6. Differenciálegyenletek
|
|
- Liliána Pappné
- 10 évvel ezelőtt
- Látták:
Átírás
1 Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon és amelyre érvényes, hogy F () = f(). (6.1) A probléma másik megfogalmazása: megkeresni az f függvény határozatlan integrálját az adott intervallumon annyit jelent, mint megadni a (6.1) függvényegyenlet minden megoldását az adott intervallumon. A természetben bizonyos fizikai problémák megoldása matematikai szempontból egyegy ismeretlen függvény meghatározását teszi szükségessé. Ez csak akkor lehetséges, ha az adott problémára fel tudunk írni egy matematikai modellt, azaz az ismeretlen függvényre egy olyan egyenletet, amelyet annak ki kell elégítenie. Ezekben az egyenletekben, mint például a (6.1)-ben is, az ismeretlen függvényen kívül szerepelhetnek annak deriváltjai is. Az ilyen egyenleteket nevezzük differenciálegyenleteknek. A differenciálegyenletek elmélete igen fontos és szerteágazó matematikai tudományterület, amelynek számos különböző alkalmazása van Példa. Keressük meg az Oy síkban azokat a görbéket, amelyek bármely pontjában az érintő iránytényezője fordítottan arányos az érintési pont abszcisszájával. Megoldás. Ha y = y() a keresett görbe egyenlete, akkor y = k kell, hogy teljesüljön, ahol k az arányossági tényező. Ekkor y = k d = k d = k ln + C, ahol C tetszőleges valós állandó. Ebből a görbeseregből egy meghatározott görbét úgy tudunk kiválasztani, ha megadunk még valamilyen feltételt. Keressük a görbeseregből azt a görbét, amely áthalad az M(1, 0) ponton. Ekkor a keresett görbe teljesíti az y(1) = 0, azaz k ln 1 + C = 0 feltételt, ahonnan C = 0 adódik, azaz a kiválasztott görbe az y = k ln Példa. Adjuk meg az y = C 1 e + C 2 e görbeseregnek megfelelő differenciálegyenletet, ahol C 1 és C 2 valós paraméterek.
2 6.1. A differenciálegyenlet fogalma 313 Megoldás. Ha kétszer differenciáljuk a függvényt, akkor y = C 1 e C 2 e, y = C 1 e + C 2 e adódik, ahonnan a keresett differenciálegyenlet y = y Definíció. Azt a függvényegyenletet, amely a független változót, az ismeretlen függvényt, valamint az ismeretlen függvény deriváltjait tartalmazza, differenciálegyenletnek nevezzük. A differenciálegyenlet rendje az ismeretlen függvény differenciálegyenletben szereplő legmagasabb deriváltjának a rendje. Az algebrai egyenletekhez hasonlóan a differenciálegyenletekben is van ismeretlen, de az most nem szám, hanem függvény. Az egyenlet megoldásakor olyan y = y() függvényeket keresünk, amelyeket deriváltjaikkal együtt a differenciálegyenletbe helyettesítve az változóban egy azonosságot kapunk. Az egyszerűbb felírás kedvéért, az független változójú y() függvény helyett a differenciálegyenletekben csak y-t írunk. A fenti definíció alapján, y = 2 elsőrendű differenciálegyenlet, y y = 0 pedig másodrendű differenciálegyenlet. A modellezett fizikai problémától függően az változó helyett sokszor más betűt használunk, legtöbbször t-t, amely az időre utal; ekkor y helyett -et vagy s-t, y helyett -t, ẋ-ot vagy s -t, ṡ-ot írunk. Adott F : (a, b) R 2 R és f : (a, b) R R függvényekre az elsőrendű differenciálegyenlet implicit alakja eplicit alakja pedig F (, y, y ) = 0, (6.2) y = f(, y). Adott G : (a, b) R 3 R és g : (a, b) R 2 R függvényekre a másodrendű differenciálegyenlet implicit alakja G(, y, y, y ) = 0, (6.3) eplicit alakja pedig y = g(, y, y ) Definíció. Az y = y() függvény a (6.2), illetve (6.3) differenciálegyenlet megoldása az (a, b) intervallumon, ha y = y() egyszer, illetve kétszer differenciálható az (a, b) intervallumon, és deriváltjaival együtt kielégíti a megfelelő differenciálegyenletet. Ha az y = y() függvény megoldása a differenciálegyenletnek, akkor az y = y() függvény grafikonját megoldásgörbének nevezzük. Megoldani egy differenciálegyenletet annyit jelent, mint megkeresni minden megoldását. A differenciálegyenletek elméletében a differenciálegyenleteknek különböző megoldásai léteznek Definíció. Az y = y(, C) függvénycsaládot, ahol C tetszőleges valós állandó, az y = f(, y) elsőrendű differenciálegyenlet általános megoldásának nevezzük, ha az y = y(, C) függvények mindegyike megoldása az adott egyenletnek.
3 DIFFERENCIÁLEGYENLETEK Az általános jelző egy kicsit félrevezető. Előfordulhat ugyanis olyan eset, hogy az általános megoldás nem szolgáltatja az egyenlet összes megoldását. Ez azt jelenti, hogy van az egyenletnek olyan megoldása, amely nem kapható meg a C paraméter alkalmas megválasztásával. Az ilyen megoldást szinguláris megoldásnak nevezzük Definíció. Az y = f(, y) elsőrendű differenciálegyenlet minden olyan megoldását, amelyet az egyenlet általános megoldásából kapunk a C paraméter egy konkrét (megengedett) C = C 0 értékére, partikuláris megoldásnak nevezzük. Az elsőrendű differenciálegyenlet általános megoldása egy egyparaméteres görbesereget határoz meg. Ennek a görbeseregnek egy görbéje egy partikuláris megoldás grafikonját ábrázolja Példa. Behelyettesítéssel ellenőrizhetjük, hogy az y = ( 2 + C) 2 az y = 4 y egyenlet általános megoldása. Az egyenlet partikuláris megoldása például C = 1 esetén az y = ( 2 +1) 2, C = 1 esetén az y = ( 2 1) 2 vagy C = 0 esetén az y = 4. Az egyenletnek megoldása az y 0 is. A C paramétert nem tudjuk úgy választani, hogy ( 2 + C) 0 egy intervallumon teljesüljön. Ezért az egyenletnek y 0 szinguláris megoldása. y C C C C 2 C Általában az y = f(, y) elsőrendű differenciálegyenlet olyan partikuláris megoldását keressük, amely áthalad egy megadott ( 0, y 0 ) ponton, azaz eleget tesz az y( 0 ) = y 0 kezdeti feltételnek. Az y = f(, y) elsőrendű differenciálegyenlet az y( 0 ) = y 0 kezdeti feltétellel együtt kezdetiérték-problémát alkot.
4 6.1. A differenciálegyenlet fogalma Példa. Tekintsük az y = y differenciálegyenletet. Határozzuk meg az adott differenciálegyenlet általános megoldását, majd azt a partikuláris megoldást, amely eleget tesz az y( 3) = 1 3 Megoldás. alakban. Ekkor kezdeti feltételnek. Írjuk fel az egyenletet y = dy d d = dy y (y 0; y = 0 egy megoldása a differenciálegyenletnek), ahonnan a két oldal integrálásával kapjuk, hogy ln y = ln + ln C 1, C 1 > 0, azaz y = C 1. Innen y = C 1 vagy y = C 1, vagyis y = C, C R \ {0} az általános megoldás. Minden ( 0, y 0 ), 0 R \ {0} pont esetén létezik az y = C görbeseregnek egy olyan egyértelmű ( megoldása, amely tartalmazza a megadott pontot. Eszerint a megadott 3, 1 ) pontra az = 3C egyenletnek C = 1 egyértelmű megoldása, tehát a keresett 9 partikuláris megoldás y = 9. y 3 2 C 2 1 C 0.5 P 3, C C Definíció. Az y = y(, C 1, C 2 ) függvénycsaládot, ahol C 1 és C 2 tetszőleges egymástól független valós állandók, az y = g(, y, y ) másodrendű differenciálegyenlet általános megoldásának nevezzük, ha az y = y(, C 1, C 2 ) függvények mindegyike megoldása az adott egyenletnek.
5 DIFFERENCIÁLEGYENLETEK A másodrendű differenciálegyenlet általános megoldása egy kétparaméteres görbesereget határoz meg Definíció. Az y = g(, y, y ) másodrendű differenciálegyenlet minden olyan megoldását, amelyet az egyenlet általános megoldásából kapunk vagy csak a C 1, vagy csak a C 2, vagy mindkét paraméter konkrét C 1 = C 1 0 vagy C 2 = C 2 0 értékére, partikuláris megoldásnak nevezzük Példa. Az y = C 1 cos + C 2 sin függvény az y + y = 0 másodrendű differenciálegyenlet általános megoldása, y = C 1 cos, y = C 2 sin, y = cos sin pedig partikuláris megoldások. Általában az y = g(, y, y ) másodrendű differenciálegyenlet olyan partikuláris megoldását keressük, amely áthalad egy megadott ( 0, y 0 ) ponton és 0 pontban y 1 a meredeksége, azaz eleget tesz az y( 0 ) = y 0, y ( 0 ) = y 1 kezdeti feltételnek. Az y = g(, y, y ) másodrendű differenciálegyenlet az y( 0 ) = y 0, y ( 0 ) = y 1 kezdeti feltétellel együtt kezdetiérték-problémát alkot Elsőrendű differenciálegyenletek Szétválasztható változójú differenciálegyenletek 6.7. Definíció. Az y = f()g(y) alakban felírható elsőrendű differenciálegyenletet szétválasztható változójú differenciálegyenletnek nevezzük. Ha a deriváltra a Leibniz-féle jelölést használjuk, y = dy d, akkor az y = f()g(y) egyenlet dy d = f()g(y) alakban írható fel. A megoldás létezésének biztosítása érdekében tegyük fel, hogy f és g folytonosak a megfelelő intervallumokban. Ha g(y) 0, akkor az y = f()g(y) egyenlet ekvivalens a dy g(y) = f()d egyenlettel, és az egyenlet általános megoldása ekkor dy g(y) = f()d, 1 amiből és f() primitív függvényeinek, mondjuk G(y) és F () függvények meghatározása után azt kapjuk, g(y) hogy G(y) = F () + C, ahol C tetszőleges valós állandó. Ha a g(y) = 0 egyenletnek b 1, b 2,..., b k valós megoldásai, akkor a fenti megoldások mellett az y = b 1, y = b 2,...,y = b k függvények is megoldásai az y = f()g(y) egyenletnek.
6 6.2. Elsőrendű differenciálegyenletek 317 FELADATOK. 1. Határozzuk meg az y = differenciálegyenlet általános megoldását, majd azt a y partikuláris megoldást, amely áthalad a P (1, 1) ponton. Megoldás. Alkalmazzuk az y = dy d jelölést. Ha y 0, akkor a dy d = y szétválasztható változójú differenciálegyenletet kapjuk, amiből ydy = d. Integráljuk az egyenlet mindkét oldalát, ekkor az ydy = d egyenlőséget kapjuk, innen pedig integrálás után y 2 2 = C, azaz 2 + y 2 = 2C. Ha 2C = r 2, akkor az 2 + y 2 = r 2 egyenletű görbesereg, azaz koncentrikus középponti körvonalak képezik az általános megoldást. Ha a P (1, 1) ponton áthaladó partikuláris megoldást keressük, akkor a P (1, 1) ponton áthaladó körvonal egyenletét keressük. Ha belyettesítjük a P pont megfelelő koordinátáit az általános megoldásba, akkor = r 2 azaz r 2 = 2. A keresett partikuláris megoldás tehát 2 + y 2 = 2. y P 1, C C 0.5 C 2 1 C 1 2 C 9 2 3
7 DIFFERENCIÁLEGYENLETEK 2. Határozzuk meg az y 2y 2 1 = 0 differenciálegyenlet y( 2) = 1 feltételt kielégítő megoldását. Megoldás. Az egyenlet felírható dy d 2y 2 1 = 0 alakban is, amelyből megállapítható, hogy szétválasztható változójú differenciálegyenletről van szó. A folytonosság biztosítása miatt 1 és 1. Ha y 0, akkor a fenti egyenlet dy y = 2d 2 1 alakban is felírható. Integrálva az egyenlet mindkét oldaát adódik, hogy dy y = 2d 2 1. A jobboldali integrálban vezessük be az 2 1 = t helyettesítést, amiből 2d = dt. Integrálás után ln y = ln ln C, C R +, innen pedig ln y = ln C 2 1. A logaritmusfüggvény szigorú monotonitása miatt kapjuk, hogy y = C 2 1, ahonnan y = C( 2 1) vagy y = C( 2 1), C R +. Ha C 1 R \ {0} konstanst választunk, akkor a két egyenlet közös alakja y = C 1 ( 2 1), C 1 R \ {0}. Vegyük észre, hogy y = 0 is megoldása az egyenletnek, mely C 1 általános megoldásból is megkapható, tehát az = 0 esetén az y = C 1 ( 2 1), C 1 R, függvénycsalád alkotja az általános megoldást, s ezen függvények grafikonjai egy parabolasereget alkotnak. Ha az általános megoldás függvényeiből azt a partikuláris megoldást keressük, amely kielégíti az y( 2) = 1 feltételt, akkor azt a megoldást keressük, amely = 2 esetén y = 1 értéket ad, azaz teljesül az 1 = C 1 (1 2 1) egyenlőség, ahonnan C 1 = 1. A keresett partikuláris megoldás tehát y = Határozzuk meg a sin d + cos ydy = 0 differenciálegyenlet általános megoldását, majd azt a partikuláris megoldást, amely eleget tesz az y(0) = π feltételnek. Megoldás. Mivel a megadott differenciálegyenlet ekvivalens a sin d = cos ydy
8 6.2. Elsőrendű differenciálegyenletek 319 egyenlettel, megállapíthatjuk, hogy egy szétválasztható változójú differenciálegyenletről van szó. Integrálás után adódik: sin d = cos ydy tehát az általános megoldás cos + C = sin y, sin y cos + C = 0. A partikuláris megoldás meghatározásához meg kell határozni a C állandó értékét, amelyre teljesül az y(0) = π feltétel. Tehát keressük azt a megoldást, amely áthalad a (0, π) ponton. A sin π cos 0 + C = 0 feltételből adódik, hogy C = 1, vagyis a keresett partikuláris megoldás sin y cos + 1 = Oldjuk meg az y + y 2 = 1 differenciálegyenletet. Megoldás. A változók szétválasztásához használjuk fel az y = dy d dy d = 1 y2 és dy = d, ha y ±1. 1 y2 jelölést. Ekkor Mindkét oldal integrálásával kapjuk, hogy dy 1 y = 2 d. A baloldali integrál racionális törtfüggvény integrálja. Elemi törtekre való bontás után kapjuk, hogy ( y + 1 ) dy = + C, 1 + y ahol C tetszőleges valós szám, innen pedig integrálás után 1 ( ln 1 y + ln 1 + y ) = + C 2 adódik. Az egyenlet bal oldalának rendezése után az egyenlet 1 2 ln 1 + y 1 y = + C alakú lesz, általános megoldása pedig y = e2(+c) 1 e 2(+C) + 1, C R.
9 DIFFERENCIÁLEGYENLETEK 5. Határozzuk meg az y = y, y( 2) = 2 kezdetiérték-probléma megoldását. y + y Megoldás. Alkalmazzuk az y = dy jelölést és bontsuk tényezőire az egyenlet jobb d oldalát. Ha y 0 és 1, akkor dy d = (1 + y) y(1 + ). Ha y 1, akkor a változók szétválasztása után kapjuk, hogy ydy 1 + y = d 1 +, mindkét oldal integrálása után pedig a következő adódik: y y ydy 1 + y = d dy = 1 + d ( 1 1 ) ( dy = 1 1 ) d 1 + y 1 + dy y dy = d d. A megfelelő primitív függvények meghatározása után kapjuk a differenciálegyenlet általános megoldását: illetve más elrendezésben: y ln 1 + y = + ln C, y + C = ln ln 1 + y. Mivel az y( 2) = 2 kezdeti feltételnek kell teljesülnie, ezért 2 2 C = ln ln 1 2, 4 C = 2 ln 1, ahonnan C = 4. A kezdetiérték-probléma megoldása tehát y = ln (1 + )(1 + y), azaz e y++4 = (1 + )(1 + y).
10 6.2. Elsőrendű differenciálegyenletek Változóiban homogén differenciálegyenlet 6.8. Definíció. Az y = f ( y ), R \ {0} alakú differenciálegyenletet változóiban homogén (vagy röviden homogén) differenciálegyenletnek nevezzük. Ezt az egyenlet az y = t helyettesítéssel, ahol t = t() az új ismeretlen függvény, szétválasztható változójú differenciálegyenletre hozhatjuk. Ekkor y = t + t, majd a homogén egyenletbe való behelyettesítés után t + t = f(t) adódik, azaz dt d + t = f(t), vagyis, hogy dt f(t) t = d, az f(t) t feltétel mellett. A jobb és bal oldal integrálása után adódik, hogy dt f(t) t = ln + C. Ha az f(t) = t egyenletnek t 1, t 2,..., t k megoldásai, akkor a t = t 1, t = t 2,..., t = t k konstans függvények megoldásai az átalakított egyenletnek, az y = t 1, y = t 2,..., y = t k lineáris függvények pedig az eredeti homogén egyenletnek megoldásai. FELADATOK. 1. Határozzuk meg az y = e y y +, 0, differenciálegyenlet általános megoldását. ( y Megoldás. Vegyük észre, hogy az adott egyenlet y = f alakú, tehát vál- ) tozóiban homogén differenciálegyenlet. Alkalmazzuk az y = t, illetve y = t helyettesítést, ahonnan y = t + t, mert t = t() az új ismeretlen függvény. Ekkor ebből pedig t + t = e t + t, dt d = et. A változók szétválasztása után kapjuk, hogy dt e t = d, majd mindkét oldal integrálásával az e t dt = d,
11 DIFFERENCIÁLEGYENLETEK illetve e t = ln + ln C, C > 0 egyenlőséget, ahonnan e t = ln 1, C azaz ( t = ln ln 1 ). C Visszahelyettesítés után adódik az ( y = ln ln 1 C általános megoldás. ), azaz y = ln ( ln 1 ) C 2. Határozzuk meg az y = 2y differenciálegyenlet általános megoldását, majd 2 y 2 azt a partikuláris megoldást, amely áthalad a (0, 1) ponton. Megoldás. Ha y ±, 0 és az egyenlet jobb oldalán levő racionális törtfüggvényt 2 -tel egyszerűsítjük, akkor 2y 2 2 y 2 y =, azaz y = 2 1 ( y 2 ( y adódik, amiből látszik, hogy az egyenletünk y = f alakú, tehát változóiban ) homogén differenciálegyenlet. Alkalmazzuk az y = t, illetve y = t helyettesítést, y ) 2 ahonnan y = t + t, mert t = t() az új ismeretlen függvény. Ekkor ahonnan rendezéssel az t = t + t = 2t 1 t 2, 2t dt, azaz 1 t2 d = t3 + t 1 t 2 A változók szétvá- alakú szétválasztható változójó differenciálegyenletet kapjuk. lasztása után kapjuk, hogy 1 t 2 t 3 + t dt = d, a két oldal integrálásával pedig, hogy 1 t 2 d t 3 + t dt =. Mivel a baloldali integrandus egy racionális törtfüggvény, amely elemi törtek összegére bontható, azaz 1 t 2 t(t 2 + 1) = 1 t 2t t 2 + 1
12 6.2. Elsőrendű differenciálegyenletek 323 érvényes, ezért a továbbiakban ( 1 t 2t t ) dt = ln + ln C, C > 0. A baloldali második integrálban bevezetjük a t = z, 2tdt = dz helyettesítést, így ln t ln z = ln C, illetve t t = C. Ebből visszahelyettesítés és rendezés után y 2 + y 2 = C 1, C 1 R, az általános megoldás. A keresett partikuláris megoldásra teljesül, hogy ha = 0, akkor y = 1. Ekkor = C 1, azaz C 1 = 1, s ebből a keresett partikuláris megoldás y = 2 + y Oldjuk meg az y y = ( + y) ln + y differenciálegyenletet, ha 0. Megoldás. Fejezzük ki az adott egyenletből az ismeretlen függvény deriváltját. Ekkor y = y + + y ln + y, innen pedig y = y ( y ) ( ln 1 + y ). Megállapíthatjuk, hogy a differenciálegyenlet változóiban homogén, tehát bevezetjük a t = y helyettesítést, ahonnan y = t + t. Az egyenlet most t + t = t + (1 + t) ln(1 + t) szétválasztható változójú differenciálegyenletté alakul át, amely a változók szétválasztása után dt (1 + t) ln(1 + t) = d alakra hozható. Integráljuk a fenti egyenlet mindkét oldalát. Ekkor dt d (1 + t) ln(1 + t) =. Ha a bal oldalon alkalmazzuk az ln(1 + t) = z helyettesítést, akkor így dz z = ln + ln C, C > 0 dt 1 + t = dz, és
13 DIFFERENCIÁLEGYENLETEK adódik, ahonnan ln z = ln C, illetve z = C 1, C 1 R. Visszatérve az eredeti változókra kapjuk, hogy Ebből az általános megoldás ln(1 + t) = C 1, illetve e C 1 = 1 + y, C 1 R. y = ec 1 1, amiből y = ( e C 1 1 ), C 1 R. 4. Határozzuk meg az ( 3 + y 3 )d 3y 2 dy = 0 differenciálegyenlet y(1) = 1 kezdeti feltételt teljesítő megoldását. Megoldás. Az egyenlet rendezése után adódik, hogy ( 3 + y 3 )d = 3y 2 dy, illetve 3 + y 3 3y 2 = dy, ha y 0. d Alkalmazzuk a dy d = y helyettesítést és egyszerűsítsük a racionális törtfüggvényt 3 -nal. Ekkor a differenciálegyenlet felírható mint y =, illetve y = 1 + ( y 3 ) 3 ( ) y y 3 3 3y 2 Megállapíthatjuk, hogy a kapott egyenlet elsőrendű változóiban homogén differenciálegyenlet, ezért bevezetjük a t = y helyettesítést ahonnan y = t + t. Behelyettesítés után a t + t = 1 + t3 3t 2 szétválasztható változójú differenciálegyenletet kapjuk, amely a változók szétválasztása után az 1 d = 3t2 1 2t dt 3 alakra hozható. Integrálva a fenti egyenlet mindkét oldalát kapjuk, hogy 1 d = 3t 2 1 2t 3 dt. Vezessük be az s = 1 2t 3 helyettesítést a jobb oldalon. Ekkor ds = 6t 2 dt és ln + ln C = 1 ds 2 s, C > 0. Integrálás és rendezés után adódik, hogy ln C = 1 2 ln 1 2t3 és C 2 2 = 1 1 2t 3.
14 6.2. Elsőrendű differenciálegyenletek 325 Visszatérve az eredeti változóra, elhagyva az abszolút értéket, a +C 2, illetve C 2 állandókat C 1 -gyel jelölve (C 1 R) és rendezve az egyenletet kapjuk a C 1 ( 3 2y 3 ) =, C 1 R általános megoldást. Az y(1) = 1 kezdeti feltételt teljesítő megoldásra igaz, hogy = 1 esetén y = 1 is teljesül. Ekkor C 1 ( ) = 1, ahonnan C 1 = 1 és a keresett partikuláris megoldás 2y 3 3 =. 5. Oldjuk meg az (y y)arctg y =, y(1) = 0 kezdetiérték-problémát, ha 0. Megoldás. Fejezzük ki az adott egyenletből az ismeretlen függvény deriváltját. Ha y 0, akkor y y = arctg y, azaz y = y + 1 arctg y. Megállapíthatjuk, hogy a kapott egyenlet elsőrendű változóiban homogén differenciálegyenlet, ezért bevezetjük a t = y helyettesítést ahonnan y = t + t. Behelyettesítés után a t + t = t + 1 arctg t szétválasztható változójú differenciálegyenletet kapjuk, amely a változók szétválasztása után az arctg tdt = 1 d alakra hozható. Integrálva a fenti egyenlet mindkét oldalát kapjuk, hogy 1 arctg tdt = d. A bal oldali integrál parciális integrálással oldható meg. Legyen u = arctg t és dv = dt, ahonnan du = dt és v = t. Ebből következik, hogy 1 + t2 t 1 tarctg t 1 + t dt = 2 d. Vezessük be a baloldali integrálban az 1 + t 2 = z helyettesítést, amiből 2tdt = dz, illetve tdt = dt 2. Ebből tarctg t 1 dz = ln + ln C, C > 0, 2 z tarctg t 1 ln z = ln + ln C, C > 0, 2
15 DIFFERENCIÁLEGYENLETEK illetve tarctg t = ln C 1 + t 2, C > 0. Visszatérve az eredeti változókra kapjuk az y arctg y ( y ) 2, = ln C 1 + C > 0 illetve más alakban az yarctg y = ln C 2 + y 2, C > 0 alakú általános megoldást. Egy megoldás teljesíti az y(1) = 0 feltételt, ha igaz, hogy 0 arctg 0 1 = 1 ln C , ahonnan ln C = 0 és C = 1. A keresett megoldás tehát yarctg y = ln 2 + y Elsőrendű lineáris differenciálegyenlet 6.9. Definíció. Az y + p()y = q() alakú differenciálegyenletet, ahol p és q az független változótól függő adott folytonos függvények, elsőrendű lineáris differenciálegyenletnek nevezzük. Az egyenlet megoldását y = uv szorzatalakban keressük, ahol u = u() és v = v() ismeretlen függvények. Ekkor az y = u v + uv kifejezést behelyettesítve a lineáris differenciálegyenletbe adódik, hogy illetve u v + uv + p()uv = q(), u v + u(p()v + v ) = q(). (6.4) Határozzuk meg a v függvényt úgy, hogy igaz legyen a p()v + v = 0 egyenlőség, vagyis dv = p()d. A jobb és bal oldal integrálásával adódik, hogy v ln v = p()d, azaz v = e p()d. Ha a v-t visszahelyettesítjük (6.4)-be, akkor az u e p()d = q() egyenletet kapjuk, amiből integrálás után u = C + q()e p()d d
16 6.2. Elsőrendű differenciálegyenletek 327 adódik, ahol C tetszőleges állandó. Ennek alapján az y + p()y = q() elsőrendű lineáris differenciálegyenlet általános megoldása ( y = e p()d C + ) q()e p()d d. FELADATOK. 1. Mutassuk meg, hogy az (y sin 1)d+cos dy = 0 egyenlet lineáris elsőrendű differenciálegyenlet, majd a képlet alapján határozzuk meg azt a partikuláris megoldást, amely kielégíti az y(0) = 0 kezdeti feltételt. Megoldás. Rendezzük az egyenletet a következő módon: cos dy = (1 y sin )d, dy d = 1 cos sin cos y, y + tg y = 1 cos. π 2 + kπ, k Z A fenti alakból már valóban egyértelmű, hogy lineáris elsőrendű differenciálegyenletről van szó, amelyben p() = tg és q() = 1. Ha az általános megoldást cos ( ) y = e p()d C + q()e p()d d képlettel keressük, akkor két integrált kell kiszámítanunk. Ezek közül az egyik: sin p()d = tg d = cos d = cos = t dt sin d = dt = = ln cos. t A másik integrált a kapott primitív függvény segítségével számoljuk ki. Eszerint: q()e p()d 1 d = cos eln 1 cos 1 d = d = tg + C. cos 2 Az általános megoldás tehát y = e ln cos (C + tg ) = cos (C + tg ) = C cos + sin. Az y(0) = 0 kezdeti feltételt teljesítő megoldásra teljesül, hogy ha = 0 teljesül, akkor y = 0-nak is teljesülnie kell, azaz 0 = C cos 0 + sin 0, ahonnan C = 0, vagyis a keresett partikuláris megoldás az y = sin függvény.
17 DIFFERENCIÁLEGYENLETEK 2. Oldjuk meg az 2 y + y + 1 = 0 lineáris elsőrendű differenciálegyenletet. Megoldás. Osszuk el az adott egyenletet 2 -tel és rendezzük a következő alakra: y + 1 y = 1 2, 0. Keressük a megoldást y = uv szorzat alakban, ahol u = u(), v = v() és ahonnan y = u v + uv. Ekkor u v + uv + 1 uv = 1 2, 0. Emeljünk ki u-t a bal oldal második és harmadik tagjából, így u v + u (v + 1 ) v = 1, 0. 2 Válasszuk meg a v tényezőt úgy, hogy a bal oldalon a zárójelben levő kifejezés nulla legyen, azaz teljesüljön a v + 1 v = 0 egyenlőség. Innen a változók szétválasztása után dv v = d adódik, ahonnan a két oldal integrálásával kapjuk, hogy ln v = ln, illetve v = 1. Visszahelyettesítés után az u v + u 0 = 1 2 egyenletet kapjuk, ahonnan u = 1, illetve du = d. Mindkét oldal integrálásával az u = ln + C megoldás adódik. Az általános megoldás y = uv = 1 (C ln ), azaz y = C ln. 3. Határozzuk meg az y + y = ln + 1, y(1) = 0 kezdetiérték-probléma megoldását. Megoldás. Elosztva az egyenlet mindkét oldalát -szel egyértelművé válik, hogy lineáris elsőrendű differenciálegyenletet kell megoldani, amelynek alakja y + 1 y = 1 + ln, > 0.
18 6.2. Elsőrendű differenciálegyenletek 329 Keressük a megoldást y = uv szorzat alakban, ahol u = u(), v = v() és ahonnan y = u v + uv. Ekkor u v + uv ln uv =. Emeljünk ki u-t a bal oldal második és harmadik tagjából, így ( u v + u v + 1 ) v = 1 + ln. Válasszuk meg a v tényezőt úgy, hogy a v + 1 kifejezés nulla legyen. Ha v + 1 = 0, akkor dv v = d és v = 1. Az eredeti egyenlet tehát u 1 = 1 + ln alakú, ahonnan du = (1 + ln )d. Mindkét oldal integrálásával kapjuk a du = (1 + ln )d egyenletet, ahonnan Mivel u = + ln d. ln d parciális integrálással oldható meg oly módon, hogy bevezetjük az U = ln, dv = d helyettesítést, ahonnan du = 1 d és V =, és ebből Így az általános megoldás u = + ( ln 1 ) d, u = + ln + C, azaz u = ln + C. y = uv = 1 ( ln + C), azaz y = C + ln. A keresett partikuláris megoldáshoz tartozó C állandó pedig az y(1) = 0 kezdeti feltétel segítségével a 0 = C 1 + ln 1 egyenletből határozható meg. Innen C = 0, vagyis a kezdetiérték-probléma megoldása y = ln. ( π ) 4. Határozzuk meg az y +yctg = 5e cos differenciálegyenlet 2, 4 ponton áthaladó partikuláris megoldását, ha kπ, k Z. Megoldás. Először az általános megoldást kell meghatározni. Mivel az adott egyenlet elsőrendű lineáris differenciálegyenlet, ezért keressük a megoldást y = uv szorzat
19 DIFFERENCIÁLEGYENLETEK alakban, ahol u = u(), v = v() és ahonnan y = u v + uv, rendezés után az egyenlet alakja u v + u(v + vctg ) = 5e cos. Egyenlítsük ki a zárójelben levő kifejezést nullával. Ekkor v + vctg = 0 és u v = 5e cos. Az első egyenletből meghatározzuk v-t, majd felhasználásával a második egyenletből határozzuk meg az u függvényt, s ezzel az y függvény is adott lesz. Az első egyenlet egy szétválasztható változójú differenciálegyenlet, amely rendezés után dv = ctg d v alakra hozható. Integráljuk az egyenlet mindkét oldalát. Ekkor dv v = ctg d innen pedig Ekkor ln v = ln sin illetve v = sin 1. v = 1 sin. A második egyenlet most az u sin = 5ecos alakot veszi fel, amely szintén egy szétválasztható változójú differenciálegyenlet. Rendezés után kapjuk, hogy du = 5e cos sin d, ahonnan mindkét oldal integrálásával adódik, hogy du = 5 e cos sin d. A jobboldalon alkalmazzuk a cos = t helyettesítést, ahonnan sin d = dt. Ekkor u = 5e cos + C. Az általános megoldást az y = uv képletbe való visszahelyettesítés után kapjuk, és eszerint y = C 5ecos. sin ( π ) Hogy a megoldás áthaladjon a 2, 4 ponton, teljesülnie kell a 4 = c 5ecos π 2 sin π 2, illetve 4 = C 5 e0 1 egyenlőségnek, ahonnan C = 1, a keresett partikuláris megoldás pedig y = 1 5ecos. sin
20 6.2. Elsőrendű differenciálegyenletek Határozzuk meg az (1 2 )y + y 1 = 0 differenciálegyenlet olyan partikuláris megoldását, amely áthalad a (0, 1) ponton. Megoldás. Ha 1 és 1 akkor osszuk az adott egyenletet (1 2 )-tel. Ekkor az y + 1 y = lineáris elsőfokú differenciálegyenletet kapjuk. Keressük a megoldást y = uv szorzat alakban, ahol u = u(), v = v() és ahonnan y = u v + uv. Ekkor u v + uv + 1 uv = Emeljünk ki u-t a bal oldal második és harmadik tagjából, így ( u v + u v + ) 1 v = Válasszuk meg a v tényezőt úgy, hogy a v + v kifejezés nulla legyen. Ha 1 2 v + v = 0, akkor a változók szétválasztása után 1 2 dv v = d 1 2. Integrájuk a fenti egyenlet mindkét oldalát. Ekkor dv v = d 1. 2 A jobb oldalon alkalmazzuk az 1 2 = t helyettesítést, ahonnan 2d = dt és d = dt 2. Ekkor ln v = 1 dt 2 t, amiből ln v = 1 2 ln t, azaz v = 1 2, ( 1, 1). Ha visszahelyettesítünk a megfelelő egyenletbe, akkor az egyenletet kapunk, amelyből u 1 2 = du = d (1 2 ) 1 2. A jobb oldalon egy irracionális függvény integrálját kell meghatározni, melyet az = sin t, d = cos d helyettesítéssel tudunk megoldani. Ekkor cos tdt u = (1 sin 2 t) 1 sin 2 t = cos tdt cos 2 t cos t = dt = tg t + C. cos 2 t
21 DIFFERENCIÁLEGYENLETEK Mivel tg t = sin t 1 sin 2 t az változóra való visszatéréssel adódik, hogy u = C. Az adott differenciálegyenlet általános megoldása tehát ( ) 1 y = uv = + C 2, 1 2 illetve y = + C 1 2. A keresett partikuláris megoldásra teljesül, hogy = 0 esetés y = 1, vagyis 1 = 0 + C 1 0 2, ahonnan C = 1. A keresett partikuláris megoldás tehát az függvény. y = Bernoulli-féle differenciálegyenlet Definíció. Legyen k olyan valós szám, hogy k 0 és k 1. Az y + p()y = q()y k alakú differenciálegyenletet, ahol p és q az független változótól függő adott folytonos függvények, Bernoulli-féle vagy Bernoulli-típusú differenciálegyenletnek nevezzük. A Bernoulli-féle differenciálegyenletet lineáris differenciálegyenletre való visszavezetéssel szokás megoldani. Szorozzuk be e célból a Bernoulli-típusú differenciálegyenlet mindkét oldalát y k -val. Beszorzás után az y k y + p()y 1 k = q() alakú differenciálegyenletet kapjuk. Vezessük be a z = z() = y 1 k () helyettesítést, ahonnan z = (1 k)y k y. Szorozzuk be a fenti egyenlet mindkét oldalát (1 k)-val. A behelyettesítés után a Bernoulli-típusú differenciálegyenlet átalkul z + (1 k)p()z = (1 k)q(), illetve P () = (1 k)p() és Q() = (1 k)q() jelöléssel z + P ()z = Q() alakú lineáris differenciálegyenletté, ahol z = z() az új ismeretlen függvény. A lineáris differenciálegyenletekhez hasonlóan a Bernoulli-típusú differenciálegyenlet megoldását is kereshetjük y = uv szorzat alakban, ahol u = u() és v = v().
22 6.2. Elsőrendű differenciálegyenletek 333 FELADATOK. 1. Határozzuk meg az y y = y 5 differenciálegyenlet általános megoldását. I.Megoldás. Az egyenlet egy Bernoulli-típusú differenciálegyenlet, amelyet egy elsőrendű lineáris differenciálegyenletre szeretnénk visszavezetni, ezért mindkét oldalát megszorozzuk y 5 -nel. Ekkor az y y 5 y 1 5 = y 5 5, illetve y y 5 y y 4 = egyenletet kapjuk. Bevezetve a z = y 4 helyettesítést, ahonnan z = 4y y 5, és beszorozva az egyenlet mindkét oldalát 4-gyel a z + 4z = 4 lineáris differenciálegyenletet kapjuk, ahol z = z() az új ismeretlen függvény. Most a megoldást z = uv szorzat alakban keresve, ahonnan z = u v +uv, a fenti egyenlet átalakul és a továbbiakban az illetve u v + uv + 4uv = 4, u v + u(v + 4v) = 4 differenciálegyenletet tekintjük. A v függvényt a egyenletből, az u függvényt pedig az egyenletből határozzuk meg. v + 4v = 0 u v = 4 Mindkét differenciálegyenlet szétválasztható változójú és a szokásos módon oldjuk meg őket. A változók szétválasztása után az első egyenletből dv v = 4d adódik, amely a két oldal integrálása után az dv v = 4 illetve d, ln v = 4, azaz v = e 4 megoldáshoz vezet. Az u v = 4 egyenlet a v behelyettesítése után az u e 4 = 4 differenciálegyenlethez vezet. A változók szétválasztása után du = 4e 4 d,
Differenciálegyenletek. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.
Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
Differenciálegyenletek
Differenciálegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, I. félév Losonczi László (DE) Differenciálegyenletek 2011/12 tanév, I. félév 1 /
5. fejezet. Differenciálegyenletek
5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y
Differenciálegyenletek megoldása próbafüggvény-módszerrel
Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet
Matematika III. harmadik előadás
Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)
HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok
Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás
y + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,
Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ
Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november
Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................
A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)
Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő
Exponenciális és logaritmikus kifejezések Megoldások
Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása
8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
Differenciálegyenletek
DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)
6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)
Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,
Definíció Függvényegyenletnek nevezzük az olyan egyenletet, amelyben a kiszámítandó ismeretlen egy függvény.
8. Differenciálegyenletek 8.1. Alapfogalmak Korábbi tanulmányaink során sokszor találkoztunk egyenletekkel. A feladatunk általában az volt, hogy határozzuk meg az egyenlet megoldását (megoldásait). Az
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő exponenciális egyenletrendszereket! (Alaphalmaz: R) 5 3 x 2 2 y = 7 2 3 x + 2 y = 10 7 x+1 6 y+3 = 1 6 y+2 7 x = 5 (6 y + 1) c) 25 (5 x ) y = 1 3 y 27 x = 3 Megoldás:
Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.
Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
Abszolútértékes és gyökös kifejezések Megoldások
Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása
First Prev Next Last Go Back Full Screen Close Quit. Matematika I
Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!
Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 10 X PARCIÁLIS DIFFERENCIÁLEGYENLETEk 1 Elsőrendű kvázilineáris parciális DIFFERENCIÁLEGYENLETEk Elméleti alapok Elsőrendű kvázilineáris parciális differenciálegyenlet általános
a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!
Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
IV. INTEGRÁLSZÁMÍTÁS Megoldások november
IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +
Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása. 5), akkor
Integrálszámítás Integrálási szabályok Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása Motivációs feladat Valószínűség-számításnál találkozhatunk
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx
Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos
Magasabbfokú egyenletek
86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Irracionális egyenletek, egyenlôtlenségek
9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén
Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit
Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos
Határozatlan integrál, primitív függvény
Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
összeadjuk 0-t kapunk. Képletben:
814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha
Függvények vizsgálata
Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =
Differenciálegyenletek december 13.
Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Differenciaegyenletek a differenciálegyenletek
Differenciaegyenletek a differenciálegyenletek tükrében Guzsvány Szandra Újvidéki Egyetem, Természettudományi Kar, Újvidék E-mail: g.sandra@citromail.hu 1. Bevezetés 1.1. Történeti áttekintés Dolgozatom
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész
Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )
Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
Egészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
differenciálegyenletek
Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y
Határozatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány
Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........
Határozott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
4. Laplace transzformáció és alkalmazása
4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:
A brachistochron probléma megoldása
A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
egyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)
Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.
Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)
Szélsőérték feladatok megoldása
Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Egyenletek, egyenlőtlenségek X.
Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor
Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket
1. feladatsor, megoldások. y y = 0. y h = C e x
1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja
Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)
Polinomok maradékos osztása
14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
Függvény differenciálás összefoglalás
Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a
cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4
Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: Z) a) (x 1) (x + 1) 7x + 1 = x (4 + x) + 2 b) 1 2 [5 (x 1) (1 + 2x) 2 4x] = (7 x) x c) 2 (x + 5) (x 2) 2 + (x + 1) 2 = 6 (2x + 1) d) 6 (x 8)
Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
1. Analizis (A1) gyakorló feladatok megoldása
Tartalomjegyzék. Analizis A) gyakorló feladatok megoldása.................... Egyenl tlenségek, matematikai indukció, számtani-mértani közép....... Számsorozatok............................... 5... Számorozatok................................
Példatár Lineáris algebra és többváltozós függvények
Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................
A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.
Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például:
2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?
= komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve
Függvények határértéke és folytonosság
Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,
Matematikai analízis II.
Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények
Közönséges differenciálegyenletek megoldása Mapleben
Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen