Második zárthelyi dolgozat megoldásai biomatematikából * A verzió
|
|
- Tamás Papp
- 6 évvel ezelőtt
- Látták:
Átírás
1 Második zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mit értünk eponenciális üggvényen? Adjon példát alulról korlátos szigorúan monoton csökkenő eponenciális üggvényre. Adja meg ennek az egyik alsó korlátját. (5 pont) Eponenciális üggvény a c a alakú üggvény, ahol c és a konstansok, emellett a > 0. Ha c > 0 és 0 < a <, akkor a üggvény szigorúan monoton csökkenő és alulról korlátos. Például legyen c = és a = 0. 5, akkor a üggvény ( ) = Ez minden -re pozitív, ezért alsó korlátja pl. a 0. E. Mi a deiníciója annak, hogy az üggvénynek a -ben a határértéke? Adjon példát olyan üggvényre, melyre ez igaz, emellett értelmezve van -ben és nem olytonos. (5 pont) A deiníció: ε > 0 számhoz δ > 0 úgy, hogy ha ( ) < δ, D és, akkor ( ) < ε., ha Példa: ( ) =. Ez a üggvény mindenütt -et vesz el, kivéve a helyet, 0, ha = ahol 0. A -beli határértéket nem beolyásolja a üggvény itteni értéke, ezért a határérték. Ez viszont nem egyezik meg a üggvény helyettesítési értékével, így a üggvény nem olytonos a helyen. Feladatok: F. Elemezze az ( ) = üggvényt (értelmezési tartomány, olytonosság, határérték az értelmezési tartomány végeinél és a szakadási pontokban, zérushely, y-tengelymetszet, monotonitás, lokális szélsőértékek vizsgálata, konveitás, inleiós pont, összeoglaló táblázat, valósághű graikon, értékkészlet). (5 pont) * Zh ponthatárok: es, as, es, 89-5-ös. Minimum: elméletből is, eladatokból is 5-5 pont.
2 Néhány pontban a üggvény értéke: () Nyers graikont készítünk: - - (Nagyon hasznos, ha a szakadási pont közelében kiértékeljük a üggvényt, mert itt az általában szabálytalanul viselkedik.) Értelmezési tartomány: Az osztás miatt 0, más eltétel nincs, ezért D = R \ {0}. Folytonosság, határérték a szakadási helyeken és az értelmezési tartomány határain: A üggvény olytonos az értelmezési tartomány minden pontjában. A 0-ban a üggvény nincs értelmezve, ez egy szakadási pont, kiszámítjuk itt a bal- és jobboldali határértéket: lim =, ui. mind -nek, mind -nek a baloldali határértéke 0-ban. 0 lim 0 = lim ( 0 ) =, ui. + és, ha 0. Az értelmezési tartomány végein, határértékét: lim = 0, lim 0, = ui. 0 és 0 + -ben és + -ben is ki kell számítanunk a üggvény és akkor is, ha +., ha Zérushely, y-tengelymetszet: A zérushely az 0 = egyenlet megoldása, azaz =. Az y-tengelymetszet az (0) lenne, azonban a üggvény nincs értelmezve a 0-ban, ezért nincs y-tengelymetszet se.
3 Monotonitás, lokális szélsőértékek keresése: Ehhez deriváljuk a üggvényt. Ezt megkönnyítendő, először is a törteket átírjuk hatványalakba: ( ) =. Ezt a tanult módon deriváljuk: ( ) = ( ) = +. Megkeressük ennek zérushelyeit, azaz megoldjuk a 0 = + egyenletet. Mindkét oldalt -mal beszorozva kapjuk, hogy =. Ezen a helyen és még esetleg a 0 szakadási pontban válthat előjelet a derivált, tehát a ]-, 0[, ]0, [ és ], + [ intervallumokon a derivált előjele biztosan ugyanaz. Behelyettesítéssel megállapítjuk az előjeleket: --et helyettesítve a derivált, ezért a ]-, 0[ intervallumon a derivált negatív, itt a üggvény szigorúan monoton csökken. Az helyen a derivált, ezért a ]0, [ intervallumon a derivált pozitív, itt a üggvény szigorúan monoton növő. A helyen a derivált 0.05, ezért a ], + [ intervallumon a derivált negatív, itt a üggvény szigorúan monoton csökkenő. Megállapítható mindebből az is, hogy = -ben a üggvénynek lokális maimuma van, a maimum értéke 0.5. Pozitív értékekre csak ez az egy lokális szélsőérték van, ezért itt van pozitív értékekre a üggvény legnagyobb értéke. Ugyanakkor negatív értékekre a üggvény mindenütt negatív (l. a képletét), ezért megállapítjuk, hogy a üggvénynek globális maimuma van = -ben, ez a maimum 0.5. ennél a üggvény sehol nem vesz el nagyobb értéket. Konveitás, inleiós pont: Kiszámítjuk a második deriváltat: ( ) = 6. Hol lesz ez 0? Az egyenlet: 0 = 6. Szorozzunk be -nel, kapjuk, hogy 0 = 6, amiből =. Itt lehet a üggvénynek inleiós pontja. Ezen a helyen és még esetleg a 0 szakadási pontban válthat előjelet a második derivált, tehát a ]-, 0[, ]0, [ és ], + [ intervallumokon a második derivált előjele biztosan ugyanaz. Ismét behelyettesítéssel állapítjuk meg az előjeleket, --ben a második derivált értéke 8, ezért a üggvény második deriváltja a ]-, 0[ intervallumon végig negatív, itt tehát a üggvény konkáv. A második derivált az -ben, ezért a ]0, [ intervallumon a második derivált végig negatív, itt a üggvény konkáv. A helyen a második derivált értéke , ezért a ], + [ intervallumon a második derivált végig pozitív, itt a üggvény konve. A második derivált előjelet váltott a -ban, ezért itt a üggvénynek inleiós pontja van. Összeoglaló táblázat: - ]-, 0[ 0 ]0, ] ], [ ], + [ () () () 0 Csökken konkáv Nő konkáv Globális maimum Csökken konkáv Inleiós pont Csökken konve 0
4 Finomított graikon: - - Értékkészlet: A üggvény és 0.5 között minden értéket elvesz, R = ]-, 0.5]. F. Számítsa ki a következő határértékeket: cos( ) a) lim 0 b) lim (5 pont) a) A 0-ban a számláló is, nevező is 0, ezért alkalmazható a l Hospital-szabály: cos( ) sin( ) lim = lim 0 0. Azonban a második határértéknél a 0-ban a számláló is, nevező is sin( ) cos( ) újra 0, ezért ismét alkalmazzuk a l Hospital-szabályt: lim = lim =. 0 0 b) Ha, akkor 0 0, így lim = =.
5 5 B verzió Elméleti kérdések: E. Mit értünk lineáris üggvényen? Adjon példát olyan lineáris üggvényre, melynek deriváltüggvénye az konstans üggvény. Igaz-e, hogy ez szigorúan monoton növő? Miért? (5 pont) Lineáris üggvények az ( ) = a + b alakú üggvények, ahol a és b rögzített számok. A lineáris üggvények graikonja egyenes, a a tengelymetszet, az y -tengelyen az = 0 mellett elvett érték, b pedig az egyenes meredeksége. Lineáris üggvény deriváltja ( ) = ( a + b ) = 0 + b = b mindig konstans. Például az ( ) = + lineáris üggvény deriváltüggvénye azonosan. Ez természetesen szigorúan monoton növő, hiszen a deriváltja pozitív. (Közvetlenül is látszik: ha <, akkor + < +.) E. Mi a deiníciója annak, hogy az an sorozat határértéke? (Azt a triviális választ nem ogadom el, miszerint ez azt jelenti, hogy a n határértéke 0!) Adjon példát olyan szigorúan monoton növő sorozatra, melyre ez igaz. (5 pont) Deiníció: ε > 0 számhoz n ε küszöbinde, hogy a n < ε, ha n > n ε. Példa: az a n =, n =,,,... sorozat szigorúan monoton nő és határértéke. n Feladatok: F. Elemezze az ( ) = üggvényt (értelmezési tartomány, olytonosság, határérték az értelmezési tartomány végeinél és a szakadási pontokban, zérushely, y-tengelymetszet, monotonitás, lokális szélsőértékek vizsgálata, konveitás, inleiós pont, összeoglaló táblázat, valósághű graikon, értékkészlet). (5 pont)
6 6 Néhány pontban a üggvény értéke: () Nincs értelmezve Nyers graikont készítünk: - - (Látható, hogy nagyon hasznos, ha a szakadási pont közelében kiértékeljük a üggvényt, mert itt az általában szabálytalanul viselkedik.) Értelmezési tartomány: Az osztás következében 0, más kikötés nincs, ezért D = R\{0}. Folytonosság: A üggvény olytonos az értelmezési tartomány minden pontjában. A 0-ban a üggvénynek szakadási helye van. Zérushely, y-tengelymetszet: A zérushelyek ha vannak az = 0 egyenlet megoldásai. Az -szel beszorozva és átrendezve kapjuk, hogy 5 5 =. Ebből = =, tehát egyetlen zérushely van, az. Az y- tengelymetszet az (0) lenne, azonban a üggvény nincs értelmezve a 0-ban, ezért nincs y- tengelymetszet. Monotonitás, lokális szélsőértékek keresése: Ehhez deriváljuk a üggvényt. Megszabadulunk a reciproktól, ( ) =, ( ) = +. Vizsgáljuk, hol lesz ez 0. Megoldjuk a + = 0 egyenletet. -tel beszorozva = 0 adódik, ezt átrendezve =. Ötödik gyököt vonva kapjuk az 5 eredményt: = 5 = A 0.76-nél kisebb -ekre a derivált negatív, mert ( ) pl. -et behelyettesítve ( ) + ( ) = + = + =. A ]-0.76, 0[ ( ) intervallumon a derivált pozitív, ui. 0.5-öt behelyettesítve ( 0.5) + ( 0.5) = = =
7 7 A ]0, + [ intervallumon is behelyettesítéssel állapítjuk meg a derivált előjelét, helyettesítsük be pl. az -et: + = + = 5, tehát itt a derivált pozitív. Összeoglalva, megállapíthatjuk, hogy a üggvény ]-, -0.76[ -en monoton csökken, ]-0.76, 0[-n monoton nő, ezért ben lokális minimuma van, melynek értéke ( 0.76) = ( 0.76) = A ]0, + [ intervallumon a üggvény végig monoton nő. Konveitás, inleiós pont: Kiszámítjuk a üggvény második deriváltját: ( ) = ( + ) =. Először inleiós pontot keresünk, ott a második derivált zéró, az egyenlet = 0. Beszorzunk -nal, kapjuk, hogy 5 = 0, ebből 5 =. Ötödik gyököt vonva kapjuk a 6 megoldást: = Megvizsgáljuk a második derivált előjelét az egyes 6 intervallumokon. A ]-, 0[ intervallumon nincs szakadás, a második derivált sehol sem 0, ezért előjelet nem vált. Helyettesítsük be a tesztértéket: ( ) = = ( ) =. A második derivált tehát pozitív a ]-, 0[ ( ) intervallumon, ezért itt a üggvény konve. A következő vizsgálandó intervallum a ]0, 0.70[, nézzük a 0.5-ös tesztértéket: = =. A ]0, 0.70[ intervallumon 0.5 tehát a második derivált végig negatív, ezért itt a üggvény konkáv. Végül a ]0.70, + [ intervallumot vizsgáljuk, behelyettesítjük mondjuk az -et: = 0. Ez pozitív, így a teljes ]0.70, + [ intervallumon a második derivált pozitív, azaz itt a üggvény konve. Vegyük észre, hogy a 0.70-ben a második derivált előjelet váltott negatívból pozitívba, így a 0.70-ben a üggvénynek inleiós pontja van. (Az, hogy a második derivált valahol 0, még nem eltétlenül jelenti, hogy ott a üggvénynek inleiós pontja van, azaz a második derivált előjelet is vált. Ellenpélda a g ( ) = üggvény.) Határérték a szakadási helyeken és az értelmezési tartomány határain: A 0-ban a üggvénynek szakadási helye van. Kiszámítjuk itt a baloldali és a jobboldali határértéket: lim = +, ui. balról. (Vö. a hiperbola graikonjával negatív -ek esetén.) 0 lim 0+ =, ui. + jobbról. (Vö. a hiperbola graikonjával pozitív -ekre.) Az értelmezési tartomány másik végein, ± -ben is ki kell számítanunk a üggvény határértékét: lim = +, érdemben az tag határozza meg a határértéket. + lim = +, itt is érdemben az tag határozza meg a határértéket.
8 8 Összeoglaló táblázat: ]-,-0.76[ ]-0.76,0[ 0 ]0,0.70[ 0.70 ]0.70,+ [ + () () () + csökken konve Finomított graikon: lokális minimum konve nő konve nincs értelmezve nő konkáv nő inleiós pont nő konve Értékkészlet: A üggvény pozitív oldali ágáról leolvasható, hogy minden értéket elvesz, ezért = R. R
9 9 F. Számítsa ki a következő üggvények deriváltját: + e cos + a) e b) ln (5 pont) 5 a) A üggvény három tag összegére bontható, ezeket külön kell deriválni. Az első tag összetett u üggvény, a belső üggvény u ( ) = +, a külső üggvény e. Az összetett üggvény + u u + deriválási szabálya szerint ( e ) = e u, most u ( ) =, így ( e ) = e. A második 5 5 tag deriváltja cos( ) = sin( ), a harmadiké ( ) = ( ) = 5 = 0. A üggvény + deriváltja tehát e + sin( ) + 0. b) Ez a üggvény két tag összegére bontható, a tagokat külön deriváljuk. Az első tag egy e ln e e hányados, a hányados deriválására tanult szabály szerint = ln. A második (ln ) tagból először is eltüntetjük a gyököt és a törtet: =. Ennek deriváltja. e ln e Behelyettesítve kapjuk a üggvény keresett deriváltját: +. (ln )
Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!
Elméleti kérdések: Második zárthelyi dolgozat biomatematikából * (Minta, megoldásokkal) E. Mit értünk hatványfüggvényen? Adjon példát nem invertálható hatványfüggvényre. Adjon példát mindenütt konkáv hatványfüggvényre.
Teljes függvényvizsgálat
Teljes üggvényvizsgálat Tanulási cél A üggvényvizsgálat lépéseinek megismerése és begyakorlása. Motivációs példa Jelölje egy adott termék árát P, a termék keresleti üggvényét pedig 1000 10 P D P. A P teljes
Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343
Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális
Függvények vizsgálata
Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =
10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása
. tétel Függvények lokális és globális tulajdonságai. A dierenciálszámítás alkalmazása FÜGGVÉNY De: A üggvény egyértelmű hozzárendelés két halmaz elemei között. A halmaz minden eleméhez B halmaz legeljebb
Konvexitás, elaszticitás
DIFFERENCIÁLSZÁMÍTÁS ALKALMAZÁSAI Konveitás, elaszticitás Tanulási cél A másodrendű deriváltat vizsgálva milyen következtetéseket vonhatunk le a üggvény konveitására vonatkozóan. Elaszticitás ogalmának
Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak
ábra: Ábra Bodó Bea, Somonné Szabó Klára Matematika. közgazdászoknak I. modul: Dierenciálszámítás alkalmazásai lecke: Konveitás, elaszticitás Tanulási cél: A másodrendű deriváltat vizsgálva milyen következtetéseket
A derivált alkalmazásai
A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls
1.1 A függvény fogalma
1.1 A üggvény ogalma Deiníció: Adott két (nem üres) halmaz H és K. Ha a H halmaz minden egyes eleméhez valamilyen módon hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést üggvénynek nevezzük.
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
Függvény határérték összefoglalás
Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis
Függvény differenciálás összefoglalás
Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt
27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,
8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,
3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5
n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,
205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:
Elemi függvények, függvénytranszformációk
Elemi üggvények, üggvénytranszormációk Összeállította: dr. Leitold Adrien egyetemi docens 2013. 09. 06. 1 Függvénytani alapogalmak Függvény: két halmaz elemei közötti egyértelmű hozzárendelés. Jel.: :
4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval
4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6
Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük.
Hozzárendelések A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. A B Egyértelmű a hozzárendelés, ha az A halmaz mindegyik
Komplex számok. A komplex számok algebrai alakja
Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j
A gyakorlatok anyaga
A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így
EGYVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSÁNAK ALKALMAZÁSAI
EGYVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSÁNAK ALKALMAZÁSAI I.Feladat: Egyváltozós függvény grafikonjához húzható érintőkkel kapcsolatos feladatok. 1.feladat: Határozza meg az függvény x = 1 abszcisszájú pontjába
Bodó Bea, Simonné Szabó Klára Matematika 1. közgazdászoknak
ábra: Ábra Bodó Bea, Simonné Szabó Klára Matematika. közgazdászoknak VI. modul: Dierenciálszámítás. lecke: Dierenciálszámítás bevezetése Tanulási cél: A dierencia és dierenciálhányados ogalmának megismerése.
Differenciálszámítás bevezetése
Dierenciálszámítás bevezetése Tanulási cél: A dierencia és dierenciálhányados ogalmának megismerése. Elemi derivált üggvények megadása. Érintő egyenletének értelmezése és elírása. Motivációs példa: Azt
Injektív függvények ( inverz függvény ).
04 október 6 3 Függvényábrázolások, Függvények kompozíciója ( összetett üggvény ), Bev Mat BME Injektív üggvények ( inverz üggvény ) 0 0 0 0 ( ) ( ) 5 5 5 5 Ábrázolás Függvénytranszormációval : 3 y y 5
Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2
Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...
f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)
Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt
2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)
. Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()
1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,
25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
E-tananyag Matematika 9. évfolyam 2014. Függvények
Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést
Egyváltozós függvények differenciálszámítása II.
Egváltozós függvének differenciálszámítása II.. 2. 3. 4. 5. 6. 7. 8. Végezzen teljes függvénvizsgálatot! A függvénvizsgálat szokásos menete:. Értelmezési tartomán, tengelmetszetek 2. Szimmetriatulajdonságok:
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete
Tartalomjegyzék Bevezető feladatok Taylor polinom Bevezető feladatok Taylor polinomok...
Tartalomjegyzék 3. Valós függvények 3.. Valós függvények............................... 3 3... Bevezető feladatok.......................... 3 3... Határérték............................... 5 3..3. Függvény
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
1.) = grafikont kell ábrázolnunk. Megj.: 5 1+ A = 1 ill. B = 10 -szeresei. Ábrázolás Függvénytranszformációval :
0 október Függvényábrázolások, Összetett üggvény, Inverz üggvény Bev Mat BME ( Válogatás a eladatgyüjteményből ) ) 0 0 0 0 ( ) ( ) 5 5 5 5 Ábrázolás Függvénytranszormációval : y y 5 ( tengely mentén eltolás
Gyakorló feladatok az II. konzultáció anyagához
Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)
Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)
Descartes-féle, derékszögű koordináta-rendszer
Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
Függvények menetének vizsgálata, szöveges széls érték feladatok
Függvények menetének vizsgálata, szöveges széls érték feladatok 2015. március 29. 1. Alapfeladatok 1. Feladat: Hol növekv az f() függvény, ha deriváltja f () = ( + 2)( 5) 2? Megoldás: Egy függvény növekedését,
Teljes függvényvizsgálat példafeladatok
Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss
Kalkulus I. gyakorlat, megoldásvázlatok
Kalkulus I. gyakorlat, megoldásvázlatok Fizika BSc I/.. Ábrázoljuk a következ halmazokat a síkon! a {, y R : + y < }, b {, y R : + y < }, c {, y R : + y
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold!
Megoldások 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold! A: Minden emberhez hozzárendeljük a munkahelyének nevét. B: Minden valós számhoz hozzárendeljük az ellentettjét. C: Minden
Gazdasági Matematika I. Megoldások
. (4.feladatlap/2) Gazdasági Matematika I. Di erenciálszámítás alkalmazásai Megoldások a) Határozza meg az f(x) x 6x 2 + függvény x 2 helyen vett érint½ojének az egyenletét. El½oször meghatározzuk a pont
Valós függvények tulajdonságai és határérték-számítása
EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
2012. október 2 és 4. Dr. Vincze Szilvia
2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport
Analízis I. zártheli dolgozat javítókulcs, Informatika I. 0. okt. 9. Elméleti kérdések A csoport. Hogan számíthatjuk ki két trigonometrikus alakban megadott komple szám szorzatát más alakba való átváltás
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet
Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
Bodó Bea, Simonné Szabó Klára Matematika 1. közgazdászoknak
ábra: Ábra Bodó Bea, Simonné Szabó Klára Matematika. közgazdászoknak III. modul: Egyváltozós valós üggvények 3. lecke: Függvénytani alapogalmak Tanulási célok: a üggvény ogalmához kapcsolódó kiejezések
Exponenciális és logaritmikus kifejezések Megoldások
Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása
Nagy Krisztián Analízis 2
Nagy Krisztián Analízis 2 Segédanyag a második zárthelyi dolgozathoz Tartalomjegyzék Deriválási alapok... 3 Elemi függvények deriváltjai... 3 Deriválási szabályok műveletekre... 4 Első feladat típus...
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz
Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
Kétváltozós függvények differenciálszámítása
Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt
f(x) a (x x 0 )-t használjuk.
5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
f x 1 1, x 2 1. Mivel > 0 lehetséges minimum. > 0, így f-nek az x 2 helyen minimuma van.
159 5. SZÉLSŐÉRTÉKSZÁMÍTÁS = + 1, R + 1 f = 1 R +,, f = R +, 1 Az 1 = 0 egyenlet gyökei : 1 1, 1. Mivel ezért az 1 helyen van az f-nek minimuma. 5.1. f f 1 0, 5.. Legyen az egyik szám, a másik pedig A.
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)
Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével
Függvények határértéke és folytonosság
Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex
Feladatok a logaritmus témaköréhez 11. osztály, középszint
TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy
Egyváltozós függvények differenciálszámítása
Egyváltozós függvények differenciálszámítása Egyváltozós függvények differenciálszámítása Ebben a részben I egy tetszőleges, pozitív hosszúságú, intervallumot jelöl. Egyváltozós függvények differenciálszámítása
2014. november 5-7. Dr. Vincze Szilvia
24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével
Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
= x + 1. (x 3)(x + 3) D f = R, lim. x 2. = lim. x 4
Bodó Beáta Differenciálszámítás. B Írja fel az f() = függvény az a = és az helyekhez tartozó különbségi hányadosát. f() f(a) a = = (+)( ) = +. B Számolja ki az f() = függvény a = 3 helyhez tartozó differenciálhányadosát!
Függvények csoportosítása, függvénytranszformációk
Függvények csoportosítása, függvénytranszformációk 4. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények csoportosítása p. 1/2 Függvények nevezetes osztályai Algebrai függvények
FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI
FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI FÜGGVÉNY: Adott két halmaz, H és K. Ha a H halmaz minden egyes eleméhez egyértelműen hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést
Határozott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2
Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt
Matematika elméleti összefoglaló
1 Matematika elméleti összefoglaló 2 Tartalomjegyzék Tartalomjegyzék... 2 1. Sorozatok jellemzése, határértéke... 3 2. Függvények határértéke és folytonossága... 5 3. Deriválás... 6 4. Függvényvizsgálat...
Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport
Analízis I. zárthelyi dolgozat javítókulcs, Informatika I. 2012. okt. 19. Elméleti kérdések A csoport 1. Hogyan számíthatjuk ki két trigonometrikus alakban megadott komplex szám szorzatát más alakba való
2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.
. Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján
SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány
SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, ELLENPÉLDÁK SZAKDOLGOZAT KÉSZÍTETTE: Kovács Dorottya Matematika Bsc, tanári szakirány TÉMAVEZETŐ: Gémes Margit Műszaki gazdasági tanár Analízis tanszék Eötvös
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y
A Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.
Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2
Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.
Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5