Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2
|
|
- Botond Szalai
- 8 évvel ezelőtt
- Látták:
Átírás
1 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)... Trigonometrikus függvények (sin, cos, tan)... 4 Eponenciális függvények:... 4 Hiperbolikus függvények... 5 Koszinusz-hiperbolikusz függvény... 5 Szinusz-hiperbolikusz függvény... 5 Tangens-hiperbolikusz függvény... 6 Inverz függvények... 7 Természetes alapú logaritmus függvény... Nevezetes határértékek... Határozatlan határértékű alakok összefoglaló táblázata....4 Határozott határértékű alakok, konvergencia kritériumok...5 Gyakorló feladatok megoldással:...6 Függvények ábrázolása a kritikus helyeken vett határértékek segítségével... Reciprokfüggvények ábrázolása, határértékek a kritikus helyeken...5 Racionális törtfüggvények...6 Racionális törtfüggvények ábrázolása, határértékek a kritikus helyeken...6 Összetett függvények ábrázolás a határértékek alapján...0
2 Valós változós valós értékű függvények f Hatványfüggvények: k ahol k pozitív egész szám f f f 4 f 4 5 f 5 6 f 6 7 Páratlan gyökfüggvények: f () f () f () f 4 ()
3 Páros gyökfüggvények f () f () f () Törtkitevős függvények (gyökfüggvények hatványai) y y
4 Trigonometrikus függvények (sin, cos, tan) f a Eponenciális függvények: (a>0) y y e f()=^ f()=e^ f()=(/)^ y Természetes alapú eponenciális függvény y e ahol az alapszám egy nevezetes sorozat határértéke: n n n e 4
5 Hiperbolikus függvények Koszinusz-hiperbolikusz függvény e ch e Definíció: szokásos jelölés még y cosh y e y e f()=cosh() f()=e^ f()=e^(-) e y e ch Szinusz-hiperbolikusz függvény Definíció: e e sh szokásos jelölés még y sin h y e e y sh e y e f()=sinh() f()=e^ f()=e^(-) 5
6 Tangens-hiperbolikusz függvény Definíció: s h e e th ch e e szokásos jelölés még y tanh sh y th ch f()=tanh() f()=sinh() f()=cosh() f()=- f()= 6
7 Inverz függvények Definíció:inverz függvény Az f függvény inverz függvényének nevezzük és f -el jelöljük azt a függvényt, mely minden valós a számhoz (mely az f függvény az értékkészletéhez tartozik), azt a b számot rendeli, melyhez az f az a -t rendelte, vagyis: Ha f b Innen következik, hogy a, akkor f a b f f a a és f f b b Innen következik, hogy az értékkészlete az f értelmezési tartománya. f értelmezési tartománya az f értékkészlete, és Jelben: D f R f, és R f D f f Tehát csak kölcsönösen egyértelmű függvénynek van inverze, hiszen szükséges, hogy b egyértelmű legyen. Tétel: invertálhatóság elégséges feltétele A függvény invertálhatóságának elégséges feltétele a függvény szigorú monotonitása, hiszen szig. monoton függvény esetén ha, akkor f f 7
8 Az f függvény és az f függvény grafikonja egymásnak az y tükörképe egyenesre vett A képen az és inverze az y függvény y látható Az y sin függvény nem invertálható a, intervallumon, mert nem kölcsönösen egyértelmű. Invertálható a, tartományon, itt szigorúan monoton nő. Az inverz függvényét arkusz-szinusz függvénynek nevezzük, jele arcsin 8
9 Az y arcsin értelmezési tartománya a, intervallum,értékkészlete, Hasonlóan ábrázolhatjuk a trigonometrikus függvények inverzeit a szigorúan monoton szakaszokon. Példa Adjuk meg, hogy az y Megoldás: A függvény nem kölcsönösen egyértelmű, függvény hol invertálható és ott adjuk meg az inverzét. y De felbontható két szigorúan monoton (kölcsönösen egyértelmű) szakaszra:. y ha 0. y, ha 0 9
10 A függvénykapcsolatból -et kifejezve adódik az inverz függvénykapcsolat, ezután és y szerepét felcserélve kapjuk az inverz függvényt az ykoordináta-rendszerben., Vagyis y, y, y,, az 0 ágra, illetve a 0 ágra. y y Felcserélve és y szerepét kapjuk,hogy: Az y ( 0 ) inverze y Az y ( 0 ) inverze y 0
11 Természetes alapú logaritmus függvény: f ln A függvény szigorúan monoton, tehát mindenhol létezik az inverze, ezt a függvényt nevezzük természetes alapú logaritmus függvénynek y ln A továbbiakban az eddig felsorolt függvényekből összeállított függvényeket fogjuk vizsgálni. Összeállítás jelenti a fenti függvények konstans szorosát, összegét, különbségét, szorzatát, hányadosát, összetett függvényét, inverz függvényét fogjuk vizsgálni. Megvizsgáljuk a különböző helyeken és a végtelenben a határértékeiket. A célunk az, hogy minél pontosabban fel tudjuk vázolni a grafikonjukat.
12 Nevezetes határértékek sin sin 0, 0 sin Mivel és 0 és 0 sin 0 sin, bizonyítás rendőrelvvel 0 Ívmértekkel mérve az szöget sin tan, innen sin-el osztva sin cos bizonyítás rendőrelv segítségével Mivel ezért a rendőrelv szerint 0 cos 0 sin sin 0 0 sin e A függvény csak ott van értelmezve, ahol az alap pozitív, vagyis <- vagy >0 0,, azaz y
13 e, bizonyítás vázlat. Belátjuk, hogy ha, akkor van a függvénynek határértéke. Ez nem lehet más, mint az egész helyeken véve a határértéket ami n n n e
14 Határozatlan határértékű alakok összefoglaló táblázata. Határozatlan határértékű alakok: Ha egy függvény akkor a f g f 0 g alakú és f g 0 0 szimbolikusan nem egyértelműen meghatározott (). A határérték az f() és g() függvénytől függ. Hasonlóan kell érteni az alábbi táblázatban szereplő szimbólumokat. A határozatlan alakokat határozott alakúvá kell alakítani úgy, hogy már ismert határérték függvénye legyen. Ismertnek tételezzük a következő határértékeket: sin 0 valamint e 0 0 (a lehet akár vagy ) e (a 0 lehet akár 0 vagy 0 ) 0 helyettesítéssel Szimbolikusan. példa. példa sin sin sin sin sin sin e ln e ln e 0 4
15 Határozott határértékű alakok, konvergencia kritériumok Szimbolikusan A szimbólum tartalma Példa C Ha a számláló konstanshoz tart 4. ( C 0 ) és a nevező 0.hoz, akkor 0 a tört - hez tart 5 7 C C C 6. 0 (0<C<) (C>) c 7. (c>0) 8. 0 C (c>0) 0 korlátos Ha a számláló konstanshoz tart és a nevező.hez, akkor a tört -0 hoz tart Ha a számláló végtelenhez tart és a nevező 0.hoz, akkor a tört - hez tart Ha a számláló 0.hoz tart és a nevező végtelenhez, akkor a tört - 0 hoz tart Ha egy függvény alapja egynél nagyobb konstanshoz tart és a kitevője -hez, akkor a tört - hez tart Ha egy függvény alapja egynél kisebb pozitív konstanshoz tart és a kitevője -hez, akkor a tört 0-hoz tart Ha egy függvény alapja -hez tart és a kitevője konstanshoz ami nagyobb mint 0, akkor a tört -hez tart Ha egy függvény alapja pozitív konstanshoz tart és a kitevője 0 -hoz, akkor a tört -hez tart Ha egy függvény alapja 0-hoz tart és a kitevője -hez, akkor a tört 0-hoz tart 0 0 Ha egy szorzat egyik tényezője korlátos a másik pedig 0-hoz tart, akkor a szorzat 0.hoz tart. sin ln 4 sin arcsin sin
16 Gyakorló feladatok megoldással:. =? határozott alakú C C 4 behelyettesítve = et. =? Határozott C 0 alakú, de pontosabban a kérdés azaz, hogy mennyi a határérték ha jobbról tart az -hez. y f()=(^-+)/(-) Ekkor azt kell megvizsgálni, hogy vagy hez tart a függvény. A függvény grafikonján látható, hogy a válasz az, hogy a függvény Az ábra ismerete nélkül a függvény előjeléből lehet megállapítani ugyanezt. Azt kell mondani, hogy végtelenhez tart és ha akkor a függvény előjele pozitív (úgy állapíthatom meg, hogy behelyettesítek egy -nél nagyobb számot pl. =- t) =? ? határozott alakú C C 6
17 5. 0? gyorsabban -hez tartóval azaz 0 0, a számlálót és a nevezőt a leg -el osztva: már határozott C 0 alakú, mert a számláló konstanshoz a nevező pedig 0-hoz tart. Az előjel pedig + behelyettesítéssel láthatjuk ? határozott alakú C C 7. 0? ? ? 0 0? =? A leggyorsabban -hez tartóval 0 = 0 el osztva a számlálót és a nevezőt 7
18 0 0 már határozott 0 0 alakú, azaz 0 0.? A 0 0 ságát úgy meg lehet szüntetni, hogy mind a számláló, mind a nevező konjugáltjával szorozzuk a számlálót is és a nevezőt is: ? 0 0. sin 5? sin5 sin 5 5 5, mert (precízen a 5 helyettesítéssel ha 0 sin akkor 0, a és sin a ) a0 a 4. sin 5 tart! =? Korlátos függvény szorozva 0-hoz tartó függvénnyel 0-hoz sin5 sin 5 0 sin 5 (precízen rendőrelvvel mivel mindkét oldal 0-hoz tart 8
19 5. 6. sin 5 0 =? 0 sin 5 sin 5 0 sin 5 0 cos0 0 tg0 0 tg sin0 cos 0? =? tg 0 cos cos cos cos sin cos cos cos sin 0 cos 7. cos? A 6. példa eredményét felhasználva cos cos cos tg sin? 0 =? 0 0 tg sin sin cos sin cos sin cos cos cos 9. =? e 0. =? Az alap tart -höz a kitevő pedig -hez, ez nem, ez tart végtelenhez precízen: ha C ahol C>,, akkor ha elég nagy, akkor >,9 így 9
20 ,9,9 és, tehát.? Az alap -hoz, egynél kisebb számhoz tart, a kitevő pedig -hez, ez nem határozatlan alak, hanem ez mindig 0-hoz tart (határozott alakok táblázata 6. sor) precízen rendőr elvvel: 0 és 0.? e e e alapján -hez tart.. Tehát = 7 8 és mivel e 7,44 és e e = rendőrelvvel e 7 =, valamint a feladat első része 8 =, ezért a középső is. ln(00 50) ln 50? ln(00 50) ln 50 ln ln ln ln ln( e) 0 0
21 0 e precízen a helyettesítéssel e 0 a a a sin 0? sin sin sin sin = = sin, tehát a szorzat határértéke 8. 0 sin? sin sin ? 4 8.? 0 th th 9.? 0, mert th és 0. táblázat 0. sor,
22 Függvények ábrázolása a kritikus helyeken vett határértékek segítségével Kritikus helynek nevezzük a -t valamint azokat a helyeket ahol valamelyik függvény nevezője nulla. sin sin Ábrázoljuk a y függvényt y y y Vegyük észre, hogy ha az y f ( ) függvényt megszorozzuk az y sin -el, akkor ahol a szinusz függvény nulla volt ott a szorzat függvény is nulla, ahol a szinusz függvény értéket vett fel ott a szorzat függvény f( ) értékét veszi fel, ahol pedig a szinusz függvény - értéket vett fel ott a szorzat függvény - f( ) értékét veszi fel. Ezért a szorzat függvény az f( ) és a - f( ) görbéje között hullámzik Ebből következik, hogy az lehet határértéke ha f( ) 0 Ábrázoljuk a y e sin Állapítsuk meg a határértékét a végtelenben ( ) f sin függvénynek a végtelenben akkor és csak akkor y e y e y sin
23 y e y e y sin y e sin Ábrázoljuk az y függvényt (ezt a függvényt később, mikor már tudunk deriválni, meg fogjuk részletesen vizsgálni) y y
24 f()=+ f()=^(/) y f()=+ f()=^(/) f()=(+)*^(/) 4
25 Reciprokfüggvények ábrázolása, határértékek a kritikus helyeken Kritikus helynek nevezzük a -t valamint azokat a helyeket ahol a nevező nulla. Vegyük észre, hogy ha az y f( ) függvény görbéje úgy keletkezik az f ( ) görbéjéből, hogy ahol f( ) az értéket vett fel ott a reciproka is az értéket veszi fel, ahol f( ) a - értéket vette fel ott a reciproka is a - értéket veszi fel, ahol f( ) 0 értékét vette fel, ott a reciprokának végtelen a határértéke ( vagy,függően attól, hogy pozitív vagy negatív értékeken keresztül vette fel a 0 értéket. Ahol pedig a függvénynek vagy volt a határértéke, ott a reciprokának 0 a határértéke. f ( ) g ( ) f ( ) g ( ) 5
26 Racionális törtfüggvények Definíció Két polinom hányadosát racionális törtfüggvénynek nevezzük, jelben: P Q n m Racionális törtfüggvények ábrázolása, határértékek a kritikus helyeken Kritikus helynek nevezzük a -t valamint azokat a helyeket ahol a nevező nulla. Vegyük észre, hogy ahol a racionális törtfüggvény nevezője nulla, és a számlálója nem nulla, ott a függvénynek a határértéke (szimbolikusan 0 c ). Ahol a nevező is és a számláló is nulla, ott ki kell számolni a határértékét (szimbolikusan 0 0 határozatlan alak) A végtelenben vett határértékét az dönti el, hogy a számláló foka nagyobb-e mint a nevező foka, vagy fordítva, vagy egyenlő. Ha P Q n m esetén ha n m, akkor ha m ha n n m, akkor, akkor P n Q m, Pn 0 Q m P n Q m, C, ahol C a két polinomok legmagasabb fokú tagja együtthatóinak hányadosa. Példa: Ábrázoljuk és állapítsuk meg a határértékeket a kritikus helyeken ha P n Qm 9 ( ) n=4 és m= Nézzük meg, hogy ahol a nevező =0, azaz =, =-, és = helyeken,, van-e határértéke 4 4? 9 ( ) Ha akkor a számláló tart -5 höz (behelyettesítjük a C számlálóba az = értéket), a nevező pedig tart nullához. Szimbolikusan: 0. Ez nem határozatlan alak, ez mindig. A kérdés csak az, hogy vagy. 6
27 Ha az = helyhez közelítünk jobbról, azaz -nál nagyobb értékeket helyettesítünk a törtbe, akkor a kapott tört értéke negatív, egyre kisebb szám, azaz ( ) Ha az = helyhez közelítünk balról, azaz -nál kisebb értékeket helyettesítünk a törtbe, akkor a kapott tört értéke pozitív, egyre nagyobb szám, azaz ( ) A = ben mind a számláló mind a nevező nulla ( ) 9 ( ) Azaz itt véges határértéke van függvénynek. Továbbá a zérushelyek, ahol az -tengelyt elmetszi a görbe: -, 0, 4 7
28 Állapítsuk meg a kritikus helyeken a határértékét a következő függvényeknek: 4 f()=((^-)*(+))/((+)^*(+4)*(+)) Megoldás: 8
29 y 5 8 Megoldás: 9
30 Összetett függvények ábrázolás a határértékek alapján y y e y y y y e helyen balról a határértéke: Az 0 y 0 y y. Tekintve, hogy ln y y ln y, y Ezt később mutatjuk meg. Jobbról közelítve a 0-hoz nincs értelmezve a függvény, hiszen <- vagy >0 y ln y e e z z z y 0
31 e 0 y e e 0 0 y 5
Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény
Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek
RészletesebbenMatematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc
RészletesebbenFüggvény határérték összefoglalás
Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis
Részletesebbenx a x, ha a > 1 x a x, ha 0 < a < 1
EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény
RészletesebbenFirst Prev Next Last Go Back Full Screen Close Quit
Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.
Részletesebben1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
Részletesebben6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények
6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai
RészletesebbenSHk rövidítéssel fogunk hivatkozni.
Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,
Részletesebben6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
RészletesebbenFüggvény differenciálás összefoglalás
Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a
RészletesebbenHatványsorok, elemi függvények
Hatványsorok, elemi függvények EL 1 Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL Definíció: függvénysorozat Legyen A R, H { f f:a R }. (A H halmaz elemei az A halmazon értelmezett függvények)
RészletesebbenEgyváltozós függvények 1.
Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata
RészletesebbenHatározatlan integrál, primitív függvény
Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,
RészletesebbenElemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4.
Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 2017. október 4. Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus
RészletesebbenElemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra
Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus függvény
RészletesebbenFüggvények vizsgálata
Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =
RészletesebbenFüggvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.
Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5
RészletesebbenA sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
Részletesebben2012. október 9 és 11. Dr. Vincze Szilvia
2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények
Részletesebben8. feladatsor: Többváltozós függvények határértéke (megoldás)
Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 07/8 ősz 8. feladatsor: Többváltozós függvények határértéke (megoldás). Számoljuk ki a következő határértékeket: y + 3 a) y
RészletesebbenMásodik zárthelyi dolgozat megoldásai biomatematikából * A verzió
Második zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mit értünk eponenciális üggvényen? Adjon példát alulról korlátos szigorúan monoton csökkenő eponenciális üggvényre.
Részletesebben2010. október 12. Dr. Vincze Szilvia
2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének
RészletesebbenIntegrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november
Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................
RészletesebbenFÜGGVÉNYTANI ALAPOK A) ÉRTELMEZÉSI TARTOMÁNY
FÜGGVÉNYTANI ALAPOK Foglalkoztunk az alaptulajdonságnak tekinthető értelmezési tartománnyal, és a paritással, továbbá az összetett függvények képzési módjával, illetve ezeknek az elemi függvényekre való
RészletesebbenFigyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!
Elméleti kérdések: Második zárthelyi dolgozat biomatematikából * (Minta, megoldásokkal) E. Mit értünk hatványfüggvényen? Adjon példát nem invertálható hatványfüggvényre. Adjon példát mindenütt konkáv hatványfüggvényre.
RészletesebbenFüggvények határértéke, folytonossága
Függvények határértéke, folytonossága 25. február 22.. Alapfeladatok. Feladat: Határozzuk meg az f() = 23 4 5 3 + 9 a végtelenben és a mínusz végtelenben! függvény határértékét Megoldás: Vizsgáljuk el
Részletesebben2014. november 5-7. Dr. Vincze Szilvia
24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével
RészletesebbenI. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex
RészletesebbenKomplex számok. A komplex számok algebrai alakja
Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j
Részletesebben2012. október 2 és 4. Dr. Vincze Szilvia
2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex
RészletesebbenExponenciális és logaritmikus kifejezések Megoldások
Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenHatárérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11.
Határérték Thomas féle Kalkulus 1 című könyv alapján készült a könyvet használó hallgatóknak. A képek az eredeti könyv szabadon letölthető prezentációjából valók ((C)Pearson Education, Inc.) Összeállította:
RészletesebbenMegoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
RészletesebbenAbszolútértékes és gyökös kifejezések Megoldások
Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása
RészletesebbenInverz függvények Inverz függvények / 26
Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás
Részletesebbenminden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
RészletesebbenFüggvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.
Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2
RészletesebbenHatározott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
Részletesebben6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen
RészletesebbenFüggvények csoportosítása, függvénytranszformációk
Függvények csoportosítása, függvénytranszformációk 4. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények csoportosítása p. 1/2 Függvények nevezetes osztályai Algebrai függvények
Részletesebbena) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
RészletesebbenTrigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
RészletesebbenKalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus
Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)
RészletesebbenFüggvények határértéke és folytonosság
Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,
RészletesebbenKalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
Részletesebbenf(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Részletesebben6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
RészletesebbenFirst Prev Next Last Go Back Full Screen Close Quit. (Derivált)
Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.
RészletesebbenA képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)
Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő
RészletesebbenEgyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
Részletesebben8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
RészletesebbenKonvexitás, elaszticitás
DIFFERENCIÁLSZÁMÍTÁS ALKALMAZÁSAI Konveitás, elaszticitás Tanulási cél A másodrendű deriváltat vizsgálva milyen következtetéseket vonhatunk le a üggvény konveitására vonatkozóan. Elaszticitás ogalmának
RészletesebbenA derivált alkalmazásai
A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls
RészletesebbenAbszolútértékes egyenlôtlenségek
Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,
RészletesebbenSorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
RészletesebbenHatárérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és
2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend
RészletesebbenSzili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány
Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........
RészletesebbenIV. INTEGRÁLSZÁMÍTÁS Feladatok november
IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin
RészletesebbenExponenciális, logaritmikus függvények
Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)
RészletesebbenNagy Krisztián Analízis 2
Nagy Krisztián Analízis 2 Segédanyag a második zárthelyi dolgozathoz Tartalomjegyzék Deriválási alapok... 3 Elemi függvények deriváltjai... 3 Deriválási szabályok műveletekre... 4 Első feladat típus...
Részletesebbenf(x) a (x x 0 )-t használjuk.
5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)
Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)
RészletesebbenA L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
RészletesebbenSzögfüggvények értékei megoldás
Szögfüggvények értékei megoldás 1. Számítsd ki az alábbi szögfüggvények értékeit! (a) cos 585 (f) cos ( 00 ) (k) sin ( 50 ) (p) sin (u) cos 11 (b) cos 00 (g) cos 90 (l) sin 510 (q) sin 8 (v) cos 9 (c)
RészletesebbenSZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány
SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, ELLENPÉLDÁK SZAKDOLGOZAT KÉSZÍTETTE: Kovács Dorottya Matematika Bsc, tanári szakirány TÉMAVEZETŐ: Gémes Margit Műszaki gazdasági tanár Analízis tanszék Eötvös
RészletesebbenFüggvények ábrázolása, jellemzése II. Alapfüggvények jellemzői
Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői A függvények ábrázolásához használhatjuk a nevezetes szögek, illetve a határszögek értékeit. f (x) = sin x Az ábráról leolvashatjuk a függvény
RészletesebbenSorozatok, sorozatok konvergenciája
Sorozatok, sorozatok konvergenciája Elméleti áttekintés Minden konvergens sorozat korlátos Minden monoton és korlátos sorozat konvergens Legyen a n ) n egy sorozat és ϕ : N N egy szigorúan növekvő függvény
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logaritmus
Logaritmus DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak nevezzük. Bármely pozitív
RészletesebbenI. feladatsor. (t) z 1 z 3
I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.
RészletesebbenL'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.
L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete
RészletesebbenFüggvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független
RészletesebbenMatematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl
RészletesebbenTanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása. 5), akkor
Integrálszámítás Integrálási szabályok Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása Motivációs feladat Valószínűség-számításnál találkozhatunk
RészletesebbenDierenciálhatóság. Wettl Ferenc el adása alapján és
205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási
RészletesebbenA fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
RészletesebbenAnalízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
RészletesebbenValós függvények tulajdonságai és határérték-számítása
EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye
RészletesebbenFeladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)
Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja
RészletesebbenPTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky
RészletesebbenIV. INTEGRÁLSZÁMÍTÁS Megoldások november
IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +
RészletesebbenFüggvényhatárérték és folytonosság
8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak
RészletesebbenVIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
RészletesebbenTeljes függvényvizsgálat
Teljes üggvényvizsgálat Tanulási cél A üggvényvizsgálat lépéseinek megismerése és begyakorlása. Motivációs példa Jelölje egy adott termék árát P, a termék keresleti üggvényét pedig 1000 10 P D P. A P teljes
RészletesebbenEgészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
RészletesebbenDIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
RészletesebbenAnalízis ZH konzultáció
Analízis ZH konzultáció 1. Teljes indukció Elméleti segítség: n=1-re bebizonyítani (vagy arra az n-re, ahonnan az állítást igazolni szeretnénk) feltesszük, hogy n-re igaz az állítás -> n+1-re is igaz lesz?
RészletesebbenA Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
RészletesebbenGyakorló feladatok I.
Gyakorló feladatok I. (Függvények határértéke és folytonossága) Analízis 2. (A,B, C szakirány, keresztfélév) Programtervező informatikus szak 2013-2014. tanév tavaszi félév Összeállította: Szili László
Részletesebben1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).
1. Polinomfüggvények Behelyettesés polinomba. Definíció Legyen b komplex szám. Az f (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n polinom b helyen felvett helyettesítési értéke f (b) = a 0 + a 1 b + a 2 b
Részletesebben2014. november Dr. Vincze Szilvia
24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Részletesebben4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval
4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6
RészletesebbenFüggvények. 1. Nevezetes függvények A hatványfüggvény
Függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek
RészletesebbenMATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
Részletesebben