszer. A képletben F az erő vektora, a a tömegpont gyorsulásvektora, m a tömeg. A mechanikai munka definíciója a mozgó testre ható erő pálya szerinti vektoriális integrálja: F ds m ads. (.) Az integrálást a mozgási pálya két tetszőleges P és P pontja között kell elvégezni. A képletben a mozgó test energiájának megváltozását jelöltük, amely az F erő munkájának következménye. A mechanikai munka vagy energia skalár mennyiség (azaz csak számértéke van, de iránya nincs), és amely tetszőleges előjelű lehet. Tehát a mechanikai munka, vagy energia lehet pozitív, nulla és negatív is. Speciális esetben a munka nulla, ha az erő és elmozdulás minden időpillanatban merőleges egymásra, ez az egyenletes körmozgásnál áll fenn. A fenti integrál idő tartományra transzformálható: m t a ds m & t t d( r ) & rr && m E ( t) E ( ). (.3) Az integrálás végeredménye a mozgási (etikus) energia megváltozása, mely az előzőek szerint tetszőleges előjelű lehet. A mozgási energia definíciója a fenti integrálban: E mr& mv 0, (.4) amely sohasem lehet negatív értékű (a v a test sebessége). Newton második axiómájának, azaz a dinamika alapegyenletének első integrálja szavakban azt jelenti, hogy az m tömegű testen végzett munka a test mozgási (etikus) energiáját változtatja meg. Ez a tankönyvekben munkatétel elnevezéssel szerepel. A munkatétel nem mond semmit az energiamegmaradásról, csupán csak azt fejezi ki, hogy a mechanikai munkavégzés egy test mozgási energiáját változtatja meg.. Az energia megmaradása Az energia-megmaradás hipotézise a mai tudomány, ezen belül a fizika alapvető állítása, mely hozzávetőlegesen százötven éve nyert általános elfogadást. A mai modern fizikában az energia-megmaradás hipotézisét olyan erős elméleti és tapasztalati tények támasztják alá, hogy igazában kételyek nem merülnek fel. Ezt igazolja a mai elnevezések is, hiszen energiamegmaradás törvényéről, tételéről beszélünk, így kerül oktatásra is az ifjú nemzedékeknek.
2 A valóságos képről azonban tudnunk kell, hogy az energia-megmaradás valójában egy hipotézis, axióma. Az egész tudomány, a fizikát is beleértve, tapasztalati axiómákra épül, melyek igazát az egyes tudományok történeti fejlődése igazolja. Ugyancsak tisztában kell lennünk azzal, hogy minden axióma, tétel, törvény a maga megszabott feltételei mellett érvényes. Tudjuk, hogy az euklideszi geometria egyik fontos axiómája, hogy egyenesen kívüli ponton csak egyetlen párhuzamos egyenes húzható egy adott síkban. A nem-euklideszi geometriákban (pl. Bolyai geometria, Riemann geometria) ez az axióma (meglepő módon) nem igaz, ráadásul biztonságosan beigazolódott, az Univerzum egészében nem-euklideszi geometriájú. Maga az energia-megmaradás kimondásának története is nagyon érdekes, egyáltalán nem volt egyszerű folyamat. A törvény felismerésben a biológia, kémia, a fizikán belül elsősorban a termodinamika játszott szerepet. A gyakorlat szempontjából a mechanikai energia vált fontossá az ipari forradalom beköszöntével, amelyet már nem lehetett állati erővel biztosítani. Elterje a gőzgép, fontosakká váltak a tüzelőanyagok. A történeti fejlődés azt is igazolta, hogy a mechanikai energia yerése mindig veszteséges. Az eddigi történelem során a mechanikai energia előállítása majdnem kizárólagosan hőenergiából történt és ma is ez a helyzet. Kivételek például a galvánelemekből, akkumulátorokból, napelemekből yerhető közvetlen elektromos energia. A megújuló energiaforrások, mint a vízi energia, szélenergia a nap hőenergiájából származik. Nukleáris eredetű az atomerőművek, valamint a termálvizek energiája. Az utóbbi a föld mélyében lévő radioaktív anyagok bomlásából származik, melyekre a termálvizes fürdőkön kívül geotermikus erőművek épülnek. A termodinamika fontos tétele szerint a hőenergia elvileg nem alakítható át 00 százalékosan mechanikai energiává, azaz a hőerőgépek hatásfoka minden esetben 00 százalék alatt marad. Ugyanakkor bizonyos régi, gyengén, vagy egyáltalán nem dokumentált kísérletek, vagy egyes mai elméleti meggondolások nem zárják ki annak lehetőségét, hogy egy test mozgása során nemcsak energiaveszteség, de esetleg energianyereség is felléphet. A súrlódásmentes, tiszta mechanika kozmikus méretekben valósul meg a természetben. A Naprendszeren belüli bolygók évmilliárdok óta léteznek, ezek pályái rendkívül stabilaknak mutatkoznak, amely a newtoni mechanika értelmében az energia és a perdület időbeli stabilitását jelentik. A perdület (impulzusmomentum) állandóságából következik, hogy a bolygók, holdak és mesterséges égitestek keringési síkja is időben állandó marad. Az energia és perdület időbeli állandóságát más néven ezek megmaradásának nevezik. A megmaradás szót ebben az értelemben használjuk. Egyszerű példával élve a sárgabarack befőtt tulajdonságai hosszú ideig megmaradnak, ha állandó alacsony hőmérsékleten tartjuk, és előzetes hőkezeléssel biztosítottuk a megromlás elkerülését. A fizikában definiálják a zárt rendszer fogalmát, amelyre külső behatás, kölcsönhatás nem hat, magyarul el van szigetelve a külvilágtól. A természettudomány axiómája szerint zárt rendszer bizonyos tulajdonságai nem változhatnak meg, ezen belül a zárt rendszer összenergiája sem. Ebben az értelemben állítjuk az energia-megmaradás tételét, mely a fentiek szerint egy tapasztalati axióma. Az axiómákat bizonyítani nem lehet, de ha van egyetlen ellenkező tapasztalat, az axióma érvényét veszti. A mechanikában a megmaradási tételekre egyértelmű bizonyíték jelenleg csak kozmikus méretekben áll fenn megbízhatóan (például a Naprendszer a bolygóival). Földi viszonylatban a hétköznapi gyakorlat elfogadott pontosságon belül igazolta a megmaradási tételeket, konkrétan az energia, impulzus és a perdület megmaradását. Időközben a méréstechnika fejlődésével jogosan merül fel annak a tudományos vizsgálatnak az igénye, hogy ezek a mechanikai alaptételek mennyire pontosan teljesülnek. Ez már a tudományos kutatás, a kísérleti fizika szigorú módszereit igényli. Elméletileg ugyanis nem zárható ki, hogy a newtoni mechanika csak bizonyos meghatározott esetekben lehet igaz. A földi mechanikai kísérleteknél a zavaró tényező a különböző eredetű súrlódás. Mai tudásunk szerint a súrlódások folyamán a mechanikai energia hőenergiává alakul át (ez a disszipáció). A mechanikai energia veszteségét okozhatják még az elektromágneses jelenségek is, de ezek hatása egyszerűen elkerülhető: elektromosan és mágnesesen semleges testeket, alkatrészeket használunk a kísérletekben.
3 Newton második axiómája (F ma) önmagában hordozza a mechanikai energiamegmaradás törvényét, amennyiben az F erő bizonyos feltételeknek eleget tesz. Emmy Noether (88-935) német matematikusnő precízen bebizonyította, hogy az energia megmaradása az idő eltolásának szimmetriájából következik. Ez azt jelenti, hogy ha a mechanikai mozgásegyenletek a t időben, és tetszőleges t + t időben ugyanazok, akkor a mechanikai energia megmarad. A gyakorlatban gyakran előforduló erőtípus (pl. a gravitációs erőtér) esetében a mechanikai energia megmaradása teljesül, legalábbis a Newton-i mechanika keretén belül. Az olyan erőtereket, melyeknél teljesül az energia megmaradása, konzervatív erőtereknek nevezzük. Konzervatív speciálisan az olyan erőtér, melynél a ható erő a következő alakban írható fel: F( r) gradu( r). (.) Az U(r) függvényt potenciális energia függvénynek nevezzük, mely kizárólag csak a hely (a koordináták) függvénye. Lényeges tulajdonsága, hogy nem függhet az időtől. A grad jelölés egy matematikai műveletet jelöl, például az erő x-tengely irányú komponensét az U(r) függvény x-szerinti deriváltja adja. Hasonlóan kapjuk meg az y és z erőkomponenseket is. Egyszerű matematikai levezetéssel könnyen megmutatható, hogy a fenti egyenlettel definiálható erők esetén a etikus energia és a potenciális energia összege a mozgás folyamán állandó: amelyből: F ds E ( ) E ( ) U ( ) U ( ), (.) E ( P ) + U ( ) E ( ) + U ( ) állandó. (.3) Mivel a P és P pontok megválasztása tetszőleges, ezért a pálya tetszőleges pontjában a etikus és potenciális energia összege állandó. Akik számára a fenti képletek emészthetetlenek, csak emlékeztetünk a középiskolai fizika tanulmányokra. Egyik feladat volt a szabadon eső test sebességének meghatározása különböző h magasságokban. A feladat konkrét megoldása (.3) szerint: mv mgh mv + mgh állandó. + (.4) 3. Extra mechanikai energia Elvileg tehát nem zárható ki, hogy a testek bonyolultabb mozgása során a fizikában eddig ismeretlen eredetű energiaveszteség, vagy energianyereség léphet fel. Az utóbbit nevezhetjük extra mechanikai energiának, vagy többletenergiának. Erre a fogalomra az angolban az overunity szó terje el, ami 00 százalékon felüli hatásfokot jelent. Egy test bonyolult mozgásán azt értjük, hogy a test mozgása során a sebessége, gyorsulása térben és időben változik. Egy test bonyolult mozgása két úton biztosítható: kényszer feltételekkel (pl. kényszerpálya), vagy bonyolultabb eloszlású erőterekkel. A kényszerpályákról ideális esetben feltehető, hogy súrlódásmentes és mindig merőleges kényszert jelent a test pillanatnyi elmozdulására. Röviden: az ideális kényszerpálya önmagában nem ad és nem vesz el mozgási energiát a rajta mozgó testtől. Bonyolultabb erőterek alatt itt a több test által létrehozott gravitációs, és/vagy elektromágneses erőtereket értünk. A külső erőterek növelhetik, vagy csökkenthetik a mozgó testek energiáját. Elektromágneses erőtér nyílván csak akkor befolyásolja a test mozgását, ha az elektromos töltésű és/vagy mágnesezett. 3
4 A Naprendszer kozmikus laboratóriumában már nagy pontossággal igazolást nyert, hogy a síkban, azaz két dimenzióban mozgó bolygók, mesterséges égitestek teljes mechanikai energiája (a etikus és potenciális energia összege) időben állandó, azaz nem mutatható ki mozgásukban extraenergia. Tehát mindenképpen a háromdimenziós mozgásokat kell vizsgálnunk. Tételezzük fel, hogy az extraenergia azokban az esetekben lép fel, amikor a mozgás sebesség és gyorsulás vektorainak bezárt szöge időben változik. Kiegészítő feltétel, hogy a mozgás háromdimenziós legyen. A etikus energia megváltozását ebben a módosított mechanikában a következő, a lehető legegyszerűbb matematikai képlettel modellezhetjük: ds + Km d a] ds F, (3.) ahol a második extraenergia tag a tömeggel arányos, az arányossági tényező a K, amely egy kísérletileg meghatározandó állandó. Az extraenergia tag explicite nem tartalmaz ismert külső eredetű erőt, az extraenergia forrását tisztán a mozgó test sebességével és gyorsulásával jellemzett pályája jelenti. Az extraenergia fizikai háttere például az lehet, hogy a külső tér ismeretlen kölcsönhatásba lép a mozgó testtel, ha az bonyolult térbeli mozgást végez. A (3.) modellben az extra-energia tag egyszerűsíthető: d a] ezért az (3.) egyenlet a következő lesz: [ v&, a] + ] ] ; (3.) F ds + Km & ds. (3.3) a ] Az extraenergia tag a sebességet és a gyorsulás deriváltját vektori szorzat alakban tartalmazza, amely szorzatvektor síkbeli mozgás esetén mindig merőleges a ds vektorra. Ezért síkbeli mozgásnál az extraenergia tag zérust eredményez. Az extraenergia, ha egyáltalán létezik, csak térbeli, háromdimenziós mozgásnál jöhet számításba. A (3.3) képlet szerint Newton második axiómája módosul háromdimenziós mozgások esetén: ] F ma Km, (3.4) amely egy harmadrendű csatolt közönséges differenciálegyenlet-rendszer. Síkbeli mozgás esetén természetesen ez az egyenlet megegyezik az eredeti Newton-egyenlettel, a differenciálegyenlet-rendszer másodrendűvé redukálódik. Ha egy test a magasabb szinten lévő P pontból a lentebbi P pontba mozog egy térgörbe mentén, mely nem egyenes vonalú, nem egy síkban van (például: térbeli spirál), ekkor a (3.3) képletben az első tag egyszerűsödik: mgh + Km [, a ] v & ds, (3.5) ahol h az P és P pontok magasság-különbsége. Az extraenergia kimutatását célzó kísérletet ezzel a képlettel lehet kiértékelni. A képlet legegyszerűbb kísérleti ellenőrzése lehet, ha egy térbeli spirális kényszerpályán leguruló ólom-, vagy acélgolyó végsebességének változását 4
5 mérjük. A mérés során egy rugalmas anyagból készült kényszerpálya alakját (pl. gumi, vagy műanyag cső) mérésenként kisebb-nagyobb mértékben megváltoztatjuk. Ami nagyon befolyásolhatja az objektív végeredményt, hogy a cső alakjának változtatásával a súrlódási veszteség is megváltozhat. A gyakorlatban megvalósítható, a fénysebességhez képest messzi elhanyagolható sebességeknél az extra mechanikai energia, ha egyáltalán létezik ilyen, valószínűleg nagyon-nagyon piciny mértékű lehet, ami már eleve a mérési zajban elveszhet. Az extraenergia létezésének, nemlétezésének kísérleti kimutatása tehát nagyon nehéz méréstechnikai feladat. 5
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
A mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.
Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Munka, energia Munkatétel, a mechanikai energia megmaradása
Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő
Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika ZH NÉV:.. 2018. október 18. Neptun kód:... g=10 m/s 2 Előadó: Márkus/Varga Az eredményeket a bekeretezett részbe be kell írni! 1. Egy m=3
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
A mechanikai alaptörvények ismerete
A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára
Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
Speciális relativitás
Bevezetés a modern fizika fejezeteibe 3. (b) Speciális relativitás Relativisztikus dinamika Utolsó módosítás: 2013 október 15. 1 A relativisztikus tömeg (1) A bevezetett Lorentz-transzformáció biztosítja
Komplex természettudomány 3.
Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott
Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%)
Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) A vizsga értékelése: Elégtelen: ha az írásbeli és a szóbeli rész összesen nem éri el a
IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N
IPULZUS OENTU Impulzusnyomaték, perdület, jele: N Definíció: Az (I) impulzussal rendelkező test impulzusmomentuma egy tetszőleges O pontra vonatkoztatva: O I r m Az impulzus momentum vektormennyiség: két
Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ
Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?
Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.
Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika
Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós
Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben
Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Newton törvények és a gravitációs kölcsönhatás (Vázlat)
Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások
Kifejtendő kérdések december 11. Gyakorló feladatok
Kifejtendő kérdések 2016. december 11. Gyakorló feladatok 1. Adja meg és a pályagörbe felrajzolásával értelmezze egy tömegpont általános síkbeli mozgását jellemző kinematikai mennyiségeket (1p)! Vezesse
Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
Mit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
Termodinamika. Belső energia
Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk
A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.
A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?
A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.
Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
V e r s e n y f e l h í v á s
A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Sárospataki Református Kollégium Gimnáziumában TÁMOP-3.1.3-11/2-2012-0021 V e r s e n y f e l h í v á s A Sárospataki Református
2.3 Newton törvények, mozgás lejtőn, pontrendszerek
Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat
Mérnöki alapok 2. előadás
Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika
Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó
Fizika alapok. Az előadás témája
Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális
FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június
1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.
01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK január 30.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. január 30. Tapasztalatok az erővel kapcsolatban: elhajított kő, kilőtt nyílvessző, ásás, favágás Aristoteles: az erő a mozgás fenntartója Galilei: a mozgás
DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST
DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST Előszó a Fizika című tankönyvsorozathoz Előszó a Fizika I. (Klasszikus
Newton törvények, lendület, sűrűség
Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora
Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre
A világtörvény keresése
A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)
Elektromágneses hullámok
Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.
A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések
. REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
Égi mechanika tesztkérdések. A hallgatók javaslatai 2008
Égi mechanika tesztkérdések A hallgatók javaslatai 2008 1 1 Albert hajnalka 1. A tömegközéppont körüli mozgást leíró m 1 s1 = k 2 m 1m 2 r,m s r 2 r 2 2 = k 2 m 1m 2 r r 2 r mozgásegyenletek ekvivalensek
Chasles tételéről. Előkészítés
1 Chasles tételéről A minap megint találtunk valami érdekeset az interneten. Az [ 1 ] tankönyvet, illetve an - nak fejezetenként felrakott egyetemi internetes változatát. Utóbbi 20. fejezetében volt az,
Irányításelmélet és technika I.
Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010
Az elméleti mechanika alapjai
Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
Tartalomjegyzék. A mechanika elvei. A virtuális munka elve. A TételWiki wikiből 1 / 6
1 / 6 A TételWiki wikiből Tartalomjegyzék 1 A mechanika elvei 2 A virtuális munka elve 3 d'alembert elv és a Lagrange-féle elsőfajú egyenletek 4 A Gauss-féle legkisebb kényszer 5 Általános koordináták
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó
Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:
Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...
Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár
Speciális mozgásfajták
DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális
Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását
Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális
6. A Lagrange-formalizmus
Drótos G.: Fejezetek az elméleti mechanikából 6. rész 1 6. A Lagrange-formalizmus A Lagrange-formalizmus alkalmazásával bizonyos fizikai rendszerek mozgásegyenleteit írhatjuk fel egyszerű módon. Az alapvető
Kinematika. A mozgás matematikai leírása, a mozgást kiváltó ok feltárása nélkül.
Kinematika A mozgás matematikai leírása, a mozgást kiváltó ok feltárása nélkül. Helyvektor és elmozdulás Egy test helyzetét és helyzetváltozását csak más testekhez viszonyítva írhatjuk le. Ezért először
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
FIZIKA VIZSGATEMATIKA
FIZIKA VIZSGATEMATIKA osztályozó vizsga írásbeli szóbeli időtartam 60p 10p arány az értékelésnél 60% 40% A vizsga értékelése jeles (5) 80%-tól jó (4) 65%-tól közepes (3) 50%-tól elégséges (2) 35%-tól Ha
Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően
A Lenz - vektorról. Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra.
1 A Lenz - vektorról Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra. 1. ábra forrása: [ 1 ] Ez nem régen történt. Meglepett, hogy eddig ez kimaradt. Annál is inkább, mert
2 óra szeminárium, kedd 10 óra, 3/II terem. Elektronikus anyag: comodi.phys.ubbcluj.ro/elmeletifizika
Tematika: AZ ELMÉLETI FIZIKA ALAPJAI Kódszám: FLM1303 Kreditszám: 6 Órarend:3 óra előadás, hétfő 10 óra, 243A. terem 2 óra szeminárium, kedd 10 óra, 3/II terem Oktató: Lázár Zsolt József adjunktus főépület
Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?
Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye
EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA
EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA 1. A kinematika és a dinamika tárgya. Egyenes onalú egyenletes mozgás a) Kísérlet és a belőle leont köetkeztetés b) A mozgás jellemző grafikonjai
ÁLTALÁNOS JÁRMŰGÉPTAN
ÁLTALÁNOS JÁRMŰGÉPTAN ELLENŐRZŐ KÉRDÉSEK 3. GÉPEK MECHANIKAI FOLYAMATAI 1. Definiálja a térbeli pont helyvektorát! r helyvektor előáll ortogonális (a 3 tengely egymásra merőleges) koordinátarendszer koordinátairányú
Tömegvonzás, bolygómozgás
Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test
PÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
Mechanika - Versenyfeladatok
Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
DR. BUDO ÁGOSTON ' # i. akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA. Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST
DR. BUDO ÁGOSTON ' # i akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST 1991 TARTALOMJEGYZÉK Bevezette 1.. A klasszikus mechanika feladata, érvényességi határai
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
. T É M A K Ö R Ö K É S K Í S É R L E T E K
T É M A K Ö R Ö K ÉS K Í S É R L E T E K Fizika 2018. Egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!
Fizika vizsgakövetelmény
Fizika vizsgakövetelmény A tanuló tudja, hogy a fizika alapvető megismerési módszere a megfigyelés, kísérletezés, mérés, és ezeket mindig valamilyen szempont szerint végezzük. Legyen képes fizikai jelenségek
Hőtan I. főtétele tesztek
Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői. 2. A gyorsulás
1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői Kísérlet: Határozza meg a Mikola féle csőben mozgó buborék mozgásának sebességét! Eszközök: Mikola féle cső, stopper, alátámasztó
Felvételi, 2017 július -Alapképzés, fizika vizsga-
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott
DINAMIKA ALAPJAI. Tömeg és az erő
DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban
TANMENET Fizika 7. évfolyam
TANMENET Fizika 7. évfolyam az Oktatáskutató és Fejlesztő Intézet NT-11715 raktári számú tankönyvéhez a kerettanterv B) változata szerint Heti 2 óra, évi 72 óra A tananyag feldolgozása során kiemelt figyelmet
Fizika példák a döntőben
Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18
Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy
A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p
Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
A gravitáció összetett erőtér
A gravitáció összetett erőtér /Az indukált gravitációs erőtér című írás (hu.scribd.com/doc/95337681/indukaltgravitacios-terer) 19. fejezetének bizonyítása az alábbiakban./ A gravitációs erőtér felbontható
Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály
Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test
Mérnöki alapok 1. előadás
Mérnöki alapok 1. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: