Hőtan főtételei. (vázlat)
|
|
- Klára Nagyné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Hőtan főtételei (vázlat) 1. Belső energia oka, a hőtan I. főtétele. Ideális gázok belső energiája 3. Az ekvipartíció elve 4. Hőközlés és térfogati munka, a hőtan I. főtétele ideális gázokra 5. A hőtan I. főtételének alkalmazása különleges állapotváltozásokra 6. A testek hőkapacitása és fajhője 7. Ideális gázok kétféle fajhője 8. Körfolyamatok hatásfoka Carnot-ciklus Hőerőgép Hűtőgép 9. A hőtan II. főtétele 10. Fizikatörténeti vonakozások Robert ayer Joule 1
2 A hőtan I. főtétele az energiamegmaradás törvényének egy általánosabb megfogalmazása, míg a II. főtétel a termodinamikai folyamatok irányával foglakozik. Belső energia oka, a hőtan I. főtétele inden test, melynek hőmérséklete magasabb, mint az abszolút nulla fok, rendelkezik belső energiával. A testek belső energiája a testet alkotó részecskék hőmozgásából, és a részecskék közötti molekuláris kölcsönhatásból származik. A testek belső energiáját termikus úton, és mechanikai munkavégzéssel változtathatjuk meg. Így felírható az energia-megmaradást kifejező hőtan I. főtétele: ΔE b Q W A testek belső energiájának megváltozása egyenlő a testtel közölt hőmennyiség és a testen végzett mechanikai munka előjeles összegével. A hőtan I. főtétele az energia-megmaradásnak egy általánosabb megfogalmazása, mint az energia mechanikai megmaradásának törvénye, mert figyelembe veszi a súrlódás belső energiát növelő szerepét is. A munka és a hő közötti kapcsolatot először Robert ayer fedezte fel. Ezt Joule bizonyította kísérletileg. A hőtan I. főtételéből kiolvasható, hogy nem készíthető elsőfajú perpetuum mobile, vagyis olyan berendezés, amely munkát végezne anélkül, hogy ne kellene befektetni energiát. (Pl. Ha egy rendszer belső energiája állandó és közben munkát is végez, akkor pl. termikus úton kell pótolni a hiányt.)
3 Ideális gázok belső energiája A hőtan I. főtétele alkalmazható gázhalmazállapotú anyagokra is. Ideális gázok belső energiája csak a részecskék mozgási energiájából származik, mivel a molekuláris kölcsönhatásból származó energia elhanyagolható. Így egyetlen molekula belső energiája a következő összefüggéssel határozható meg: 1 E b 0 m0 v, ahol m 0 egy molekula tömege, v a molekulák átlagos sebessége. Ha N darab azonos molekulánk van, akkor ezek együttes belső energiája: 1 E b N m0 v N E m 0 (Tehát a belső energia a molekulák átlagos mozgási energiájának összege.) A molekulák átlagos mozgási energiája meghatározható a gáz nyomásából is. A nyomás kinetikai értelmezésénél megállapítottuk, hogy állandó mennyiségű ideális gáz nyomása egyenesen arányos a molekulák átlagos mozgási N energiájával, az arányossági tényező. Képlettel ez a következőképpen 3 V fejezhető ki: N p E m0 E b 3 V 3V E b 3 p V 3 N k T Ebből látható: Állandó mennyiségű ideális gáz belső energiája egyenesen arányos a kelvinben 3 kifejezett hőmérséklettel, az arányossági tényező N k. 3
4 Az ekvipartíció elve N molekulából álló ideális gáz belső energiáját az alábbi összefüggéssel határoztuk meg: E b 3 3 p V N k T A kifejezésből látható, hogy egyetlen molekula 3 k T -vel járul hozzá a rendszer belső energiájához. Az ideális gáz molekulái csak haladó mozgást végeznek. Sebességük három, egymástól független komponensre bontható (x, y, z irány). Ezért megállapíthatjuk, hogy minden egymástól független mozgásirány növeli a rendszer belső energiáját. 1 k T -vel Kétatomos molekulák a haladó mozgáson kívül még két egymásra merőleges forgástengely körül forgómozgást is végezhetnek. Így ezeknek a molekuláknak 5 lehetséges egymástól független mozgásuk van. Az ekvipartíció-elve szerint a molekulák egymástól független mozgásirányai 1 k T -vel növelik a gáz belső energiáját. Az egymástól független mozgásirányokat a rendszer szabadsági fokának nevezzük, és f-fel jelöljük. Egyatomos molekulák esetében f=3. Kétatomos molekulák esetében f=5. 4
5 A hőtan I. főtétele ideális gázokra Ideális gázok belső energiája egyenesen arányos a kelvinben kifejezett hőmérséklettel. Ebből következik, hogy állandó mennyiségű ideális gáz belső energiájának megváltozása egyenesen arányos a kelvinben kifejezett hőmérsékletváltozással. E b 3 N k T De mi változtathatja meg a gáz belső energiáját? A termikus úton közölt hő, A gázon végzett mechanika munka, amelyet térfogati munkának nevezünk. Térfogati munka A gáz állandó nyomáson történő állapotváltozásakor a külső erő által végzett munka a következőképpen határozható meg: W F Δx p A ΔX p ΔV Ha a gázt összenyomjuk, akkor a külső erő munkája pozitív, de ΔV 0. Ezt figyelembe véve a térfogati munka képlete: W p ΔV Így a hőtan I. főtétele ideális gázokra: A gáz belső energiájának megváltozása egyenlő a gázzal termikus úton közölt hőmennyiség és a térfogati munka előjeles összegével. ΔE b Q W 5
6 A hőtan I. főtétele különböző állapotváltozásokra Izoterm állapotváltozás Izoterm állapotváltozáskor a gáz hőmérséklete állandó. Így a gáz belső energiája nem változik. Ezt figyelembe véve a hőtan I. főtétele a következőképpen írható fel: W Q W Q Állandó mennyiségű ideális gáz izoterm állapotváltozásakor, az általunk végzett munka megegyezik a gáz által leadott hőenergiával, illetve a gáz által felvett hőenergia megegyezik a gáz által végzett térfogati munkával. Izochor állapotváltozás Izochor állapotváltozáskor a térfogat állandóságából adódóan nincs térfogati munka. Ezért a hőtan I. főtétele így írható fel: ΔE b Q ΔE b Q Állandó mennyiségű ideális gáz izochor állapotváltozásakor a gáz által felvett hőenergia a gáz belső energiáját növeli, illetve a gáz által leadott hőenergia a gáz belső energiáját csökkenti. Izobár állapotváltozás Izobár állapotváltozáskor a gáz belső energiájának változását a gázzal közölt hőenergia és a térfogati munka együttesen idézi elő. ΔE b Q W 6
7 Adiabatikus állapotváltozás Adiabatikus állapotváltozáskor a rendszer és a környezet között nincs hőcsere. (Q=0) Ezért: ΔE b W ΔE b W Állandó mennyiségű ideális gáz adiabatikus állapotváltozásakor az általunk végzett munka a gáz belső energiáját növeli, illetve a gáz általa végzett munka a gáz belső energiáját csökkenti. 7
8 A testek hőkapacitása és fajhője Hőkapacitás A testek közötti hőcsere nagysága egyenesen arányos a test hőmérsékletének megváltozásával: Q ~ ΔT ivel a két mennyiség egymással egyenesen arányos, a kettő hányadosa egy állandót határoz meg. Ez az állandó az adott test hőbefogadó képességére jellemző, és hőkapacitásnak nevezzük. Jele: C Q C ΔT J J A hőkapacitás egysége: vagy K 0 C A hőkapacitás számértéke kifejezi, hogy az adott test hőmérsékletének 1 kelvinnel való megváltoztatásához mekkora hőmennyiség szükséges. Fajhő Ha különböző anyagi minőségű testek hőkapacitását szeretnénk összehasonlítani, akkor célszerű mindegyikből azonos mennyiség hőkpacitását megvizsgálni. Egységnyi mennyiségű anyag hőkapacitását fajlagos hőkapacitásnak, másképp fajhőnek nevezzük. Jele: c C Q c m m ΔT A fajhő egysége: J kg K vagy J 0 kg C A fajhő számértéke kifejezi, hogy 1 kg tömegű test hőmérsékletének 1 kelvinnel való megváltoztatásához mekkora hőmennyiség szükséges. 8
9 Ideális gázok kétféle fajhője Gázok fajhőjének a mértéke függ a hőcsere módjától. Ha a hőcsere állandó térfogaton történik, akkor nincs munkavégzés, a hőcsere mértéke megegyezik a belső energia megváltozásával. ΔE B Q W, de W=0, ezért Q ΔEB c v Q ΔEB m ΔT m ΔT f m R ΔT m ΔT f R Ha a hőcsere állandó nyomáson történik, akkor 1 K hőmérsékletnövekedéshez több hőmennyiségre van szükség, mint állandó térfogaton, mert a gáz által végzett térfogati munkát is fedezni kell. Tehát, Q ΔE W ΔE pv B b c p ΔEB W m ΔT ΔEB pv m ΔT c p Az állandó nyomáson mért fajhő képlete tovább módosítható, ha felírjuk, hogy m p ΔV R ΔT Így: f m m R ΔT R ΔT ΔEB W ΔEB pv f f R R R 1 m ΔT m ΔT m ΔT R f Tehát c p 1 Gázok esetében az állandó nyomáson és állandó térfogaton mért fajhők különbsége: R f f R cp cv 1 Tehát: c p c v R 9
10 A hőerőgép működése A hőerőgépek energia-átalakító berendezések, a termikus energiát alakítják át mechanikai energiává. Hatásfokuk attól függ, hogy a bemenő energia hányad része válik hasznosíthatóvá. kimenő hasznos munka bemenőenergia Nézzük meg a gőzturbina működésének elvét! A kazánból nagy nyomású, forró gőz áramlik a turbinába. Ennek következtében a turbina forgásba jön. Tehát a gőz mechanikai munkát végez. Ennek következtében csökken a belső energiája. Ez a gőz nyomásának és hőmérsékletének csökkenésével jár. A kazánból T magas hőmérsékletű gőz érkezik a turbinára és T A alacsonyabb hőmérsékletű gőz távozik. Az alacsonyabb hőmérsékletű gőzt vissza kell juttatni a kazánba. Erre két lehetőség van. 1. Kompresszor segítségével össze kell nyomni. Ez ugyanannyi munkát igényelne, mint amennyit a gőz végzett a turbina megforgatásakor.. A gőzt egy hűtőben lecsapatják, és így a gőzhöz képest sokkal kisebb térfogatú vizet állítanak elő. Ezt a kisebb térfogatú vizet egy pumpa sokkal könnyebben visszajuttatja a kazánba. A hűtőben azonban a gőznek hőt kell leadnia, hogy vízzé váljon. A gyakorlatban ezt leggyakrabban a közeli folyó vizével vagy léghűtéssel oldják meg. Nézzük az energia-átalakulás folyamatát! A bemenő energia hasznos munkára, súrlódási veszteségekre, pumpa munkájára, fordítódik. hűtőbe áramló hőre 10
11 A víz útja a gőzturbinában (ideális esetben, amikor nincs veszteség): A víz Q hőt vesz fel a kazánból és Q A hőt ad la a hűtőnek. A végzett hasznos munka: W Q Q A A hatásfok tehát így adható meg: kimenő hasznos munka bemenő energia W Q Q Q Q A Q 1 Q A η max T 1 T A Az összefüggés minden hőerőgépre igaz. Látható, hogy periodikus folyamatban a hőenergiát nem lehet maradéktalanul mechanikai munkává alakítani. 11
12 Hűtőgép működése Két hőcserélőt egy körvezeték köt össze. Ebben a körvezetékben olyan anyag van, melynek igen alacsony a forráspontja, és nagy nyomás hatására könnyen cseppfolyósodik. Ilyen anyag például az ammónia. Egy szelep segítségével juttatják a folyékony ammóniát egy nagyobb tartályba. A nyomáscsökkenés következtében a folyadék gyorsan párolog. Ehhez hőre van szükség. Ezt a hőt a környezetéből vonja el. Így a környezete, pl. a hűtőszekrényben lévő élelmiszerek lehűlnek. A hőcsere következtében az ammónia felmelegszik. Egy kompresszor összesűríti a gázt. Ennek következtében felszabaduló hőt a rendszer leadja a környezetében lévő közegnek. Így az ammónia ismét folyékonnyá válik. Hűtőgép működésének sematikus ábrája Q fel Hűtő Q le W 1
13 A hőtan második főtétele A hőtan I. főtétele nem zárja ki, hogy ha két különböző hőmérsékletű rendszer érintkezik, akkor hőcsere során a hidegebb hőenergiát adjon át a melegebbnek. Ebből az következne, hogy a melegebb hőmérséklete nőne, a hidegebbé csökkenne. Ez hasonlítana ahhoz a vicchez, hogy - Jean, hány fok van itt benn? - 18 fok, uram. - És ott kinn? - fok uram. - Jean, legyen szíves nyissa ki az ablakot, és engedje be azt a két fokot! A természet nem így működik. A termodinamikai folyamatok irányára a hőtan II. főtétele ad felvilágosítást. Ez egy alaptörvény, axióma, amelyet nem lehet levezetés útján bizonyítani. Ez a törvény akkor dőlne meg, ha találnánk egy olyan jelenséget, amely a törvény állításával ellentétes módon játszódna le. A termodinamika II. főtételét tapasztalati úton állapították meg. A hőtan II. főtételének több megfogalmazása is van. Ezek közül néhány: A környezetüktől elszigetelt rendszerben önmaguktól csak olyan irányú folyamatok játszódnak csak le, hogy az intenzív állapotjelzők kiegyenlítődjenek. Például, ha egy hidegebb és egy melegebb rendszer érintkezik, akkor olyan irányú hőcsere indul meg, hogy a hőmérséklet kiegyenlítődjön. Ha egy kisebb és egy nagyobb nyomású gáz érintkezik, akkor olyan irányú folyamat indul meg, hogy a nyomás kiegyenlítődjön. ásodfajú perpetuum mobile nem készíthető, vagyis nincs olyan periodikusan működő hőerőgép, amely hőt von el egy hőtartályból, és azt teljes egészében mechanikai munkává alakítaná. Felvetődött régen egy olyan hajó készítése, amely a tengerben lévő hőenergiát használná fel a hajócsavarok működtetéséhez. Közben a hajó mozgása során súrlódna a vízzel. Az ekkor keletkező hőenergia melegítené a tengert, azaz a korábban felvett hőenergia visszajutna a vízbe. Ezt az elképzelést soha nem lehetett megvalósítani, hiszen a tenger és a benne lévő hajócsavar termikus egyensúlyban van, így közöttük nem léphet fel hőcsere. A magukra hagyott rendszerekben olyan irányú folyamatok játszódnak le, hogy növekedjen a rendszer rendezetlensége. Gondoljunk végig egy kísérletet. Egy tartályt egy válaszfallal két részre osztunk. Az egyik térrészben N számú molekula van, a másik 13
14 üres. Ha a válaszfalat eltávolítjuk, a gázrészecskék egyenletesen kitöltik a rendelkezésükre álló teret. Soha többé nem fog megvalósulni az a rendezett állapot, hogy a részecskék ismét az egyik térrészbe rendeződjenek. A termikus kölcsönhatás során lejátszódó valóságos folyamatok mindig irreverzibilisek (visszafordíthatatlanok). 14
15 Témakörrel kapcsolatos fizikusok Robert ayer ( ) Német hajóorvos, a hő és a mechanikai munka közötti kapcsolat felismerője. Robert ayer hajóorvosként megfigyelte, hogy az emberi vér színe a trópusokon vörösebb, több oxigént tartalmaz, mert a trópusokon az ember szervezetének kevesebb munkavégzésre van szüksége a testhőmérséklet fenntartásához. James Prescott Joule ( ) december 4-én született Angliában. egállapította, hogy az energia különféle formái, a mechanikai -, az elektromos - és a hőenergia lényegében azonosak, egyik a másikba átalakítható. Ilyenformán megalkotta az energiamegmaradás törvényének, a termodinamika első főtételének az alapjait. A Joule-effektus" kimondja, hogy egy huzalban az elektromos áram által keltett hő arányos a huzal ellenállásának és az áramerősség négyzetének a szorzatával. Különböző anyagokkal kísérletezve azt is megállapította, hogy a hő, az energia egyik formája, független attól, hogy milyen anyagot hevítenek. 185-ben Joule és William Thomson felfedezte, hogy ha valamely gáz külső munkavégzés nélkül kitágul, a hőmérséklete akkor is csökken. A munka és az energia egyik egysége a joule nevet viseli október 11-én halt meg. 15
Termodinamika. Belső energia
Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
Hőtan I. főtétele tesztek
Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
Termodinamika. 1. rész
Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Termodinamikai bevezető
Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren
Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete
Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz
Digitális tananyag a fizika tanításához
Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g
Feladatlap X. osztály
Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1
Hőtan 2. feladatok és megoldások
Hőtan 2. feladatok és megoldások 1. Mekkora a hőmérséklete 60 g héliumnak, ha első energiája 45 kj? 2. A úvárok oxigénpalakjáan 4 kg 17 0C-os gáz van. Mekkora a első energiája? 3. A tanulók - a fizika
Légköri termodinamika
Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
Mivel foglalkozik a hőtan?
Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:
A termodinamika törvényei
A termodinamika törvényei 2009. 03. 23-24. Kiss Balázs Termodinamikai Természeti környezetünk meghatározott tulajdonságú falakkal leválasztott része. nincs kölcsönhatás a környezettel izolált kissb3@gmail.com
Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia
Az energia bevezetése az iskolába Készítette: Rimai Anasztázia Bevezetés Fizika oktatása Energia probléma Termodinamika a tankönyvekben A termodinamikai fogalmak kialakulása Az energia fogalom története
A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően
Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika
Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!
A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.
A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
Munka- és energiatermelés. Bányai István
Munka- és energiatermelés Bányai István Joule tétele: adiabatikus munka A XIX. Sz. legnagyobb kihívása a munka Emberi erőforrás (rabszolga, szolga, bérmunkás, erkölcs?, ár!) Állati erőforrás (kevésbé erkölcssértő?,
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 20.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 20. A termodinamikai rendszer fogalma Termodinamika: Nagy részecskeszámú rendszerek fizikája. N A 10 23 db. A rendszer(r): A világ azon része, amely
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:
1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:
Művelettan 3 fejezete
Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási
1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai
3.1. Ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai rendszer? Az anyagi valóság egy, általunk kiválasztott szempont vagy szempontrendszer
71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:
Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati
1. Feladatok a termodinamika tárgyköréből
. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi
Fizika minta feladatsor
Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a
Termokémia. Termokémia Dia 1 /55
Termokémia 6-1 Terminológia 6-2 Hő 6-3 Reakcióhő, kalorimetria 6-4 Munka 6-5 A termodinamika első főtétele 6-6 Reakcióhő: U és H 6-7 H indirekt meghatározása: Hess-tétel 6-8 Standard képződési entalpia
Műszaki hőtan I. ellenőrző kérdések
Alapfogalmak, 0. főtétel Műszaki hőtan I. ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és zárt termodinamikai rendszer? A termodinamikai rendszer (TDR) az anyagi
Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok
Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok Az előadás anyaga pár napon belül pdf formában is elérhető: energia.bme.hu/~imreattila (nem kell elé www!)
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja
Gáztörvények tesztek
Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?
Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik
Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek
Komplex természettudomány 3.
Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott
MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS
MŰSZAKI TERMODINAMIKA. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS 207/8/2 MT0A Munkaidő: 90 perc NÉV:... NEPTUN KÓD: TEREM HELYSZÁM:... DÁTUM:... KÉPZÉS Energetikai mérnök BSc Gépészmérnök BSc JELÖLJE MEG
Gázrészecskék energiája: Minél gyorsabban mozognak a részecskék, annál nagyobb a mozgási energiájuk. A gáz hőmérséklete egyenesen arányos a
Hőtan (2. rész) Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a
Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia
Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás
Termodinamika. Tóth Mónika
Termodinamika Tóth Mónika 2012.11.26-27 monika.a.toth@aok.pte.hu Hőmérséklet Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. Különböző hőmérsékleti skálák.
rendszer: a világ általunk vizsgált, valamilyen fallal (részben) elhatárolt része környezet: a világ rendszert körülvevő része
I. A munka fogalma, térfogati és egyéb (hasznos) munka. II. A hő fogalma. molekuláris értelmezése. I. A termodinamika első főtételének néhány megfogalmazása.. Az entalpia fogalma, bevezetésének indoklása.
Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...
Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár
Termodinamika. Gázok hőtágulása, gáztörvények. Az anyag gázállapota. Avogadro törvény Hőmérséklet. Tóth Mónika.
Hőmérséklet ermodinamika Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. óth Mónika 203 monika.a.toth@aok.pte.hu Különböző hőmérsékleti skálák. Kelvin skálájú
Hőtan ( első rész ) Hőmérséklet, hőmennyiség, fajhő, égéshő, belső energia, hőtan I. és II. főtétele, hőterjedés, hőtágulás Hőmérséklet Az anyagok
Hőtan ( első rész ) Hőmérséklet, hőmennyiség, fajhő, égéshő, belső energia, hőtan I. és II. főtétele, hőterjedés, hőtágulás Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki:
MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:
Képzési kódja: MŰSZAKI HŐTAN I. 1. ZÁRTHELYI N- Név: Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Dobai Attila Györke Gábor Péter Norbert Vass Bálint Termodinamika
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%)
Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) A vizsga értékelése: Elégtelen: ha az írásbeli és a szóbeli rész összesen nem éri el a
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással
Fizika feladatok 014. december 8. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-3) Határozzuk meg egy 0 cm hosszú, 4 cm átmérőjű hengeres vörösréz rúdon
TestLine - Fizika hőjelenségek Minta feladatsor
1. 2:29 Normál zt a hőmérsékletet, melyen a folyadék forrni kezd, forráspontnak nevezzük. Különböző anyagok forráspontja más és más. Minden folyadék minden hőmérsékleten párolog. párolgás gyorsabb, ha
Mérnöki alapok 8. előadás
Mérnöki alapok 8. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2013.01.11. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A
Hidrosztatika. Folyadékok fizikai tulajdonságai
Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Munka, energia, teljesítmény
Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és
gáznál = 32, CO 2 gáznál 1+1=2, O 2 gáznál = 44)
Hőtan - gázok Gázok állapotjelzői A gázok állapotát néhány jellemző adatával adhatjuk meg. Ezek: Térfogat Valójában a tartály térfogata, amelyben van, mivel a gáz kitölti a rendelkezésére álló teret, tehát
Munka, energia Munkatétel, a mechanikai energia megmaradása
Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
Mit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
Lemezeshőcserélő mérés
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Lemezeshőcserélő mérés Hallgatói mérési segédlet Budapest, 2014 1. A hőcserélők típusai
Newton törvények és a gravitációs kölcsönhatás (Vázlat)
Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. I. rész: Hőtan. Készítette: Balázs Ádám
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat Fizika 10. osztály I. rész: Hőtan Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék Hőtan.......................................
4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban
Energetika 1 4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban Energodinamikai rendszerek vizsgálata során elsősorban gáznemű halmazállapot esetén lényeges az állapotváltozásokat megkülönböztetni.
100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F
III. HőTAN 1. A HŐMÉSÉKLET ÉS A HŐ Látni fogjuk: a mechanika fogalmai jelennek meg mikroszkópikus szinten 1.1. A hőmérséklet Mindennapi általános tapasztalatunk van. Termikus egyensúly a résztvevők hőmérséklete
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly
Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2015.09.23. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
Méréstechnika. Hőmérséklet mérése
Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű
Hőtágulás - szilárd és folyékony anyagoknál
Hőtágulás - szilárd és folyékony anyagoknál Celsius hőmérsékleti skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Kelvin hőmérsékleti skála: A beosztása 273-al van elcsúsztatva a
Munka, energia, teljesítmény
Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és
HIDROSZTATIKA, HIDRODINAMIKA
HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk
A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy
Bor Pál Fizikaverseny tanév 7. évfolyam I. forduló Név: Név:... Iskola... Tanárod neve:...
Név:... Iskola... Tanárod neve:... A megoldott feladatlapot 2019. január 8-ig küldd el a SZTE Gyakorló Gimnázium és Általános Iskola (6722 Szeged, Szentháromság u. 2.) címére. A borítékra írd rá: Bor Pál
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
6. Termodinamikai egyensúlyok és a folyamatok iránya
6. ermodinamikai egyensúlyok és a folyamatok iránya A természetben végbemenő folyamatok kizárólagos termodinamikai hajtóereje az entróia növekedése. Minden makroszkoikusan észlelhető folyamatban a rendszer
Newton törvények, lendület, sűrűség
Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja
A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy
A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy hőelvonás), vagy munkavégzéssel (pl. súrlódási munka,
Termoelektromos hűtőelemek vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 4. MÉRÉS Termoelektromos hűtőelemek vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 30. Szerda délelőtti csoport 1. A mérés célja
Termodinamika és statisztikus mechanika. Nagy, Károly
Termodinamika és statisztikus mechanika Nagy, Károly Termodinamika és statisztikus mechanika Nagy, Károly Publication date 1991 Szerzői jog 1991 Dr. Nagy Károly Dr. Nagy Károly - tanszékvezető egyetemi
A hőmérséklet változtatásával a szilárd testek hosszméretei megváltoznak, mégpedig melegítéskor általában növekednek. Ez azzal magyarázható, hogy a
Kísérletek: 1 2 3 4 A hőmérséklet változtatásával a szilárd testek hosszméretei megváltoznak, mégpedig melegítéskor általában növekednek. Ez azzal magyarázható, hogy a szilárd testet alkotó molekulák rezgőmozgásának
TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra
TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
MMK Auditori vizsga felkészítő előadás Hő és Áramlástan 2.
MMK Auditori vizsga felkészítő előadás 2017. Hő és Áramlástan 2. Alapvető fogalmak Hőátviteli jelenség fogalma: hőenergia áramlása magasabb hőmérsékletű helyről alacsonyabb hőmérsékletű hely felé. -instacioner-
DINAMIKA ALAPJAI. Tömeg és az erő
DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban
Ideális gáz és reális gázok
Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:
Műszaki hőtantermodinamika. Műszaki menedzsereknek. BME Energetikai Gépek és Rendszerek Tanszék
Műszaki hőtantermodinamika Műszaki menedzsereknek Termodinamikai rendszer Meghatározott anyagmennyiség, agy/és Véges térrész. A termodinamikai rendszert a környezetétől tényleges agy elkézelt fal álasztja
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q: