Kidolgozott feladatok a gyökvonás témakörhöz (10.A osztály)
|
|
- Géza Faragó
- 6 évvel ezelőtt
- Látták:
Átírás
1
2 1. Számítsuk ki a következő szorzatok értékét! (a) (b) Számítsuk ki a következő hánadosokat! (a) (b) Döntsük el, melik szám a nagobb! (a) ( 3) vag ( ) 3 (b) Mivel tudjuk, hog a négzetgökvonás és a hatvánozás felcserélhető műveletek, felírhatjuk a következőt: 3 vag 3 Mivel 3 3 és 3 1 azt kell eldöntenünk,hog 3 vag 1 a nagobb. A matematikailag inkorrekt, de rendkívül egértelmű válasz erre a kérdésre az, hog az a nagobb, ameliknél nagobb szám van a négzetgök alatt. Tehát a 3 3 a nagobb. A matematikailag korrekt érvelés/megfogalmazás a következő képpen hangzik: Mivel a függvén szigorúan növekszik, a 3 a nagobb. 3 vag Tehát azt kell eldöntenünk, hog Mivel 3 vag 3 1 és 1. nagobb. (c) A függvén szigorúan nő, ezért a 1 nagobb. Tehát a 3 nagobb,. mint 1 1 vag ( ) ( ) , 1 Ez azt jelenti, hog a nagobb
3 1. Végezzük el a következő műveleteket! (a) ( 3 + 1) (3 3) Ennek a feladatnak a megoldásánál egetlen eg dolgot nem szabad elfelejtenünk, mégpedig hog többtagú kifejezés szorzásánál többtagú kifejezéssel minden tagot megszorzunk minden taggal. ( 3 + 1) (3 3) 3 3 ( 3 3) } 3 {{ 3 } Végeredmén: ( 3 + 1) (3 3) 3 1 (b) ( 3 ) Ebben a feladatban csak azt kell felidéznünk, milen nevezetes azonosságokat tanultunk kilencedik osztálban. A kulcs ennek a feladatnak a megoldásához az (a b) a ab + b nevezetes azonossághoz. Ha azt csináljuk, amit a nevezetes azonosság "mond", nem okozhat problémát a feladat megoldása ) ) (3 ) ( 3 ) ( ( (a b) a ab + (3 ) b Szorzatok hatvánozásakor a szorzat minden kitevőjét az adott hatvánkitevőre kell emelnünk: ( ) ( ) Mivel a négzetre emelés és a négzetgökvonás "semlegesítik" egmást, valamint ab a b teljesül, felírhatjuk a következőt: Végeredmén: ( 3 ) 3 1 (c) Annak ellenére,hog ez a feladat első ránézésre elég "hardcore"-nak tűnhet, nem szabad megijednünk tőle, uganis ennek a feladatnak is az a lénege, hog felelevenítsük a nevezetes azonosságokról szerzett ismereteinket. Ebben a feladatban az a b (a b)(a + b) nevezetes azonosságot fogjuk alkalmazni a+b 13 3 a b nev.az. Innentől kezdve csak számolnunk kell. ( 13) ( 13) 3 a b Végeredmén:
4 1. Írjuk fel a következő kifejezéseket gökjel alá vitellel egszerűbb alakban! (a) 3 (b) Ha a szám, amivel a gökös kifejezésünket szorozzuk pozitív, az eljárás rendkívül egszerű. Mivel a négzetgökvonás és a négzetre emelés "kiütik" egmást, felírhatjuk a 3-at, mint 3. Tehát négzetre emeljük, majd egből gököt vonunk belőle, hiszen íg értéke változatlan marad. Ha felírtuk a 3-at ebben a rafinált alakban, alkalmazhatjuk a gökvonás azonosságait és megkapjuk a kívánt végeredmént , > 0 Az eljárás uganaz, mint az előző feladatban. Mivel az, > 0 az tört is pozitív előjelű, tehát probléma nélkül bevihető a gök alá. ( ) ( ). Végezzük el a következő műveletet! Első lépésként felírjuk a gök alatti számok prímténezős felbontását: Azért írtuk át -ont -ra, hog teljesen egértelműen látszódjon, ahog a négzetgökvonás és négzetre emelés "kiütik" egmást } {{ } Végeredmén: Göktelenítsük a tört nevezőjét Ebben a részben úg alakítunk át törteket, hog azoknak a nevezőjéből eltűnjön a gökjel. (a) Két dolgot kell ennek a feladatnak a megoldásánál figelembe vennünk. Az egik, hog ha eg számot megszorzunk eggel, értéke nem változik. A másik, hog általánosan teljesül, ha > 0. Jelen esetben, megszorozzuk az törtet 1-gel, de az eget eg rendkívül rafinált formában írjuk fel, mégpedig mint.
5 1. Göktelenítsük a tört nevezőjét 3 7+ A tört nevezőjének göktelenítése "bonolultabb" nevező esetében az a b (a b)(a + b) nevezetes azonosság segítségével történik. A fentiekhez hasonlóan, a törtemet megint eggel szorzom meg, íg értéke nem változik ( 7 ) 9 ( 7 3( 7 ) ( 3( 7 ) 7) ) 3. Feldat: Írjuk fel egszerűbb alakba a következő kifejezést! (1 +1 ) 1 Mivel (1 ) negatív, nem szabad úg bevinni a gök alá, mint az előző feladatokban. Ennél a példánál picit találékonabbnak kell lennünk. (a) Göktelenítjük a gökalatti kifejezés nevezőjét az a b (a b)(a+b) nevezetes azonosság segítségével! ( +1)( +1) 1 ( +1) (b) A fenti számolásnak megfelelően átírjuk az eredeti feladatot! (1 ) +1 1 (1 ) (c) Alkalmazzuk a gökvonás azonosságait! ( +1) (1 ) ( +1) (1 ( +1) ) A négzetgökvonás és négzetre emelés "semlegesítik"/ "kiütik" egmást, ezért felírhatjuk a következőt: (1 ) ( +1) (1 ) ( +1) (d) A fenti egenletet felírhatjuk a következő képpen: (1 ) ( +1) (1 )( +1) (1 )(1+ ) (e) Újfent alkalmazzuk az a b (a b)(a + b) nevezetes azonosságot! 1 (f) Végeredmén: (1 ) +1 1
6 1. Döntsük el,melik szám a nagobb! 7+ vag + Először göktelenítjük a 7+ nevezőjét: 7+ } 7 {{ + } a+b 7 Most göktelenítjük a 7 7 a b + nevezőjét: ( 7 ) 7}{{ } a b ( 7 ) + } {{ + } a+b ( ) a b ( ) }{{ } a b Tehát már csak azt kell eldöntenünk, hog 7 vag nagobb. Mivel a mindegik kifejezésben előfordul, ezt mellőzhetjük. Tehát 7 és maradnak. Mivel a függvén szigorúan növekszik, egértelműen kijelenthető, hog a nagobb, tehát: 7+ < +. Végezzük el a következő műveletet! Először közös nevezőre hozunk, mint az törtes feladatoknál szokvános, majd elvégezzük a szükséges műveleteket. A közös nevező: ( +3) + ( 1) Ezután göktelenítjük a nevezőt: (7 +3 ) Végeredmén:
7 n-edik gökvonás azonosságai 1. Határozzuk meg a következő szorzat értékét! 1 9 Mivel eg szorzat n-edik göke megegezik a ténezők n-edik gökének szorzatával, felírhatjuk a következőt: Határozzuk meg az tört értékét! Ismét megoldható a feladat az n-edik gökvonás azonosságainak alkalmazásával. Ebben a feladatban kihasználjuk, hog eg tört n-edik göke megegezik a számláló és a nevező n-edik gökének szorzatával Határozzuk meg a ( 1 ) hatván értékét! Az n-edik gökvonás azonosságainak bizonítása közben megtanultuk, hog a hatvánozás és a gökvinás felcserélhető műveletek. A továbbiakban két különböző, ám a végeredmén szempontjából teljesen egenértékű módszerrel is megoldjuk ezt a feladatot: 1.módszer: ( 1 ) hatv. az. 1 ( 3 ) 1 3 Ha ezt a módszert választjuk, meg kell próbálnunk a gök alatti kifejezésünket úg átírni, hog annak hatvánkitevője megegezzen a gökkitevőjével. Erre azért van szükség, mert tudjuk hog egező hatvánkitevő és gökkitevő esetén ezek "semlegesítik" egmást..módszer: ( 1 ) 1 n a k a k n Mint látjuk, ez a módszer is uganazt a végeredmént adja.. Számítsuk ki a szorzat értékét! nev.az. ( 3) a b ( + 3) a+b ( 3) a b 3 3
8 1. Döntsük el, hog 3 vag 37 a nagobb! Négzetgökkel már oldottunk hasonló feladatokat. Első lépésként itt is megvizsgáljuk a két számot külön-külön: n-edik gök esetén hasonló az eljárás, mint a négzetgöknél. A különbség az,hog míg négzetgöknél négzetre emeltük azt a kifejezést, amit a gök alá akartunk vinni, n-edik göknél pedig arra a hatvánkitevőre emeljük, ami megegezik a göknek a kitevőjével. Annak érdekében, hog az átalakításnál ne változzon a gök alá vinni kívánt kifejezés értéke, a hatvánozás után egből a megfelelő gököt vonjuk Ezen számítások után teljesen egéltelmű, hog 11 > 11, tehát 3 > 37 Megjegzés: Míg a négzetgöknél hangsúloztun, hog a fenti módszerrel csak pozitív számokat tudunk be vinni a gök alá, n-edik gök esetében picit más a helzet. Ha a gök kitevője páros, akkor marad a négzetgök esetén használt megkötés, miszerint negatív számot nem vihetünk a gök alá, legalábbis nem a fenti módon. Ha a gökkitevő páratlan, a negatív számokat is bevihetjük a fenti módon a gök alá.. Gökjel alól kiemelés után hozzuk egszerűbb alakra a 7 a 13 b 7 1a 0 b 17 + a 7 b kifejezést! A feladatot a tanult módszerhez hasonlóan oldjuk meg. Míg számoknál prímténezős felbontással dolgozunk, "betűk" esetében fel kell elevenítenünk a hatvánozásra vonatkozó szabálokat: a 13 a 7 a, b b 7 b 3 1 7, a 0 a 7 a 7 a, b 17 b 7 b 7 b 3 a 7 a 7 a 7 a 7 a, b b 7 b 7 b 7 b 3 Azért próbáltunk meg mindent a 7-edik hatvánra hozni, mert íg a 7-edik gökkel egből "kiütik" egmást. 7 a 13 b 7 1a 0 b 17 + a 7 b 7 a7 a b 7 b a 7 a 7 a b 7 b 7 b a 7 a 7 a 7 a b 7 b 7 b 7 b 3 7 a 7 7 a 7 b 7 7 b a 7 7 a 7 7 a 7 b 7 7 b 7 7 b a 7 7 a 7 7 a 7 7 a 7 b 7 7 b 7 7 b 7 7 b 3 a 7 a b 7 b 3 a a 7 a b b 7 b 3 +a a a 7 a b b b 7 b 3 a b 7 a 7 b 3 a a b b 7 a 7 b 3 +a a a b b b 7 a 7 b 3 ab 7 a 7 b 3 a b 7 a 7 b 3 + a 3 b 3 7 a 7 b 3 ab 7 a b 3 a b 7 a b 3 + a 3 b 3 7 a b 3 7 a b 3 (ab a b + a 3 b 3 ) (ab a b + a 3 b 3 ) 7 a b 3 [ab (1 ab + a b )] 7 a b 3 [ab(1 ab) ] 7 a b 3 nevezetes azon.
EXPONENCIÁLIS EGYENLETEK
Sokszínű matematika /. oldal. feladat a) = Mivel mindegik hatván alapja hatván, ezért átírjuk a -et és a -ot: = ( ) Alkalmazzuk a hatván hatvána azonosságot! ( ) = A bal oldalon az azonos alapú hatvánok
Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások
Országos Középiskolai Tanulmáni Versen / Matematika I kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Eg papírlapra felírtuk a pozitív egész számokat n -től n -ig Azt vettük észre hog a felírt páros számok
a.) b.) c.) d.) e.) össz. 4 pont 2 pont 4 pont 2 pont 3 pont 15 pont
1. Az alábbi feladatok egszerűek, akár fejben is kiszámíthatóak, de a piszkozatpapíron is gondolkodhat. A megoldásokat azonban erre a papírra írja! a.) A 2x 2 5x 3 0 egenlet megoldása nélkül határozza
5. Végezd el a kijelölt műveleteket, és ahol lehet, vonj össze!
1 1. Rendezd a következő polinomokat a bennük lévő változó növekedő hatvánkitevői szerint! a) 2 + + 2 b) 2 + + 2 + 6 2. Melek egnemű algebrai kifejezések? a) a 2 b; 2ab; a 2 b; 2a b; 1,a 2 b b) 2 ; 2 ;
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét!
Megoldások. Számítsd ki a következő kifejezések pontos értékét! 8 8 ( ) ( ) ( ) Használjuk a gyökvonás azonosságait. 0 8 8 8 8 8 8 ( ) ( ) ( ) 0 8 . Határozd meg a következő kifejezések értelmezési tartományát!
Teljes függvényvizsgálat példafeladatok
Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss
Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény
Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek
Matematika szintfelmérő szeptember
Matematika szintfelmérő 015. szeptember matematika BSC MO 1. A faglaltok éjszakáján eg közvéleménkutatásban vizsgált csoport %-ának ízlett az eperfaglalt, 94%-ának pedig a citromfaglalt. A két gümölcsfaglalt
Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport
Analízis I. zártheli dolgozat javítókulcs, Informatika I. 0. okt. 9. Elméleti kérdések A csoport. Hogan számíthatjuk ki két trigonometrikus alakban megadott komple szám szorzatát más alakba való átváltás
Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola
O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg
Bolyai János Matematikai Társulat. Rátz László Vándorgyűlés Baja
Bolai János Matematikai Társulat Rátz László Vándorgűlés 06. Baja Záródolgozat dr. Nag Piroska Mária, Dunakeszi Dunakeszi, 06.07.. A Vándorgűlésen Erdős Gábor az általános iskolai szekcióban tartott szemináriumot
Függvények. 1. Nevezetes függvények A hatványfüggvény
Függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek
Algebrai egész kifejezések (polinomok)
Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m
1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát!
Függvének Feladatok Értelmezési tartomán ) Adja meg a következő függvének legbővebb értelmezési tartománát! a) 5 b) + + c) d) lg tg e) ln + ln ( ) Megoldás: a) 5 b) + + = R c) és sosem teljesül. d) tg
MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.
MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Kalkulus II., harmadik házi feladat
Név: Neptun: Web: http://mawell.sze.hu/~ungert Kalkulus II., harmadik házi feladat.,5 pont) Határozzuk meg a következ határértékeket: ahol a) A =, ), b) A =, ), c) A =, ).,) A Az egszer bb kezelhet ség
18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK
18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK Kertesi Gábor Világi Balázs Varian 21. fejezete átdolgozva 18.1 Bevezető A vállalati technológiák sajátosságainak vizsgálatát eg igen fontos elemzési eszköz,
Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és
2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: Z) a) (x 1) (x + 1) 7x + 1 = x (4 + x) + 2 b) 1 2 [5 (x 1) (1 + 2x) 2 4x] = (7 x) x c) 2 (x + 5) (x 2) 2 + (x + 1) 2 = 6 (2x + 1) d) 6 (x 8)
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
9. évfolyam Javítóvizsga felkészülést segítő feladatok
Halmazok: 9. évfolam Javítóvizsga felkészülést segítő feladatok. Adott két halmaz. A : a ; a : páros és B : ;;8;0;;;8;0;. Add meg a következő halmazműveleteket az elemek felsorolásával és készíts Venn
MATEMATIKA A 10. évfolyam
MATEMATIKA A 0 évfolam 6 modul Másodfokúra visszavezethető problémák Készítette: Darabos Noémi Ágnes Matematika A 0 évfolam 6 modul: Másodfokúra visszavezethető problémák Tanári útmutató A modul célja
= és a kínálati függvény pedig p = 60
GYAKORLÓ FELADATOK 1: PIACI MECHANIZMUS 1. Adja meg a keresleti és a kínálati függvének pontos definícióját! Mikor beszélhetünk piaci egensúlról?. Eg piacon a keresletet és a kínálatot a p = 140 0, 1q
Juhász István Orosz Gyula Paróczay József Szászné dr. Simon Judit. Az érthetõ matematika tankönyv feladatainak megoldásai
Juhász István Orosz Gula Parócza József Szászné dr Simon Judit MATEMATIKA 9 Az érthetõ matematika tankönv feladatainak megoldásai A megoldások olvasásához Acrobat Reader program szükséges, amel ingenesen
1. Lineáris transzformáció
Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható
Amit a törtekről tudni kell Minimum követelményszint
Amit a törtekről tudni kell Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat írtunk.
10.3. A MÁSODFOKÚ EGYENLET
.. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.
Törtes egyenlőtlenségek
Törtes egyenlőtlenségek Egy tört értéke akkor pozitív, ha a számláló és a nevező egyező előjelű. Egy tört értéke akkor negatív, ha a számlálója és a nevezője ellentétes (különböző) előjelű. 1. Oldja meg
Inverz függvények Inverz függvények / 26
Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás
1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?
1. fogalom Add meg az összeadásban szereplő számok 73 + 19 = 92 összeadandók (tagok) összeg Összeadandók (tagok): amiket összeadunk. Összeg: az összeadás eredménye. Milyen tulajdonságai vannak az összeadásnak?
9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek
. Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <
Y 10. S x. 1. ábra. A rúd keresztmetszete.
zilárdságtan mintafeladatok: tehetetlenségi tenzor meghatározása, a tehetetlenségi tenzor főtengelproblémájának megoldása két mintafeladaton keresztül Először is oldjuk meg a gakorlatokon is elhangzott
First Prev Next Last Go Back Full Screen Close Quit. Matematika I
Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
7.4. A programkonstrukciók és a kiszámíthatóság
H @ tj 68 7 PROGRAMKONSTRUKCIÓK 74 A programkonstrukciók és a kiszámíthatóság Ebben az alfejezetben kis kitérőt teszünk a kiszámíthatóság-elmélet felé, és megmutatjuk, hog az imént bevezetett három programkonstrukció
I. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak
ábra: Ábra Bodó Bea, Somonné Szabó Klára Matematika. közgazdászoknak III. modul: Többváltozós üggvének 5. lecke: Többváltozós üggvének, parciális deriválás Tanulási cél: Megismerkedni a többváltozós üggvének
3. Egyenletek, egyenletrendszerek, egyenlőtlenségek
. Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.
A hatványozás első inverz művelete, az n-edik gyökvonás.
Ismétlés: Htváozás egész kitevő eseté A htváozás iverz műveletei. (Htvá, gök, logritmus) De.: :... Ol téezős szorzt, melek mide téezője. : htvál : kitevő : htváérték A htváozás zoossági egész kitevő eseté:
Tétel: A háromszög belső szögeinek összege: 180
Tétel: A háromszög belső szögeinek összege: 180 Bizonyítás: legyenek az ABC háromszög belső szögei α, β, γ. Húzzunk a C csúcson át párhuzamost AB-vel. A C csúcsnál keletkezett egyenesszöget a háromszög
az eredő átmegy a közös ponton.
M Műszaki Mechanikai Tanszék STTIK dr. Uj József c. egetemi tanár g közös ponton támadó koncentrált erők (centrális erőrendszer) Két erő eredője: = +, Több erő eredője: = + ++...+ n, az eredő átmeg a közös
VIII.4. PONT A RÁCSPONTOK? A feladatsor jellemzői
VIII.4. PONT A RÁCSPONTOK? Tárg, téma Geometria, algebra és számelmélet. Előzmének A feladatsor jellemzői Pontok ábrázolása koordináta-rendszerben, abszolút érték fogalma, oszthatóság fogalma, (skatula
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 005.október 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot
Két statikai alapfeladatról
Két statikai alapfeladatról evezetés z alábbiakban két gakori és fontos síkbeli statikai alapfeladatot veszünk alaposabban szemügre kicsit másként két feladat: 1 Közös támadáspontú két erő eredőjének meghatározása
Másodfokú függvények
Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Algebra
Algebra Műveletek tulajdonságai: kommutativitás (felcserélhetőség): a b = b a; a b = b a asszociativitás (átcsoportosíthatóság): (a b) c = a (b c); a (b c) = (a b) c disztributivitás (széttagolhatóság):
A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra.
A kardáncsukló tengelei szögelfordulása közötti összefüggés ábrázolása Az 1. ábrán mutatjuk be a végeredmént, eg körülfordulásra. 3 330 270 2 210 1 150 A kardáncsukló hajtott tengelének szögelfordulása
Törtek. Rendelhetőek nagyon jó szemléltethető eszközök könyvesboltokban és internetek is, pl:
Törtek A törteknek kétféle értelmezése van: - Egy egészet valamennyi részre (nevező) osztunk, és abból kiválasztunk valahány darabot (számláló) - Valamennyi egészet (számláló), valahány részre osztunk
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
Analízis I. jegyzet. László István. 2008. november 3.
Analízis I. jegzet László István 2008. november 3. Tartalomjegzék 1. Halmazok 5 1.1. Halmaz fogalma............................ 5 1.2. Halmaz megadása........................... 6 1.2.1. Eplicit megadás.......................
A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.
Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például:
VI. Kétismeretlenes egyenletrendszerek
Mtemtik A 9. évfolm 7. modul: EGYENLETEK Tnári kézikönv VI. Kétismeretlenes egenletrendszerek Behelettesít módszer Mintpéld Két testvér érletpénztárnál jeget vásárol. Az egik vonljegért és eg átszálló
Néhány érdekes függvényről és alkalmazásukról
Néhán érdekes függvénről és alkalmazásukról Bevezetés Meglehet, a középiskola óta nem kedveltük az abszolútérték - függvént; most itt az ideje, hog változtassunk ezen. Erre az adhat okot, hog belátjuk:
Matematika 8. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................
Amit a törtekről tudni kell 5. osztály végéig Minimum követelményszint
Amit a törtekről tudni kell. osztály végéig Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával
Sokszínû matematika 12. A KITÛZÖTT FELADATOK EREDMÉNYE
Sokszínû matematika. A KITÛZÖTT FELADATOK EREDMÉNYE Számsorozatok SOKSZÍNÛ MATEMATIKA A KITÛZÖTT FELADATOK EREDMÉNYE. A számsorozat fogalma, példák sorozatokra. A pozitív páros számok sorozatának n-edik
Egyváltozós függvények differenciálszámítása II.
Egváltozós függvének differenciálszámítása II.. 2. 3. 4. 5. 6. 7. 8. Végezzen teljes függvénvizsgálatot! A függvénvizsgálat szokásos menete:. Értelmezési tartomán, tengelmetszetek 2. Szimmetriatulajdonságok:
Frissítve: Síkidomok másodrendű nyomatékai. Egy kis elmélet 1 / 21
Frissíte: 2015.02.16. Síkidomok másodrendű nomtéki Eg kis elmélet 1 / 21 Frissíte: 2015.02.16. Síkidomok másodrendű nomtéki 1. péld: Számítsk ki súlponti és tengelekre számított másodrendű nomtékokt! Megjegzés:
Matematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék
Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim
Függvének határértéke és oltonossága Deiníció: Az -hoz megadható olan üggvénnek az A. pontban van határértéke és ez A ha bármel küszöbszám hog ha A akkor. Jele: a) Függvén határértékének ogalma visszavezethető
Negyedik epochafüzet
Negedik epochafüzet Matematika 9. évfolam Tulajdonos:... Tartalom Ismétlés I.... Algebrai kifejezések... Egenletek, egenlőtlenségek... 6 Algebrai törtek, szorzattá alakítás... 8 Törtes egenletek, egenlőtlenségek...
2. Egyenletek I. Feladatok 1. a) b) c) d) 2. a) b) c) d) 3. a) b) c) d) e)
. Egenletek I. Feldtok. Oldj meg z lábbi egenleteket egenletrendszereket vlós számok hlmzán. ) b) ( ) ( ) 8 Klmár László Mtemtik Versen döntője 99. 8. osztál c) ( ) ( ) ( ) ( ) OKTV II. ktegóri. forduló
Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz
2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix
7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
5. A logaritmus fogalma, a logaritmus azonosságai
A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton
1.1. Halmazelméleti alapfogalmak
. Halmazok, relációk, függvének.. Halmazelméleti alapfogalmak... A halmaz fogalma A halmazt a halmazelmélet alapfogalmának tekintjük és ezért nem definiáljuk. Szokás azt mondani, hog a halmaz különböző
Halmazok Egész számok
Halmazok.. Egész számok A,,,,,,,, számokat egész számoknak nevezzük. ármel két egész szám összege, szorzata, különbsége is egész szám..5. ábra Adóslevél.6. ábra Az adósságok könvelése is megkívánta a negatív
Egyenletek, egyenlőtlenségek X.
Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak
3. Gráfok színezései
Diszkrét Matematika levelező MSc hallgatók számára 3. ráfok színezései Előadó: Hajnal Péter 2011 12. őszi félév 1. Síkgráfok és élszínezések A párosításoknál szereplő Petersen-tétel azt állította, hog
Árki Tamás Konfárné Nagy Klára Kovács István Trembeczki Csaba Urbán János. sokszínû FELADATGYÛJTEMÉNY MEGOLDÁSOK. Mozaik Kiadó Szeged, 2010
rki Tamás Konfárné Nag Klára Kovács István Trembeczki Csaba Urbán János sokszínû FELADATGYÛJTEMÉNY MEGOLDSOK Mozaik Kiadó Szeged, 00 matematika fg_mo.qd 00..6. 9:07 Page TA R TA LO M J E GY Z É K TARTALOMJEGYZÉK
2. Algebrai átalakítások
I. Nulladik ZH-ban láttuk: 2. Algebrai átalakítások 1. Mi az alábbi kifejezés legegyszerűbb alakja a változó lehetséges értékei esetén? (A) x + 1 x 1 (x 1)(x 2 + 3x + 2) (1 x 2 )(x + 2) (B) 1 (C) 2 (D)
Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)
Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja
Az egyenes rudak elemi szilárdságtanának egy problémaköréről 1. rész
Előszó Az egenes rudak elemi szilárdságtanának eg problémaköréről rész Ezt a dolgozatot sok évvel ezelőtt írtam Benne eg olan problémakör kritikai vizsgá - latára vállalkoztam melnek itthon nem vag csak
Az orthogonális axonometria alapösszefüggéseiről, illetve azok alkalmazásáról
Az orthogonális aonometria alapösszefüggéseiről, illetve azok alkalmazásáról Bevezetés Sok évvel ezelőtt, amikor még nem volt internet, és a személi számítógép is újdonság volt, sikerült néhán furcsa,
Sokszínû matematika 12. A KITÛZÖTT FELADATOK EREDMÉNYE
Sokszínû matematika. A KITÛZÖTT FELADATOK EREDMÉNYE SOKSZÍNÛ MATEMATIKA A KITÛZÖTT FELADATOK EREDMÉNYE Logika, bizonítási módszerek. Logikai feladatok, kijelentések. Feltéve, hog a középsõ a kérdésre válaszolt:
VI. Deriválható függvények tulajdonságai
1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn
KÁOSZ EGY TÁLBAN Tóthné Juhász Tünde Karinthy Frigyes Gimnázium (Budapest) Gócz Éva Lónyai Utcai Református Gimnázium
válaszolására iránuló, még folamatban lévô (a dekoherencia és a hullámcsomag kollapszusa tárgkörökbe esô) elméleti próbálkozások ismertetésétôl. Ehelett inkább a kísérletek elôfeltételét képezô kvantumhûtés
Matematika A 10. szakiskolai évfolyam 1. modul Elsőfokú kétismeretlenes egyenletrendszerek megoldása
Matematika A 10. szakiskolai évfolam 1. modul Elsőfokú kétismeretlenes egenletrendszerek megoldása Készítette Csákvári Ágnes Matematika A 10. szakiskolai évfolam 1. modul: Elsőfokú kétismeretlenes egenletrendszerek
Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!
Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk
Relációk. Vázlat. Példák direkt szorzatra
8.. 7. elácók elácó matematka fogalma zükséges fogalom: drekt szorzat Halmazok Descartes drekt szorzata: Legenek D D D n adott doman halmazok. D D D n : = { d d d n d k D k k n } A drekt szorzat tehát
Vázlat. Relációk. Példák direkt szorzatra
7..9. Vázlat elácók a. elácó fogalma b. Tulajdonsága: refleív szmmetrkus/antszmmetrkus tranztív c. Ekvvalenca relácók rzleges/parcáls rrendez relácók felsmere d. elácók reprezentálása elácó matematka fogalma
IRÁNYÍTÁSTECHNIKA I.
IRÁNÍTÁSTEHNIK I. 5 éves Sc kurzus Összeállította: Dr. Tarnai Géza egetemi tanár udapest, 8. Rendszer- és iránításelméleti ismeretek. félév. félév Diszkrét állapotú rendszerek, logikai hálózatok Foltonos
IV. INTEGRÁLSZÁMÍTÁS Megoldások november
IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +
;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;
. A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem
3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra
SZÉCHENYI ISÁN EGYEEM AAMAZO MECHANIA ANSZÉ 6. MECHANIA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szüle eronika, eg. ts.) I. előadás. okális aroimáció elve, végeselem diszkretizáció egdimenziós feladatra.. Csomóonti
Szögfüggvények értékei megoldás
Szögfüggvények értékei megoldás 1. Számítsd ki az alábbi szögfüggvények értékeit! (a) cos 585 (f) cos ( 00 ) (k) sin ( 50 ) (p) sin (u) cos 11 (b) cos 00 (g) cos 90 (l) sin 510 (q) sin 8 (v) cos 9 (c)
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: R) a) log 4 (x ) = 3 b) lg (x 4) = lg (8x 10) c) log x + log 3 = log 15 d) log x 0x log x 5 = e) log 3 (x 1) = log 3 4 f) log 5 x = 4 g) lg
Kétváltozós függvények ábrázolása síkmetszetek képzése által
Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az
Egyenletek, egyenlőtlenségek, egyenletrendszerek I.
Egyenletek, egyenlőtlenségek, egyenletrendszerek I. DEFINÍCIÓ: (Nyitott mondat) Az olyan állítást, amelyben az alany helyén változó szerepel, nyitott mondatnak nevezzük. A nyitott mondatba írt változót
7. Kétváltozós függvények
Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és
Előadó: Dr. Bukovics Ádám
SZÉCHYI ISTVÁ GYT TARTÓSZRKZTK III. lőadó: Dr. Bukovics Ádám Az ábrák forrása: 6. LŐADÁS [] Dr. émeth Görg: Tartószerkezetek III., Acélszerkezetek méretezésének alapjai [2] Halász Ottó - Platth Pál: Acélszerkezetek
Szöveges feladatok a mátrixaritmetika alkalmazására
Szöveges feladatok a mátrixaritmetika alkalmazására Bevezetés: Tekintsük az alábbi -es mátrixot: A. Szorozzuk meg ezt jobbról egy alkalmas méretű (azaz -es) oszlopvektorral, amely az R tér kanonikus bázisának
HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok
Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logaritmus
Logaritmus DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak nevezzük. Bármely pozitív
c.) Mely valós számokra teljesül a következő egyenlőtlenség? 3
1. Az alái feladatok egyszerűek, akár fejen is kiszámíthatóak, de a piszkozatpapíron is gondolkodhat. A megoldásokat azonan erre a papírra írja! a.) Írja fel egy olyan egész együtthatós másodfokú egyenlet
A jövedelem- és árváltozások hatása a fogyasztói döntésre. Az ICC görbe. Az Engel-görbe. 4-5. előadás
4-5. előadás A jövedelem- és árváltozások hatása a fogasztói döntésre CC és Engel-görbe, PCC és egéni keresleti függvén. A iaci keresleti görbe származtatása. A fogasztói többlet. Kereslet-rugalmassági