Teljes függvényvizsgálat példafeladatok
|
|
- Máté Orosz
- 8 évvel ezelőtt
- Látták:
Átírás
1 Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss hozzá a feladatoknak, és csak akkor nézd meg a megoldást, ha elakadsz, vag ha ellenőrizni szeretnéd a saját megoldásod helességét e 2 3. sin (sin ()) 4. sin (ln ())
2 1. f () = I. D f = R \ { 1; 1} Zérushele van = 0 -ban, tehát az -tengelt is itt metszi. II. Páratlan függvén, ezt a definíció alapján könnű igazolni. Az értelmezési tartománát figelembe véve nem lehet periodikus. III. Értelmezési tartománának minden pontjában foltonos. lim = lim = lim = lim = lim = lim = IV. f () = (2 1) 4 2 ( 2 1) 2 = ( 2 1) 2 A számláló 2 -ben eg másodfokú kifejezés. Zérushele van, ha = ± ] ; ] 2.058; ]2.058; f () f () l.ma l.min V. f () = 4 (2 + 3) ( 2 1) 3 (összevonások után). Ennek egetlen zérushele = 0-nál van, tehát itt lehet infleiós pontja a függvénnek. A kifejezés eges intervallumokon vett előjelét a tört számlálójának és nevezőjének összehasonlításával kapjuk. VI. A függvén képe: ] ; 1 1 ] 1; 0 0 ]0; 1 1 ]1; f () f () konkáv konve infleió konkáv konve 10 5 K4 K K5 K10 VII. R f = R
3 2. f () = 1 e 2 I. D f = R Zérushele van = 0 -ban, tehát az -tengelt is itt metszi. II. Páros függvén, ami a definícióból rögtön következik. Nem periodikus, mert csak eg zérushele van. III. Értelmezési tartománának minden pontjában foltonos. 1 e 2 = 1 lim ± IV. f () = e 2 1 e 2 A deriváltnak csak az = 0 helen lehetne zérushele, itt azonban a nevező eltűnik (nullát vesz fel), tehát a deriváltfüggvén nem értelmezhető. ] ; 0 0 ]0; f () + f ()??? Mivel f csak nemnegatív értékeket vehet fel, valamint 0-ban nullát vesz fel, 0 bal oldali körnezeteiben szigorúan monoton csökkenő, 0 jobb oldali körnezeteiben szigorúan monoton növekvő, íg minimuma van nullában. Vizsgáljuk meg a derivált határértékét a nullában mindkét iránból, hog megkapjuk, milen a függvén grafinkonjának meredeksége a nulla közelében (nagon meredek, lankás, stb.). Ez nem elengedhetetlen a vizsgálat szempontjából, de a módszert talán érdekesnek találod majd. lim 0 e 2 L H. e 2 = lim 1 e e 2 ( 2) e 2 1 e 2 A L Hospital-szabál szerint, ha létezik az utóbbi határérték, akkor az megegezik az eredeti kifejezés határértékével. Továbbá, ha eg tört számlálójának és nevezőjének létezik véges határértéke, és a nevező határértéke nem nulla, akkor a tört határértéke a számláló és a nevező határértékének hánadosa lesz. A nevezőben megjelent az eredeti kifejezés. Tegük fel, hog ennek a kifejezésnek létezik nemnulla, véges határértéke nullában, amit jelöljünk L-lel. Ekkor a fentiek alapján fennáll az ( ) lim e 2 + e 2 ( 2) 0 L = L összefüggés. A nevező határértéke helettesítéssel megkapható, és azt kapjuk, hog V. f () = L = 1 L Ez pontosan L = ±1-re teljesül. Ha balról tartunk a nullához, akkor a derivált számlálója negatív, ezért a határérték 1 lesz, míg ha jobbról, akkor +1. ( ) e e 2 1 e 2 (e 2 ) 2 1 e 2 1 e 2 A második derivált szigorúan negatív, amiből a függvén konkáv tulajdonsága következik minden 0 pontban. (Részletesebb indoklás fog ide kerülni később.)
4 VI. A függvén képe: 1,0 0,5 0,2 K3 K2 K VII. R f = 0; 1
5 3. f () = sin (sin ()) I. D f = R Zérushele van, ha sin () = kπ, (k Z), ami csak k = 0 esetén teljesül, vagis ha = lπ, (l Z). Az -tengelt sin (sin (0)) = 0-ban metszi. II. Páratlan függvén, mert két páratlan függvén kompozíciója páratlan. Mivel a sin () függvén 2π szerint periodikus, ezért sin (sin ( + k2π)) = sin (sin ()), tehát ez a függvén is 2π szerint periodikus. III. Értelmezési tartománának minden pontjában foltonos. A periodikusság miatt a sin (sin ()) határérték nem létezik. lim ± IV. f () = cos (sin ()) cos (). Ennek zérushele van, ha = π + kπ, (k Z). 2 A függvén és deriváltjának tulajdonságait (eg periódust tekintve) az alábbi táblázat tartalmazza. (Lehetne π -től is kezdeni a kitöltést, akkor kevesebb intervallumot 2 kell venni, de talán íg könnebben átlátható.) A derivált előjeleit úg kaphatjuk meg, ha összehasonlítjuk a ténezőinek az előjelét az eges intervallumokon. ] π 0; π π ; 3π 3π ; 2π f () f () ma min V. f () = sin (sin ()) cos 2 () cos (sin ()) sin (). Ebből nem lenne egszerű kideríteni az infleiós pontokat, illetve a konve konkáv tartománokat. Próbálkozzunk valami mással: tudjuk, hog a sin () függvén konve, ha ] π; 0, konkáv, ha ]0; π (eg periódust tekintve), és infleiója van minden kπ pontban, ahol k egész. Ezek alapján a sin (sin ()) függvén konve, ha sin () ] π; 0, konkáv, ha sin () ]0; π, és infleiója van, ahol sin () = kπ (k egész). Ezek rendre akkor teljesülnek (eg perióduson belül), ha ] π; 0, ]0; π, és ahol = kπ, egész k esetén. Tehát a függvén alakja ilen tekintetben egezik a szinusz függvénnel. VI. A függvén képe: ] 3π 1,0 0,5 K6 K4 K K0,5 K1,0 VII. R f = 0.841; 0.841]
6 4. f () = sin (ln ()) I. D f = R + Zérushele van, amikor ln () = kπ, (k Z), vagis amikor = e kπ. Az -tengelt nem metszi. II. A függvén nem páros, nem páratlan, nem periodikus (a zérushelek közti távolság eponenciálisan növekszik). III. Értelmezési tartománának minden pontjában foltonos. A lim sin (ln ()) határérték nem létezik, mivel nem korlátos, a szinusz miatt viszont a függvén az előjele nem állandó. lim sin (ln ()) = 0, mivel sin (ln ()) korlátos. 0 + IV. f () = sin (ln ()) + cos (ln ()) 1 = sin (ln ()) + cos (ln ()). A derivált zérusheleinek megtalálásához helettesítsük X-szel az ln () kifejezést. Íg a sin (X) + cos (X) = 0 egenletet kell megoldanunk. Ennek megoldásai az X = = π 4 + kπ pontok, ahol k egész szám. Vagis a derivált zérushelei az = e π 4 +kπ helek. Látszik, hog lehetséges szélsőértékhelből végtelen sok van, és mivel a függvén nem periodikus, de bizonos tekintetben olasmi, a táblázat készítésénél ezt kihasználjuk. Az előző helettesítéses módszerrel könnű megadni a deriváltfüggvén előjeleit is.... e π 4 +k2π ] e π 4 +k2π ; e 3π 4 +k2π e 3π 4 +k2π ] e 3π 4 +k2π ; e 7π 4 +k2π f () f ()... lok. min. lok. ma.... A lokális szélsőértékeket nincs értelme megadni, azok helettesítéssel megkaphatók. V. f cos (ln ()) sin (ln ()) () =. ] ]... e 3π 4 +k2π e 3π 4 +k2π ; e π 4 +k2π e π 4 +k2π e π 4 +k2π ; e 5π 4 +k2π... f () f ()... infleió konve infleió konkáv... VI. A függvén képe az alábbi ábrán látható. Valójában egre kisebb ehhez hasonló íveket látnánk a nullához közeledve, és egre nagobb ileneket a végtelenbe tartva K50 K100 K150 VII. R f = R
Egyváltozós függvények differenciálszámítása II.
Egváltozós függvének differenciálszámítása II.. 2. 3. 4. 5. 6. 7. 8. Végezzen teljes függvénvizsgálatot! A függvénvizsgálat szokásos menete:. Értelmezési tartomán, tengelmetszetek 2. Szimmetriatulajdonságok:
Függvények vizsgálata
Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =
Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény
Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek
Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!
Elméleti kérdések: Második zárthelyi dolgozat biomatematikából * (Minta, megoldásokkal) E. Mit értünk hatványfüggvényen? Adjon példát nem invertálható hatványfüggvényre. Adjon példát mindenütt konkáv hatványfüggvényre.
Kalkulus II., harmadik házi feladat
Név: Neptun: Web: http://mawell.sze.hu/~ungert Kalkulus II., harmadik házi feladat.,5 pont) Határozzuk meg a következ határértékeket: ahol a) A =, ), b) A =, ), c) A =, ).,) A Az egszer bb kezelhet ség
Függvények. 1. Nevezetes függvények A hatványfüggvény
Függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek
4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval
4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6
Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport
Analízis I. zártheli dolgozat javítókulcs, Informatika I. 0. okt. 9. Elméleti kérdések A csoport. Hogan számíthatjuk ki két trigonometrikus alakban megadott komple szám szorzatát más alakba való átváltás
1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát!
Függvének Feladatok Értelmezési tartomán ) Adja meg a következő függvének legbővebb értelmezési tartománát! a) 5 b) + + c) d) lg tg e) ln + ln ( ) Megoldás: a) 5 b) + + = R c) és sosem teljesül. d) tg
a.) b.) c.) d.) e.) össz. 4 pont 2 pont 4 pont 2 pont 3 pont 15 pont
1. Az alábbi feladatok egszerűek, akár fejben is kiszámíthatóak, de a piszkozatpapíron is gondolkodhat. A megoldásokat azonban erre a papírra írja! a.) A 2x 2 5x 3 0 egenlet megoldása nélkül határozza
Inverz függvények Inverz függvények / 26
Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás
Függvény differenciálás összefoglalás
Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a
VI. Deriválható függvények tulajdonságai
1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn
Másodfokú függvények
Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú
7. Kétváltozós függvények
Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és
Teljes függvényvizsgálat
Teljes üggvényvizsgálat Tanulási cél A üggvényvizsgálat lépéseinek megismerése és begyakorlása. Motivációs példa Jelölje egy adott termék árát P, a termék keresleti üggvényét pedig 1000 10 P D P. A P teljes
Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim
Függvének határértéke és oltonossága Deiníció: Az -hoz megadható olan üggvénnek az A. pontban van határértéke és ez A ha bármel küszöbszám hog ha A akkor. Jele: a) Függvén határértékének ogalma visszavezethető
Második zárthelyi dolgozat megoldásai biomatematikából * A verzió
Második zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mit értünk eponenciális üggvényen? Adjon példát alulról korlátos szigorúan monoton csökkenő eponenciális üggvényre.
A gyakorlatok anyaga
A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így
18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK
18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK Kertesi Gábor Világi Balázs Varian 21. fejezete átdolgozva 18.1 Bevezető A vállalati technológiák sajátosságainak vizsgálatát eg igen fontos elemzési eszköz,
Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és
2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend
Többváltozós analízis gyakorlat, megoldások
Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,
Kidolgozott feladatok a gyökvonás témakörhöz (10.A osztály)
1. Számítsuk ki a következő szorzatok értékét! (a) 3 3 3 (b) 7 3 7 3 1 9. Számítsuk ki a következő hánadosokat! (a) (b) 1 0 1 0 3. Döntsük el, melik szám a nagobb! (a) ( 3) vag ( ) 3 (b) Mivel tudjuk,
MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.
MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált
Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola
O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg
l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA
l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.
2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)
. Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()
10.3. A MÁSODFOKÚ EGYENLET
.. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.
Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt
27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,
Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.
Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m
Kétváltozós függvények ábrázolása síkmetszetek képzése által
Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
A derivált alkalmazásai
A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls
9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek
. Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <
8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,
3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5
EXPONENCIÁLIS EGYENLETEK
Sokszínű matematika /. oldal. feladat a) = Mivel mindegik hatván alapja hatván, ezért átírjuk a -et és a -ot: = ( ) Alkalmazzuk a hatván hatvána azonosságot! ( ) = A bal oldalon az azonos alapú hatvánok
Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások
Országos Középiskolai Tanulmáni Versen / Matematika I kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Eg papírlapra felírtuk a pozitív egész számokat n -től n -ig Azt vettük észre hog a felírt páros számok
1. Monotonitas, konvexitas
1. Monotonitas, konvexitas 1 Adjuk meg az alabbi fuggvenyek monotonitasi intervallumait! a) f (x) = x 2 (x 3) B I b) f (x) = x x 5 I c) f (x) = (x 2) p x I d) f (x) = e 6x 3 3x 2 I 2 A monotonitas vizsgalat
Gyakorló feladatok az II. konzultáció anyagához
Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n
Függvény határérték összefoglalás
Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis
Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,
25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit
n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,
205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:
Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak
ábra: Ábra Bodó Bea, Somonné Szabó Klára Matematika. közgazdászoknak III. modul: Többváltozós üggvének 5. lecke: Többváltozós üggvének, parciális deriválás Tanulási cél: Megismerkedni a többváltozós üggvének
Valós függvények tulajdonságai és határérték-számítása
EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye
Bolyai János Matematikai Társulat. Rátz László Vándorgyűlés Baja
Bolai János Matematikai Társulat Rátz László Vándorgűlés 06. Baja Záródolgozat dr. Nag Piroska Mária, Dunakeszi Dunakeszi, 06.07.. A Vándorgűlésen Erdős Gábor az általános iskolai szekcióban tartott szemináriumot
Sokszínû matematika 12. A KITÛZÖTT FELADATOK EREDMÉNYE
Sokszínû matematika. A KITÛZÖTT FELADATOK EREDMÉNYE Számsorozatok SOKSZÍNÛ MATEMATIKA A KITÛZÖTT FELADATOK EREDMÉNYE. A számsorozat fogalma, példák sorozatokra. A pozitív páros számok sorozatának n-edik
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2
Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
= és a kínálati függvény pedig p = 60
GYAKORLÓ FELADATOK 1: PIACI MECHANIZMUS 1. Adja meg a keresleti és a kínálati függvének pontos definícióját! Mikor beszélhetünk piaci egensúlról?. Eg piacon a keresletet és a kínálatot a p = 140 0, 1q
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
Komplex számok. A komplex számok algebrai alakja
Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j
Hatványsorok, elemi függvények
Hatványsorok, elemi függvények EL 1 Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL Definíció: függvénysorozat Legyen A R, H { f f:a R }. (A H halmaz elemei az A halmazon értelmezett függvények)
10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása
. tétel Függvények lokális és globális tulajdonságai. A dierenciálszámítás alkalmazása FÜGGVÉNY De: A üggvény egyértelmű hozzárendelés két halmaz elemei között. A halmaz minden eleméhez B halmaz legeljebb
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak
ábra: Ábra Bodó Bea, Somonné Szabó Klára Matematika. közgazdászoknak I. modul: Dierenciálszámítás alkalmazásai lecke: Konveitás, elaszticitás Tanulási cél: A másodrendű deriváltat vizsgálva milyen következtetéseket
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.
Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például:
Konvexitás, elaszticitás
DIFFERENCIÁLSZÁMÍTÁS ALKALMAZÁSAI Konveitás, elaszticitás Tanulási cél A másodrendű deriváltat vizsgálva milyen következtetéseket vonhatunk le a üggvény konveitására vonatkozóan. Elaszticitás ogalmának
Tartalomjegyzék Bevezető feladatok Taylor polinom Bevezető feladatok Taylor polinomok...
Tartalomjegyzék 3. Valós függvények 3.. Valós függvények............................... 3 3... Bevezető feladatok.......................... 3 3... Határérték............................... 5 3..3. Függvény
Közgazdaságtan - 3. elıadás
Közgazdaságtan - 3. elıadás A FOGYASZTÓI DÖNTÉS TÉNYEZİI 1 A FOGYASZTÓI DÖNTÉS ELEMEI Példa: Eg személ naponta 2000 Ft jövedelmet költhet el pogácsára és szendvicsre. Melikbıl mennit tud venni? 1 db pogácsa
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc
1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.
Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)
Analízis I. jegyzet. László István. 2008. november 3.
Analízis I. jegzet László István 2008. november 3. Tartalomjegzék 1. Halmazok 5 1.1. Halmaz fogalma............................ 5 1.2. Halmaz megadása........................... 6 1.2.1. Eplicit megadás.......................
2010. október 12. Dr. Vincze Szilvia
2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
Szögfüggvények értékei megoldás
Szögfüggvények értékei megoldás 1. Számítsd ki az alábbi szögfüggvények értékeit! (a) cos 585 (f) cos ( 00 ) (k) sin ( 50 ) (p) sin (u) cos 11 (b) cos 00 (g) cos 90 (l) sin 510 (q) sin 8 (v) cos 9 (c)
HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI
FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI FÜGGVÉNY: Adott két halmaz, H és K. Ha a H halmaz minden egyes eleméhez egyértelműen hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést
2012. október 2 és 4. Dr. Vincze Szilvia
2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex
Nagy Krisztián Analízis 2
Nagy Krisztián Analízis 2 Segédanyag a második zárthelyi dolgozathoz Tartalomjegyzék Deriválási alapok... 3 Elemi függvények deriváltjai... 3 Deriválási szabályok műveletekre... 4 Első feladat típus...
Az f függvénynek van határértéke az x = 2 pontban és ez a határérték 3-mal egyenl½o lim f(x) = 3.
0-06, II. félév. FELADATLAP Eredmének. Van határértéke, illetve foltonos az f függvén az alábbi pontokban? (a) = Az f függvénnek van határértéke az = pontban és ez a határérték -mal egenl½o f() =.! Az
Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:
Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével
1.1 A függvény fogalma
1.1 A üggvény ogalma Deiníció: Adott két (nem üres) halmaz H és K. Ha a H halmaz minden egyes eleméhez valamilyen módon hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést üggvénynek nevezzük.
I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
Hatványsorok, Fourier sorok
a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus
Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)
1.1. Halmazelméleti alapfogalmak
. Halmazok, relációk, függvének.. Halmazelméleti alapfogalmak... A halmaz fogalma A halmazt a halmazelmélet alapfogalmának tekintjük és ezért nem definiáljuk. Szokás azt mondani, hog a halmaz különböző
Elemi függvények, függvénytranszformációk
Elemi üggvények, üggvénytranszormációk Összeállította: dr. Leitold Adrien egyetemi docens 2013. 09. 06. 1 Függvénytani alapogalmak Függvény: két halmaz elemei közötti egyértelmű hozzárendelés. Jel.: :
FÜGGVÉNYTANI ALAPOK A) ÉRTELMEZÉSI TARTOMÁNY
FÜGGVÉNYTANI ALAPOK Foglalkoztunk az alaptulajdonságnak tekinthető értelmezési tartománnyal, és a paritással, továbbá az összetett függvények képzési módjával, illetve ezeknek az elemi függvényekre való
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold!
Megoldások 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold! A: Minden emberhez hozzárendeljük a munkahelyének nevét. B: Minden valós számhoz hozzárendeljük az ellentettjét. C: Minden
Egyváltozós függvények 1.
Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata
Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.
Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
3.1. Valós függvényekkel kapcsolatos alapfogalmak
4 3. Egyváltozós valós függvények 3.. Valós függvényekkel kapcsolatos alapfogalmak 3... A függvények megadása Az első fejezetben általánosan értelmeztük a függvényt. Most csak olyan függvényekkel foglalkozunk,
SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány
SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, ELLENPÉLDÁK SZAKDOLGOZAT KÉSZÍTETTE: Kovács Dorottya Matematika Bsc, tanári szakirány TÉMAVEZETŐ: Gémes Margit Műszaki gazdasági tanár Analízis tanszék Eötvös
Exponenciális és logaritmikus kifejezések Megoldások
Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
First Prev Next Last Go Back Full Screen Close Quit
Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.
Függvények 1. oldal Készítette: Ernyei Kitti. Függvények
Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.
Gyakorlo feladatok a szobeli vizsgahoz
Gyakorlo feladatok a szobeli vizsgahoz Függvények. Viszgaljuk meg, hogy az alabbi fuggvenyek kozuk melyik injektv, szurjektv, illetve bijektv? F : N N, n n b) F : Q Q, c) F : R R, d) F : N N, n n e) F
Matematika A1. 9. feladatsor. A derivált alkalmazásai. Függvény széls értékei
Matematika A1 9. feladatsor A derivált alkalmazásai Függvény széls értékei 1. Keressük meg a függvények abszolút maximumát és minimumát a megadott intervallumon. Ezután rajzoljuk fel a függvény grakonját.
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék