Az elméleti fizika alapjai házi feladat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az elméleti fizika alapjai házi feladat"

Átírás

1 Az elméleti fizika alapjai házi feladat A jellel ellátott feladatok opcionálisak és plusz pontot érnek. A határidőn túl leadott házi feladatok is pontot érnek, még ha kevesebbet is. Pl. az 1. házi feladat a félév végén leadva 50%-ot ér. A következő információkat kérném feltüntetni Első oldalon: név, házi feladat száma (pl. 1. házi feladat vagy 3. házi feladat 2. rész (amennyiben nem sikerült egy részletben leadni)), LEADÁS DÁTUMA (nem az elkészítés időpontja, nem a határidőé), az adott házi feladathoz tartozó ívek(lapok) száma Közbülső oldalakon: oldalszám, az egyes feladatok sorszáma Utolsó oldalon:a házi feladat végét egyértelműen megjelölni Az esetleges utólagos pótlást külön házi feladatként leadni és nem összekeverni az aktuálissal (pl. az 5. szemináriumon a 4. házi feladat külön és a 3. házi feladat 2. része külön, de ugyanazzal a dátummal ellátva) A feladatok lehetőség szerint a kiírási sorrendben legyenek kidolgozva. A szép írás nem ér pontot, de az a kidolgozás se, amit nem tudok elolvasni. 1

2 1. hét Leadási határidő: október Igazoljuk, hogy egy háromszögben, melynek oldalai rendre a, b és c hosszúságúak, fennáll, hogy ahol θ az a és b oldalak által közrezárt szög. c 2 = a 2 + b 2 2ab cos θ, 2. Adjuk geometriai igazolását a skaláris szorzat vektorok összeadására vonatkozó disztributivitásának. a (b + c) = a b + a c Útmutatás: Használjuk a skaláris szorzat a b = ab cos θ tulajdonságát. Vegyük fel az a vektort vízszintesen és vizsgáljuk a többi vektor vízszintes vetületét. 3. Négyzetes mátrixokra vonatkozóan igazoljuk az alábbi összefüggéseket: (a) A B B A (b) (A B) = B A (c) (A B) = A (B ) - szorzással szembeni asszociativitás (d) Tr(A B) = Tr(B A) (e) Tr(A B ) = Tr( A B) Alakítsuk át mátrix alakba a következőket az alábbi példa alapján. Ahol lehet adjunk többféle megoldást is: a i b j ji =? I. megoldás: a i b j ji = T r i,j a ( b ) i,j = T r II. megoldás: a i b j ji = b j ji a i = ( b ) i,j = T r (a b) a a b = ( b ) a = b a = Magyarázat: A T r(m) alatt a i m ii mennyiséget értjük. Jelentése: trace (en), spur (de), nyom (hu), az átlós elemek összege. Példa: T r(a b) = T r(a i b j ) = i a i b i = a b. azaz ( a ) b = T r b ( a ) = T r a b 2

3 4. b j jm A im =? 5. a i b j c j =? 6. a i b j kl D li =? 7. A ij B jk c k A il =? j,m i,l i,j,k 8. A i b k kj =? Írjuk át tenzoriális alakra a következőket (az előző feladat fordítottja): ( d ) A ( b ) f g k j c ( b ) D D e a E =? ( c ) =? =? 12. Határozzuk meg az alábbi tenzoriális kifejezések rendjét használva az Einstein-féle összegkonvenciót. Pl. 2. hét (a) D jkl c klm a ij (b) B abc D def E kl a i F febcl H j (c) a ik b i c k D lm Leadási határidő: október a ij b kj l = c ikl (3. rendű) Írjuk fel kifejtve egy 4 4-es mátrix determinánsát kiindulva a determináns általános meghatározásából: det(a) ( 1) Pi 1 i 2...in a 1i1 a 2i2... a nin = ε i1i 2...i n a 1i1 a 2i2... a nin, i 1i 2...i n P i1 i 2...in ahol P i1i 2...i n az 1, 2,..., n értékek különböző permutációi, ε pedig a szemináriumon bevezetett teljesen antiszimmetrikus n-edrendű tenzor. 3

4 2. Írjuk fel a Levi-ivita tenzor 27 elemét. 3. Kiindulva az δ i1j 1 δ i1j 2... δ i1j n δ i2j 1 δ i2j 2... δ i2j n ε i1i 2...i n ε j1j 2...j n = δ inj 1 δ inj 2... δ inj n általános összefüggésből, igazoltuk a háromindexű Levi-ivita tenzor esetére az alábbi összefüggéseket: ε ijk ε lmk = δ il δ jm δ im δ jl ε ijk ε ljk = 2δ il ε ijk ε ijk = 6 Ennek alapján fejtsük ki a négyindexű Levi-ivita tenzor esetére az alábbi kifejezéseket: (a) ε ijkl ε mnol =? (b) ε ijkl ε mnkl =? (c) ε ijkl ε mjkl =? (d) ε ijkl ε ijkl =? Útmutatás: A determináns kifejtését követően 24 tagot, tagonként négy Kronecker-szimbólumot tartalmazó szorzatot kapunk. Ezekben összevonjuk az azonos indexeket tartalmazó Kronecker-szimbólumokat a tárgyalt eljárás szerint, mégpedig: a Kroneckerszimbólum összevonásban nem résztvevő indexe ráerőltetődik a másik tenzor (most az is Kronecker-szimbólum) összevonásban résztvevő indexére és az előbbi Kronecker-szimbólum eltűnik. Figyeljünk a szabad indexek számára! Az első összefüggés esetében minden tag hat szabad indexet tartalmaz. A második esetében a már korábban igazolt összefüggésből indulunk ki, további két indexet összevonva és minden tagunk negyedrendű tenzor lesz. Ne feledjük, hogy δ ii = 4 (Einstein-féle összegzési konvenció alapján) 4. Kiindulva a det(ab) = det(a)det(b) és det(a ) = det(a) összefüggésekből igazoljuk: (a) det(ab) = det(ba) (b) det(a 1 A 2... A k ) = det(a 1 )det(a 2 )... det(a k ) 5. Igazoljuk a vektori szorzatra vonatkozóan (használjuk a determináns alakot) i j k a b = a x a y a z b x b y b z : (a) (αa) b = a (αb) = α(a b) (b) antikommutativitását (c) összeadással szembeni disztributivitását (d) asszociativitás érvényességét vagy érvénytelenségét (e) Jacobi azonosságot: a (b c) + c (a b) + b (c a) = 0. (+25%) 4

5 3. hét Leadási határidő: október Legyen a 1 = (1, 0, 1), a 2 = (0, 1, 0), és a 3 = (1, 1, 1) három vektor az i, j, k ortonormált bázisban felírva. (a) Ábrázoljuk a három vektort az OXYZ derékszögű koordináta rendszerben a három koordinátasíkra való vetületeikkel együtt. (b) Határozzuk meg az a 1 + 2a 2 és 2a 2 a 3 vektorokat, illetve a három vektorból képezhető összes skaláris szorzatot. (c) Határozzuk meg a c 1, c 2, c 3 skalárokat úgy, hogy a b 1 = (5, 6, 5) vektor a c 1 a 1 + c 2 a 2 + c 3 a 3 alakba legyen felírható. (d) Ismételjük meg az előbbi műveletet a b 2 = (2, 3, 4) vektorra. (e) Lehet-e az a 1, a 2, a 3 vektorokat R 3 bázisaként használni? Válaszunkat indokoljuk! (f) Keressünk egy olyan b 3 vektort, mely a b 1 és b 2 vektorokkal együtt bázist alkot az R 3 térben. (g) Ellenőrizzük, hogy b 3 párhuzamos-e az a 1, a 2, és a 3 vektorok valamelyikével. szorzatot!) (Ne használjunk vektori (h) Ellenőrizzük, hogy b 3 benne fekszik-e az a 1, a 2, és a 3 vektorok által páronként meghatározott három sík valamelyikében. 2. Igazoljuk az alábbi összefüggéseket tenzoriálisan (indexes jelöléssel, használva a Kronecker delta és Levi-ivita tenzorok tulajdonságait): (a) (a b) 2 = a 2 b 2 (a b) 2 (b) (a b) (c d) = b(a, c, d) a(b, c, d) Útmutatás: járjunk el a szemináriumon bizonyított (a b) c = b(a c) a(b c) alapján. 3. Igazoljuk az alábbi összefüggéseket vektoriálisan (skaláris-, vektoriális-, vegyes szorzatokat és korábbi vektorösszefüggéseket használva, pl. a (b c) felbontása) : (a) (a b) 2 = a 2 b 2 (a b) 2 (b) (a b) (c d) = b(a, c, d) a(b, c, d) 4. Számítsuk ki az a (n) együtthatót és a zárójelben levő kifejezést az alábbi összefüggésekben: n i n j = a (2) δ ij ; n i n j n k = a (3) {... } ; n i n j n k n l = a (4) {... } n i1 n i2 n i3 n i4 n i5 = a (5) {... } ; n i1 n i2 n i3 n i4 n i5 n i6 = a (6) {... } Az előző eredmények alapján számítsuk ki: ( 8 ) n ik k=1 = a (8) {... } 5

6 5. (b n) 2 = ; (b n)(c n) = ; (b n) 4 = (b n) 2 (c n) 2 = ; (a n)(b n)(c n)(d n) = (a n) 6 = ; (a n) 4 (b n) 2 = ; (a n) 2 (b n) 2 (c n) 2 = (a n) 2 (b n) 2 (c n) 2 (d n) 2 = 6. Határozzuk meg az a (2n+2) és az a (2n) közötti rekurrenciás összefüggést. 6

1. Algebra Elemek Műveletek. Tenzor algebra és analízis Einstein-féle konvencióval

1. Algebra Elemek Műveletek. Tenzor algebra és analízis Einstein-féle konvencióval Indexes deriválás Tenzor algebra és analízis Einstein-féle konvencióval Készítette: Kómár Péter, 200 Az indexes írásmód ill. deriválás egy eszköz, amely tenzorok analízisét teszi egyszerűbbé a fizikai

Részletesebben

n m db. szám a i R Lehet a k, vagy a α. i, α szabad index a ij két indexű mennyiség (i sor index, j oszlop index) a ib j

n m db. szám a i R Lehet a k, vagy a α. i, α szabad index a ij két indexű mennyiség (i sor index, j oszlop index) a ib j a R 1 db. szám a 1, a 2,..., a n {a i} i=1,n a i R Lehet a k, vagy a α. i, α szabad index a 11 a 12... a 1m a 21 a 22... a 2m........ a n1 a n2... a nm {a ij} i=1,n,j=1,m R a ij két indexű mennyiség (i

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

2. gyakorlat. A polárkoordináta-rendszer

2. gyakorlat. A polárkoordináta-rendszer . gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel

Részletesebben

I. VEKTOROK, MÁTRIXOK

I. VEKTOROK, MÁTRIXOK 217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli

Részletesebben

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

Budapesti Műszaki Főiskola, Neumann János Informatikai Kar. Vektorok. Fodor János

Budapesti Műszaki Főiskola, Neumann János Informatikai Kar. Vektorok. Fodor János Budapesti Műszaki Főiskola, Neumann János Informatikai Kar Lineáris algebra 1. témakör Vektorok Fodor János Copyright c Fodor@bmf.hu Last Revision Date: 2006. szeptember 11. Version 1.1 Table of Contents

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Tasnádi Tamás 2014. szeptember 11. Kivonat A tárgy a BME Fizika BSc szak kötelező, alapozó tárgya a képzés 1. félévében. A tárgy

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

3. el adás: Determinánsok

3. el adás: Determinánsok 3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 )

O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 ) 1. feladat Írjuk föl a következő vektorokat! AC, BF, BG, DF, BD, AG, GB Írjuk föl ezen vektorok egységvektorát is! a=3 m b= 4 m c= m Írjuk föl az egyes pontok koordinátáit: O ( 0, 0, 0 ) A ( 4, 0, 0 )

Részletesebben

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz 2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok 2019-09-10 MGFEA Wettl Ferenc ALGEBRA

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II. Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek

Részletesebben

Bevezetés a görbe vonalú geometriába

Bevezetés a görbe vonalú geometriába Bevezetés a görbe vonalú geometriába Metrikus tenzor, Christoffel-szimbólum, kovariáns derivált, párhuzamos eltolás, geodetikus Pr hle Zsóa A klasszikus térelmélet elemei (szeminárium) 2012. október 1.

Részletesebben

1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat!

1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat! . Mátrixok. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: [ ] [ ] π a A = ; B = 8 7, 5 x. 7, 5 ln y. Legyen 4 A = 4 ; B = 5 5 Számítsuk ki az A + B, A B, A, B mátrixokat!. Oldjuk

Részletesebben

Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük

Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük Vektorlger VE Vektorlger Een részen vektorokt láhúzássl jelöljük Vektorlger VE Szdvektorok Helyzetvektorok (kötött vektorok) Az irányított szkszok hlmzán z eltolás, mint ekvivlenci reláció, áltl generált

Részletesebben

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.

Részletesebben

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) Tasnádi Tamás 1 2015. április 17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Vektorok és axiálvektorok Forgómozgás, pörgettyűk

Részletesebben

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0 Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.

Részletesebben

Matematikai statisztika 1.

Matematikai statisztika 1. Matematikai statisztika 1 segédanyag Daróczi Gergely Szociológia Intézet 2010 Matematikai statisztika 1 01 Mátrixok A mátrix vízszintes vonalban elhelyezked elemei sorokat, függ leges vonalban elhelyezked

Részletesebben

Néhány szó a mátrixokról

Néhány szó a mátrixokról VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

1. Milyen parciális törtekre bontaná az alábbi racionális törtfüggvényt:

1. Milyen parciális törtekre bontaná az alábbi racionális törtfüggvényt: Matematika (Lineáris algebra és többváltozós függvények), NGB_MA002_2, 1. zárthelyi 2016. 10. 19., 2A-csoport 1. Milyen parciális törtekre bontaná az alábbi racionális törtfüggvényt: x 2x 2 4x + 1 (x 2

Részletesebben

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

Egy sík és a koordinátasíkok metszésvonalainak meghatározása 1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -

Részletesebben

2. előadás. Lineáris algebra numerikus módszerei. Mátrixok Mátrixműveletek Speciális mátrixok, vektorok Norma

2. előadás. Lineáris algebra numerikus módszerei. Mátrixok Mátrixműveletek Speciális mátrixok, vektorok Norma Mátrixok Definíció Az m n típusú (méretű) valós A mátrixon valós a ij számok alábbi táblázatát értjük: a 11 a 12... a 1j... a 1n.......... A = a i1 a i2... a ij... a in........... a m1 a m2... a mj...

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:

1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: 1 Determinánsok 1 Bevezet definíció Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: a 11 x 1 +a 12 x 2 = b 1 a 21 x 1 +a 22 x 2 = b 2 Szorozzuk meg az első egyenletet

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Determinánsok H406 2017-11-27 Wettl Ferenc ALGEBRA

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

1. Mit jelent az, hogy egy W R n részhalmaz altér?

1. Mit jelent az, hogy egy W R n részhalmaz altér? Az informatikus lineáris algebra dolgozat B részének lehetséges kérdései Az alábbi listában azok a definíciók és állítások, tételek szerepelnek, melyeket a vizsgadolgozat B részében kérdezhetünk. A válaszoknál

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval

Részletesebben

Mátrixok, mátrixműveletek

Mátrixok, mátrixműveletek Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap

Részletesebben

Matematika 11. osztály

Matematika 11. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály II. rész: Trigonometria Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék II. rész: Trigonometria...........................

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

NUMERIKUS MÓDSZEREK I. TÉTELEK

NUMERIKUS MÓDSZEREK I. TÉTELEK NUMERIKUS MÓDSZEREK I. TÉTELEK Szerkesztette: Balogh Tamás 014. január 19. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

6. előadás. Vektoriális szorzás Vegyesszorzat

6. előadás. Vektoriális szorzás Vegyesszorzat 6. előadás Vektoriális szorzás Vegyesszorzat Bevezetés Definíció: Az a és b vektorok vektoriális szorzata egy olyan axb vektor, melynek hossza a vektorok abszolút értékének és hajlásszögük szinuszának

Részletesebben

ARCHIMEDES MATEMATIKA VERSENY

ARCHIMEDES MATEMATIKA VERSENY Koszinusztétel Tétel: Bármely háromszögben az egyik oldal négyzetét megkapjuk, ha a másik két oldal négyzetének összegéből kivonjuk e két oldal és az általuk közbezárt szög koszinuszának kétszeres szorzatát.

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév

LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I éves nappali programtervező informatikus hallgatóknak 2010-2011 évi tanév I félév Vektoriális szorzat és tulajdonságai bizonyítás nélkül: Vegyes szorzat és tulajdonságai

Részletesebben

TENZORSZÁMÍTÁS INDEXES JELÖLÉSMÓDBAN

TENZORSZÁMÍTÁS INDEXES JELÖLÉSMÓDBAN Kozák Imre Szeidl György TENZORSZÁMÍTÁS INDEXES JELÖLÉSMÓDBAN Második, bővített kiadás MISKOLC 2013 Kozák Imre Szeidl György TENZORSZÁMÍTÁS INDEXES JELÖLÉSMÓDBAN Második, bővített kiadás MISKOLC 2013

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

Lineáris algebra I. Vektorok és szorzataik

Lineáris algebra I. Vektorok és szorzataik Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

Gyakorlati példák Dr. Gönczi Dávid

Gyakorlati példák Dr. Gönczi Dávid Szilárdságtani számítások Gyakorlati példák Dr. Gönczi Dávid I. Bevezető ismeretek I.1 Definíciók I.2 Tenzoralgebrai alapismeretek I.3 Bevezetés az indexes jelölésmódba I.4 A lineáris rugalmasságtan általános

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Vektorszámítás Fizika tanárszak I. évfolyam

Vektorszámítás Fizika tanárszak I. évfolyam Vektorszámítás Fizika tanárszak I. évfolyam Lengyel Krisztián TARTALOMJEGYZÉK Tartalomjegyzék. Deriválás.. Elmélet........................................... Deriválási szabályok..................................

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták

Vektorok összeadása, kivonása, szorzás számmal, koordináták Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Vektorok, tenzorok Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 011 TARTALOMJEGYZÉK 1. Ismétlés 7 1.1. Indexek, összegzések, szorzatok

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf81 2018-09-04

Részletesebben

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij..

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij.. Biológia alapszak Matematika I A GY 6/7 félév III MÁTRIXOK SAJÁTÉRTÉK-FELADAT III Mátrixok Definíció Számok téglalap alakú táblázatban való elrendezését mátrix nak nevezzük Ha a táblázat m sorból és n

Részletesebben

Klár Gergely 2010/2011. tavaszi félév

Klár Gergely 2010/2011. tavaszi félév Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0 Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal: Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold

Részletesebben

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0 Tantárgy neve Lineáris algebra I Tantárgy kódja MTB1004 Meghirdetés féléve 2 Kreditpont 3k Összóraszám elm+gyak 2+0 Számonkérés módja kollokvium Előfeltétel tantárgyi kód MTB1003 Tantárgyfelelős neve Kurdics

Részletesebben

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög. 1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való

Részletesebben

Skalár: egyetlen számadattal (+ mértékegység) jellemezhető mennyiség. Azonos dimenziójú skalár mennyiségek - mértékegység-konverzió után -

Skalár: egyetlen számadattal (+ mértékegység) jellemezhető mennyiség. Azonos dimenziójú skalár mennyiségek - mértékegység-konverzió után - 1 ALAPFOGALMAK Vektoranalízis 1. Alapfogalmak Skalár: egyetlen számadattal (+ mértékegység) jellemezhető mennyiség. Azonos dimenziójú skalár mennyiségek - mértékegység-konverzió után - összehasonlíthatóak

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

5. előadás. Skaláris szorzás

5. előadás. Skaláris szorzás 5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

1. A kétszer kettes determináns

1. A kétszer kettes determináns 1. A kétszer kettes determináns 2 2-es mátrix inverze Tétel [ ] [ ] a c 1 d c Ha ad bc 0, akkor M= inverze. b d ad bc b a Ha ad bc = 0, akkor M-nek nincs inverze. A főátló két elemét megcseréljük, a mellékátló

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes

Részletesebben

Fizika 1i, 2018 őszi félév, 1. gyakorlat

Fizika 1i, 2018 őszi félév, 1. gyakorlat Fizika i, 08 őszi félév,. gyakorlat Szükséges előismeretek: vektorok, műveletek vektorokkal (összeadás, kivonás, skalárral való szorzás, skaláris szorzat és vektoriális szorzat, abszolút érték), vektorok

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Tantárgy: Matematika Osztály: 10. B Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya Vetési Albert Gimnázium, Veszprém Heti óraszám: 3 Éves óraszám: 108 Tankönyv: Hajdu Sándor Czeglédy István Hajdu

Részletesebben

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort!

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1 / 20 2. példa: Rajzoljuk fel az adott feszültségtenzorhoz tartozó kockát! 2 / 20 3. példa: Feszültségvektor számítása. Egy alkatrész egy

Részletesebben

3. FELADATSOR. n(n 1) Meggondolható, hogy B képtere az összes alternáló 4-lineáris függvény tere, magja pedig R. Hesse(f)(X, Y ) = X(Y (f)) X Y (f).

3. FELADATSOR. n(n 1) Meggondolható, hogy B képtere az összes alternáló 4-lineáris függvény tere, magja pedig R. Hesse(f)(X, Y ) = X(Y (f)) X Y (f). 011/1 I. félév 3. FELADATSOR 3-1: Legyen R T 0,4 V az algebrai görbületi tenzorok tere az n-dimenziós V vektortér felett. Mennyi R dimenziója? Mennyi a 0 Ricci-tenzorú görbületi tenzorok terének dimenziója?

Részletesebben

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:

Részletesebben

További adalékok a merőleges axonometriához

További adalékok a merőleges axonometriához 1 További adalékok a merőleges axonometriához Egy szép összefoglaló munkát [ 1 ] találtunk az interneten, melynek előző dolgoza - tunkhoz csatlakozó részeit itt dolgozzuk fel. Előző dolgozatunk címe: Kiegészítés

Részletesebben

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel; Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;

Részletesebben