Termodinamika. Belső energia

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Termodinamika. Belső energia"

Átírás

1 Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk meg. A jele E b, mértékegysége a J (joule).

2 Termikus kölcsönhatás Ha két különböző hőmérsékletű test érintkezik, akkor hőmérsékletkiegyenlítődés történik. A melegebb test hőt ad le, a hidegebb pedig hőt vesz fel. (Korábban egy un. hőanyag cseréjét feltételezték.)

3 A belső energia kiszámítása Szabadsági fok: Egy test szabadsági fokainak száma azonos azon független koordináták minimális számával, melyekkel a test helyzete egy vonatkoztatási rendszerhez képest bármely pillanatban leírható.

4 Szabadsági fokok (f) száma Egyatomos gázok (nemesgázok) esetén f = 3, amely a haladó mozgásból származik. Kétatomos gázoknál (pl. O 2 ) f = 5, amelyből 3 a haladó mozgásból, 2 pedig a forgómozgásból következik. Három vagy többatomos gázok esetén f = 6, amelyből 3 a haladó mozgásból, 3 pedig a forgómozgásból származik.

5 Ha az adott részecskének f szabadsági foka van, akkor energiája átlagosan ε = f k T. 2 A rendszer azonos részecskékből áll, ezt N-nel (a részecskék számával) megszorozva kapjuk a rendszer belső energiáját:

6 I. főtétel: A hőtan főtételei Egy test belső energiájának változása egyenlő a testnek hőközléssel átadott energia és a testen végzett munka összegével. II. főtétel: E b Q W A hő magától csak a melegebb helyről a hidegebbre mehet át: a természetben a spontán folyamatok iránya olyan, hogy a hőmérsékletkülönbségek kiegyenlítődnek.

7 A hőtan főtételei III. főtétel: Az abszolút nulla hőmérséklet tetszőlegesen megközelíthető, de nem érhető el.

8 Hőkapacitás Egy rendszer hőkapacitása megadja, hogy mennyi hőt (Q) kell közölni a rendszerrel, hogy hőmérséklete (T) egy kelvinnel emelkedjék. Jele: C, mértékegysége: J/K. A hőmennyiség megváltozása egyenesen arányos hőmérséklet-változással. hőkapacitás Q C T a hőmennyiség megváltozása hőmérséklet - változás A hőkapacitás olyan anyagjellemző, amelynek értékét általában kísérleti úton határozzák meg.

9 Fajhő A fajhő annak a hőnek a számértéke, amely 1 kg tömegű anyag hőmérsékletét 1 C = 1 K-kal emeli. Fajhőnek nevezzük az alábbi mennyiséget. hőkapacitás fajhő c C m Q m T tömeg Megkülönböztetünk állandó térfogaton vett fajhőt c V és állandó nyomáson vett fajhőt c p.

10 Molhő Számértékileg megadja a mólnyi mennyiségű vegyület vagy elem 1 K-al való felmelegítéséhez szükséges hőmennyiséget. Másképpen: A test mólnyi mennyiségének hőkapacitása. hőkapcítás molhő c M C n Q n T molszám

11 Q C T Mértékegységek c C m c M C n

12 Térfogati munka

13 Ha a gáz tágul ( V > 0) és a külső nyomás nem nulla, akkor a munka negatív, a belső energia csökken ( E b < 0). Ha viszont a gázt környezete összenyomja ( V < 0), akkor a végzett munka pozitív, a belső energia nő ( E b < 0). A végzett munka tehát: W = - p. V A hőelmélet I. főtétele így a következő alakban írható fel: E b Q p V

14 A gázok állapotváltozásai az I. főtétel alapján Izotermikus állapotváltozás során a gázzal közölt hőmennyiség (Q) teljes egészében a környezetnek adódik át mechanikai munkavégzés (W) formájában, illetve a gázon végzett mechanikai munka számértéke megegyezik azzal a hőmennyiséggel, amelyet a gáz az állapotváltozás során a környezetének lead. mivel T= állandó T = 0 E b = cmt = 0 ezért Q = W = - pv

15 Az Izobár állapotváltozás (p = áll.) során a térfogati munka értéke: W = - pv = - p(v 2 - V 1 ) Az első főtétel ezen állapotváltozásra érvényes alakja a következő: ) ( ) ( ) V V p T T m c V p E T m c Q v b p

16 Izochor állapotváltozás (V = áll.) A folyamat során a gáz térfogati munkát nem végez, a gáz belső energiájának megváltozása egyenlő a gázzal közölt hőmennyiség értékével: Q E b c v m T

17 Adiabatikus állapotváltozás

18 Adiabatikus állapotváltozás ábrázolása p p 2 2 p 1 1 T 1 T 2 v v 2 v 1

19 Az első főtételben szereplő mennyiségek közül a közölt hőmennyiség (Q) értéke zérus, vagyis a gáz által végzett térfogati munka (W) éppen egyenlő a gáz belső energiájának megváltozásával, vagyis E b = W

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

A hőmérséklet változtatásával a szilárd testek hosszméretei megváltoznak, mégpedig melegítéskor általában növekednek. Ez azzal magyarázható, hogy a

A hőmérséklet változtatásával a szilárd testek hosszméretei megváltoznak, mégpedig melegítéskor általában növekednek. Ez azzal magyarázható, hogy a Kísérletek: 1 2 3 4 A hőmérséklet változtatásával a szilárd testek hosszméretei megváltoznak, mégpedig melegítéskor általában növekednek. Ez azzal magyarázható, hogy a szilárd testet alkotó molekulák rezgőmozgásának

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Hőtan főtételei. (vázlat)

Hőtan főtételei. (vázlat) Hőtan főtételei (vázlat) 1. Belső energia oka, a hőtan I. főtétele. Ideális gázok belső energiája 3. Az ekvipartíció elve 4. Hőközlés és térfogati munka, a hőtan I. főtétele ideális gázokra 5. A hőtan

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

Hőtan 2. feladatok és megoldások

Hőtan 2. feladatok és megoldások Hőtan 2. feladatok és megoldások 1. Mekkora a hőmérséklete 60 g héliumnak, ha első energiája 45 kj? 2. A úvárok oxigénpalakjáan 4 kg 17 0C-os gáz van. Mekkora a első energiája? 3. A tanulók - a fizika

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

Komplex természettudomány 3.

Komplex természettudomány 3. Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok

Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok Az előadás anyaga pár napon belül pdf formában is elérhető: energia.bme.hu/~imreattila (nem kell elé www!)

Részletesebben

Termokémia. Termokémia Dia 1 /55

Termokémia. Termokémia Dia 1 /55 Termokémia 6-1 Terminológia 6-2 Hő 6-3 Reakcióhő, kalorimetria 6-4 Munka 6-5 A termodinamika első főtétele 6-6 Reakcióhő: U és H 6-7 H indirekt meghatározása: Hess-tétel 6-8 Standard képződési entalpia

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 20.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 20. Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 20. A termodinamikai rendszer fogalma Termodinamika: Nagy részecskeszámú rendszerek fizikája. N A 10 23 db. A rendszer(r): A világ azon része, amely

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor 1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a

Részletesebben

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással Fizika feladatok 014. december 8. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-3) Határozzuk meg egy 0 cm hosszú, 4 cm átmérőjű hengeres vörösréz rúdon

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor

Részletesebben

TestLine - Fizika hőjelenségek Minta feladatsor

TestLine - Fizika hőjelenségek Minta feladatsor 1. 2:29 Normál zt a hőmérsékletet, melyen a folyadék forrni kezd, forráspontnak nevezzük. Különböző anyagok forráspontja más és más. Minden folyadék minden hőmérsékleten párolog. párolgás gyorsabb, ha

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor 1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek

Részletesebben

1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai

1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai 3.1. Ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai rendszer? Az anyagi valóság egy, általunk kiválasztott szempont vagy szempontrendszer

Részletesebben

Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia

Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia Az energia bevezetése az iskolába Készítette: Rimai Anasztázia Bevezetés Fizika oktatása Energia probléma Termodinamika a tankönyvekben A termodinamikai fogalmak kialakulása Az energia fogalom története

Részletesebben

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS MŰSZAKI TERMODINAMIKA. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS 207/8/2 MT0A Munkaidő: 90 perc NÉV:... NEPTUN KÓD: TEREM HELYSZÁM:... DÁTUM:... KÉPZÉS Energetikai mérnök BSc Gépészmérnök BSc JELÖLJE MEG

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

A termodinamika törvényei

A termodinamika törvényei A termodinamika törvényei 2009. 03. 23-24. Kiss Balázs Termodinamikai Természeti környezetünk meghatározott tulajdonságú falakkal leválasztott része. nincs kölcsönhatás a környezettel izolált kissb3@gmail.com

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

Műszaki hőtan I. ellenőrző kérdések

Műszaki hőtan I. ellenőrző kérdések Alapfogalmak, 0. főtétel Műszaki hőtan I. ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és zárt termodinamikai rendszer? A termodinamikai rendszer (TDR) az anyagi

Részletesebben

Termodinamika. Tóth Mónika

Termodinamika. Tóth Mónika Termodinamika Tóth Mónika 2012.11.26-27 monika.a.toth@aok.pte.hu Hőmérséklet Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. Különböző hőmérsékleti skálák.

Részletesebben

Fizika minta feladatsor

Fizika minta feladatsor Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,

Részletesebben

Munka, energia, teljesítmény

Munka, energia, teljesítmény Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Munka, energia, teljesítmény

Munka, energia, teljesítmény Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ... Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat, 2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk. A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?

Részletesebben

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja: Képzési kódja: MŰSZAKI HŐTAN I. 1. ZÁRTHELYI N- Név: Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Dobai Attila Györke Gábor Péter Norbert Vass Bálint Termodinamika

Részletesebben

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

Termodinamika. Gázok hőtágulása, gáztörvények. Az anyag gázállapota. Avogadro törvény Hőmérséklet. Tóth Mónika.

Termodinamika. Gázok hőtágulása, gáztörvények. Az anyag gázállapota. Avogadro törvény Hőmérséklet. Tóth Mónika. Hőmérséklet ermodinamika Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. óth Mónika 203 monika.a.toth@aok.pte.hu Különböző hőmérsékleti skálák. Kelvin skálájú

Részletesebben

Gáztörvények tesztek

Gáztörvények tesztek Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI MŰSZAKI HŐAN I.. ZÁRHELYI Név: Kézési kód: _N_ Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Both Ambrus Dr. Cséfalvay Edit Györke Gábor Lengyel Vivien Pa Máté Gábor

Részletesebben

Munka- és energiatermelés. Bányai István

Munka- és energiatermelés. Bányai István Munka- és energiatermelés Bányai István Joule tétele: adiabatikus munka A XIX. Sz. legnagyobb kihívása a munka Emberi erőforrás (rabszolga, szolga, bérmunkás, erkölcs?, ár!) Állati erőforrás (kevésbé erkölcssértő?,

Részletesebben

Mivel foglalkozik a hőtan?

Mivel foglalkozik a hőtan? Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:

Részletesebben

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés. SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi

Részletesebben

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F III. HőTAN 1. A HŐMÉSÉKLET ÉS A HŐ Látni fogjuk: a mechanika fogalmai jelennek meg mikroszkópikus szinten 1.1. A hőmérséklet Mindennapi általános tapasztalatunk van. Termikus egyensúly a résztvevők hőmérséklete

Részletesebben

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

Gázrészecskék energiája: Minél gyorsabban mozognak a részecskék, annál nagyobb a mozgási energiájuk. A gáz hőmérséklete egyenesen arányos a

Gázrészecskék energiája: Minél gyorsabban mozognak a részecskék, annál nagyobb a mozgási energiájuk. A gáz hőmérséklete egyenesen arányos a Hőtan (2. rész) Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 6.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 6. Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 6. A termodinamikai rendszer fogalma Termodinamika: Nagy részecskeszámú rendszerek fizikája. N A 10 23 db. A rendszer(r): A világ azon része, amely

Részletesebben

Műszaki hőtantermodinamika. Műszaki menedzsereknek. BME Energetikai Gépek és Rendszerek Tanszék

Műszaki hőtantermodinamika. Műszaki menedzsereknek. BME Energetikai Gépek és Rendszerek Tanszék Műszaki hőtantermodinamika Műszaki menedzsereknek Termodinamikai rendszer Meghatározott anyagmennyiség, agy/és Véges térrész. A termodinamikai rendszert a környezetétől tényleges agy elkézelt fal álasztja

Részletesebben

Termodinamika. Tóth Mónika

Termodinamika. Tóth Mónika Termodinamika Tóth Mónika 2015 monika.a.toth@aok.pte.hu Termodinamika Hő Mozgás TERMODINAMIKA a világ egy jól körülhatárolt részének a RENDSZERnek és a rendszer KÖRNYEZETének kölcsönhatásával és a rendszer

Részletesebben

Elméleti kérdések és válaszok

Elméleti kérdések és válaszok Elméleti kérdések és válaszok (folyamatosan bővül) 10. évfolyam Tartalom 1. Egy gyakorlati példán mutasd be mit nevezünk hőérzetnek!... 4 2. Hasonlítsd össze a Celsius és a Kelvin skálát!... 4 3. Hogyan

Részletesebben

4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban

4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban Energetika 1 4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban Energodinamikai rendszerek vizsgálata során elsősorban gáznemű halmazállapot esetén lényeges az állapotváltozásokat megkülönböztetni.

Részletesebben

FIZIKA FELMÉRŐ tanulmányaikat kezdőknek

FIZIKA FELMÉRŐ tanulmányaikat kezdőknek FIZ2012 FIZIKA FELMÉRŐ tanulmányaikat kezdőknek Terem: Munkaidő: 60 perc. Használható segédeszköz: zsebszámológép (függvénytáblázatot nem használhat). Válaszait csak az üres mezőkbe írja! A javítók a szürke

Részletesebben

A klasszikus mechanika alapjai

A klasszikus mechanika alapjai A klasszikus mechanika alapjai FIZIKA 9. Mozgások, állapotváltozások 2017. október 27. Tartalomjegyzék 1 Az SI egységek Az SI alapegységei Az SI előtagok Az SI származtatott mennyiségei 2 i alapfogalmak

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

21. A testek hőtágulása

21. A testek hőtágulása 21. A testek hőtágulása Végezzen el két kísérletet a hőtágulás jelenségének szemléltetésére a rendelkezésre álló eszközök felhasználásával! Magyarázza meg a kísérleteknél tapasztalt jelenséget! Soroljon

Részletesebben

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Termokémia Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakcióhő fogalma A reakcióhő tehát a kémiai változásokat kísérő energiaváltozást jelenti.

Részletesebben

Általános Kémia, 2008 tavasz

Általános Kémia, 2008 tavasz Termokémia 5-1 Terminológia 5-2 Hő 5-3 Reakcióhő, Kalorimetria 5-4 Munka 5-5 A termodinamika első főtétele 5-6 Reakcióhő: U és H 5-7 H indirekt meghatározása: Hess-tétele Termokémia 5-8 Standard képződési

Részletesebben

Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul.

Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul. Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Energiamegmaradás törvénye: Az energia nem keletkezik, nem is szűnik meg, csak átalakul. A világegyetem energiája állandó. Energia

Részletesebben

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2013.01.11. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A

Részletesebben

FIZIKA VIZSGATEMATIKA

FIZIKA VIZSGATEMATIKA FIZIKA VIZSGATEMATIKA osztályozó vizsga írásbeli szóbeli időtartam 60p 10p arány az értékelésnél 60% 40% A vizsga értékelése jeles (5) 80%-tól jó (4) 65%-tól közepes (3) 50%-tól elégséges (2) 35%-tól Ha

Részletesebben

6. Termodinamikai egyensúlyok és a folyamatok iránya

6. Termodinamikai egyensúlyok és a folyamatok iránya 6. ermodinamikai egyensúlyok és a folyamatok iránya A természetben végbemenő folyamatok kizárólagos termodinamikai hajtóereje az entróia növekedése. Minden makroszkoikusan észlelhető folyamatban a rendszer

Részletesebben

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%)

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) A vizsga értékelése: Elégtelen: ha az írásbeli és a szóbeli rész összesen nem éri el a

Részletesebben

A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy

A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy hőelvonás), vagy munkavégzéssel (pl. súrlódási munka,

Részletesebben

FELADATOK A DINAMIKUS METEOROLÓGIÁBÓL 1. A 2 m-es szinten végzett standard meteorológiai mérések szerint a Földön valaha mért második legmagasabb hőmérséklet 57,8 C. Ezt San Luis-ban (Mexikó) 1933 augusztus

Részletesebben

(2006. október) Megoldás:

(2006. október) Megoldás: 1. Állandó hőmérsékleten vízgőzt nyomunk össze. Egy adott ponton az edény alján víz kezd összegyűlni. A gőz nyomását az alábbi táblázat mutatja a térfogat függvényében. a)ábrázolja nyomás-térfogat grafikonon

Részletesebben

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test

Részletesebben

Hőtan ( első rész ) Hőmérséklet, hőmennyiség, fajhő, égéshő, belső energia, hőtan I. és II. főtétele, hőterjedés, hőtágulás Hőmérséklet Az anyagok

Hőtan ( első rész ) Hőmérséklet, hőmennyiség, fajhő, égéshő, belső energia, hőtan I. és II. főtétele, hőterjedés, hőtágulás Hőmérséklet Az anyagok Hőtan ( első rész ) Hőmérséklet, hőmennyiség, fajhő, égéshő, belső energia, hőtan I. és II. főtétele, hőterjedés, hőtágulás Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki:

Részletesebben

ATMH A: / A: / A: / B: / B: / B: / HŐTAN ÍRÁSBELI RÉSZVIZSGA Munkaidő: 150 perc. Dátum: Tisztelt Vizsgázó! Pontszám: SZ: J.V.: i.j.v.

ATMH A: / A: / A: / B: / B: / B: / HŐTAN ÍRÁSBELI RÉSZVIZSGA Munkaidő: 150 perc. Dátum: Tisztelt Vizsgázó! Pontszám: SZ: J.V.: i.j.v. A vastagon bekeretezett részt a vizsgázó tölti ki!................................................... Név (a személyi igazolványban szereplő módon) Hallgatói azonosító: Dátum: Tisztelt Vizsgázó! N-AM0

Részletesebben

8. Belső energia, entalpia és entrópia ideális és nem ideális gázoknál

8. Belső energia, entalpia és entrópia ideális és nem ideális gázoknál 8. első energia, entalpia és entrópia ideális és nem ideális gázoknál első energia első energia (U): a vizsgált rendszer energiája, DE nem tartozik hozzá - a teljes rendszer együttes mozgásából adódó mozgási

Részletesebben

MŰSZAKI INFORMATIKA SZAK

MŰSZAKI INFORMATIKA SZAK FIZIKA II. KF 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007.DECEMBER 6. EHA kód:.név:.. g=9,81m/s 2 ; R=8,314J/kg mol; k=1,38 10-23 J/K; 1 atm=10 5 Pa M oxigén =32g/mol; M hélium = 4 g/mol; M nitrogén

Részletesebben

Feladatok gázokhoz (10. évfolyam) Készítette: Porkoláb Tamás

Feladatok gázokhoz (10. évfolyam) Készítette: Porkoláb Tamás Feladatok ázokhoz (10. évfolyam) Készítette: Porkoláb Tamás Elméleti kérdések 1. Ismertesd az ideális ázok modelljét! 2. Írd le az ideális ázok tulajdonsáait! 3. Mit nevezünk normálállapotnak? 4. Milyen

Részletesebben

Az energia. Energia : munkavégző képesség (vagy hőközlő képesség)

Az energia. Energia : munkavégző képesség (vagy hőközlő képesség) Az energia Energia : munkavégző képesség (vagy hőközlő képesség) Megjelenési formái: Munka: irányított energiaközlés (W=Fs) Sugárzás (fényrészecskék energiája) Termikus energia: atomok, molekulák véletlenszerű

Részletesebben

Klasszikus zika Termodinamika I.

Klasszikus zika Termodinamika I. Klasszikus zika Termodinamika I. Horváth András, SZE GIVK v 0.95 Oktatási célra szabadon terjeszthet Horváth András, SZE GIVK Termodinamika I. v 0.95 1 / 35 A termodinamika tárgya A termodinamika a testek

Részletesebben

BME Energetika Tanszék

BME Energetika Tanszék BME Energetika anszék A vastagon bekeretezett részt vizsgázó tölti ki!... név (a személyi igazolványban szerelő módon) HELYSZÁM: Hallgatói azonosító (NEPUN): AGOZA: N NK LK Műszaki Hőtan I. (ermodinamika)

Részletesebben

TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása

TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása A kísérlet, mérés megnevezése, célkitűzései: A kalorimetria (jelentése: hőmennyiségmérés) (http://ttk.pte.hu/fizkem/etangyakpdf/1gyak.pdf)

Részletesebben

Fajhő mérése. (Mérési jegyzőkönyv) Hagymási Imre február 26. (hétfő délelőtti csoport)

Fajhő mérése. (Mérési jegyzőkönyv) Hagymási Imre február 26. (hétfő délelőtti csoport) Fajhő mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. február 26. (hétfő délelőtti csoport) 1. A mérés elméleti háttere Az anyag fajhőjének mérése legegyszerűbben a jólismert Q = cm T m (1) összefüggés

Részletesebben

Kompresszorok energetikai és üzemviteli kérdései Czékmány György, Optimus Plus Kft.

Kompresszorok energetikai és üzemviteli kérdései Czékmány György, Optimus Plus Kft. Kompresszorok energetikai és üzemviteli kérdései Czékmány György, Optimus Plus Kft. 1. A kompresszorok termodinamikája Annak érdekében, hogy teljes egészében tisztázni tudjuk a kompresszorok energetikai

Részletesebben

FÖL(D)PÖRGETŐK TERMÉSZETTUDOMÁNYOS HÁZI CSAPATVERSENY 2015/ FORDULÓ Téma: Tűz 5 6. évfolyam

FÖL(D)PÖRGETŐK TERMÉSZETTUDOMÁNYOS HÁZI CSAPATVERSENY 2015/ FORDULÓ Téma: Tűz 5 6. évfolyam FÖL(D)PÖRGETŐK TERMÉSZETTUDOMÁNYOS HÁZI CSAPATVERSENY 2015/2016 3. FORDULÓ Téma: Tűz 5 6. évfolyam 1. feladat A kísérlet felnőtt felügyelet mellett hajtható végre!!! Gyújtsatok meg egy gyertyát és figyeljétek

Részletesebben