Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.
|
|
- Rezső Fábián
- 9 évvel ezelőtt
- Látták:
Átírás
1 Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m (meredekség) megmutatja, hog az elbb kapott pontból jobbra lépve eg egséget hán (m) egséget lépjünk fölfele (m > ), vag lefele (m < ).
2 Ábrázoljuk az f() = + 3 függvént! Az tengelt (, 3) pontban metszi a függvén, ebbl a pontból 1-et lépünk jobbra majd -t fölfele. Az íg kapott pontokat összekötjük. Ábrázoljuk az f() = függvént! Az tengelt (, 1) pontban metszi a függvén, ebbl a pontból 1-et lépünk jobbra majd 3-at lefele. Az íg kapott pontokat összekötjük. 1 1 (,3)
3 Ábrázoljuk az f() = 1 3 függvént! Az tengelt (, ) pontban metszi a függvén, ebbl a pontból 1-et lépünk jobbra majd 3 1 -ot fölfele (3-at jobbra, 1-et felfelé). Az íg kapott pontokat összekötjük. 1 Ábrázoljuk az f() = függvént! Az tengelt (, 1) pontban metszi a függvén, ebbl a pontból 1-et lépünk jobbra majd 5 1 -öt fölfele (5-öt jobbra, 1-et felfele). Az íg kapott pontokat összekötjük
4 Ábrázoljuk az f() = függvént! Az tengelt (, ) pontban metszi a függvén, ebbl a pontból 1-et lépünk jobbra majd -t fölfele. Az íg kapott pontokat összekötjük. 1 Ábrázoljuk az f() = 1 függvént! Az tengelt (, ) pontban metszi a függvén, ebbl a pontból 1-et lépünk jobbra majd 1 -et fölfele (-t jobbra, 1-et felfele). Az íg kapott pontokat összekötjük
5 Ábrázoljuk az f() = függvént! Az tengelt (, ) pontban metszi a függvén, ebbl a pontból 1-et lépünk jobbra majd -t fölfele. Az íg kapott pontokat összekötjük. 1 Ábrázoljuk az f() = függvént! Az tengelt (, ) pontban metszi a függvén, ebbl a pontból 1-et lépünk jobbra majd 1-et fölfele. Az íg kapott pontokat összekötjük
6 Függvének jellemzése értelmezési tartomán A változó lehetséges értékeinek a halmaza. jelölés:d f értékkészlet A lehetséges függvénértékek halmaza. jelölés:r f ZH: Szélsérték min: ma: Monotonitás mon. n: mon. csökken: Paritás: zérushel minimum maimum monoton n monoton csökken Eg f függvén zérusheleinek nevezzük az értelmezési tartománának mindazon értékeit, melre f() =. Az a pont, ahol a függvén érintimetszi az tengelt Eg függvénnek minimuma van az értelmezési tartománhoz tartozó helen, ha az ott felvett f( ) függvénértéknél kisebb értéket sehol sem vesz fel a függvén. Eg függvénnek maimuma van az értelmezési tartománhoz tartozó helen, ha az ott felvett f( ) függvénértéknél nagobb értéket sehol sem vesz fel a függvén. Azt mondjuk, hog az f függvén monoton növekv az értelmezési tartomán eg intervallumán, ha az intervallum bármel 1 < elemeihez rendelt függvénértékekre az f( 1 ) f( ) reláció áll fenn. Azt mondjuk, hog az f függvén szigorúan monoton növekv az értelmezési tartomán eg intervallumán, ha az intervallum bármel 1 < elemeihez rendelt függvénértékekre az f( 1 ) < f( ) reláció áll fenn. Azt mondjuk, hog az f függvén monoton csökken az értelmezési tartomán eg intervallumán, ha az intervallum bármel 1 < elemeihez rendelt függvénértékekre az f( 1 ) f( ) reláció áll fenn. Azt mondjuk, hog az f függvén szigorúan monoton csökken az értelmezési tartomán eg intervallumán, ha az intervallum bármel 1 < elemeihez rendelt függvénértékekre az f( 1 ) > f( ) reláció áll fenn. Legen az értelmezési tartománának minden elemével egütt annak ellentettje is eleme az értelmezési tartománának; ( D f, akkor D f ) és Eg függvént párosnak nevezünk, ha minden értelmezési tartománbeli elem ellentettjéhez az eredeti elemhez rendelt függvénértékeket rendeli; (minden D f esetén f() = f( )). Eg függvént páratlannak nevezünk, ha minden értelmezési tartománbeli elem ellentettjéhez az eredeti elemhez rendelt függvénérték mínusz egszeresét rendeli; (minden D f esetén f() = f( )).
7 Példák f() = f() = R R ZH: = 1,5 ma.: Mon.csökken: Mon. n: ] ; [ Paritás R R ZH: =,5 ma.: Mon.csökken: ] ; [ Mon. n: Paritás
8 f() = 1 3 f() = R R ZH: = ma.: Mon.csökken: ] ; [ Mon. n: Paritás R R ZH: = 5 ma.: Mon.csökken: Mon. n: ] ; [ Paritás
9 f() = f() = R R ZH: = ma.: Mon.csökken: Mon. n: ] ; [ Paritás páratlan R R ZH: = ma.: Mon.csökken: Mon. n: ] ; [ Paritás páratlan
10 f() = f() = R R ZH: = ma.: Mon.csökken: Mon. n: ] ; [ Paritás páratlan R R ZH: = ma.: Mon.csökken: ] ; [ Mon. n: Paritás páratlan
Másodfokú függvények
Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú
10.3. A MÁSODFOKÚ EGYENLET
.. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.
Nevezetes függvények
Nevezetes függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt
Többváltozós függvények Riemann integrálja
Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Az integrál konstrukciója tetszőleges változószám esetén Deiníció: n dimenziós
Közgazdaságtan - 3. elıadás
Közgazdaságtan - 3. elıadás A FOGYASZTÓI DÖNTÉS TÉNYEZİI 1 A FOGYASZTÓI DÖNTÉS ELEMEI Példa: Eg személ naponta 2000 Ft jövedelmet költhet el pogácsára és szendvicsre. Melikbıl mennit tud venni? 1 db pogácsa
Egyváltozós függvények differenciálszámítása II.
Egváltozós függvének differenciálszámítása II.. 2. 3. 4. 5. 6. 7. 8. Végezzen teljes függvénvizsgálatot! A függvénvizsgálat szokásos menete:. Értelmezési tartomán, tengelmetszetek 2. Szimmetriatulajdonságok:
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK
18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK Kertesi Gábor Világi Balázs Varian 21. fejezete átdolgozva 18.1 Bevezető A vállalati technológiák sajátosságainak vizsgálatát eg igen fontos elemzési eszköz,
E-tananyag Matematika 9. évfolyam 2014. Függvények
Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést
Descartes-féle, derékszögű koordináta-rendszer
Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért
Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév
Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra
Többváltozós analízis gyakorlat, megoldások
Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,
Teljes függvényvizsgálat példafeladatok
Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss
Téma: A szerkezeti acélanyagok fajtái, jelölésük. Mechanikai tulajdonságok. Acélszerkezeti termékek. Keresztmetszeti jellemzők számítása
1. gakorlat: Téma: A szerkezeti acélanagok fajtái, jelölésük. echanikai tulajdonságok. Acélszerkezeti termékek. Keresztmetszeti jellemzők számítása A szerkezeti acélanagok fajtái, jelölésük: Ádán Dulácska-Dunai-Fernezeli-Horváth:
SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)
SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A
12.6. ÉRETTSÉGI GYAKORLÓ FELADATSOROK
MEGOLDSOK. ÉVFOLYAM.6. ÉRETTSÉGI GYAKORLÓ FELADATSOROK KÖZÉPSZINTÛ FELADATSOROK. Feladatsor I. rész megoldások. ( + ).. A háromszög köré írható kör sugara,6 cm.. Körtébõl 9 kg-ot, almából 8 kg-ot, banánból
EGY KERESZTPOLARIZÁCIÓS JELENSÉG BEMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN
Fiia Modern fiia GY KRSZTPOLARIZÁCIÓS JLNSÉG BMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN DMONSTRATION OF AN OPTICAL CROSS- POLARIZATION FFCT IN A STUDNT LABORATORY Kőhái-Kis Ambrus, Nag Péter 1 Kecseméti
Függvények 1. oldal Készítette: Ernyei Kitti. Függvények
Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.
E B D C C DD E E g e 112 D 0 e B A B B A e D B25 B B K H K Fejhallgató Antenna A B P C D E 123 456 789 *0# Kijelzés g B A P D C E 0 9* # # g B B 52 Y t ] [ N O S T \ T H H G ? > < p B E E D 0 e B D
Acélszerkezetek. 2. előadás 2012.02.17.
Acélszerkezetek 2. előadás 2012.02.17. Méretezési eladat Tervezés: új eladat Keresztmetszeti méretek, szerkezet, kapcsolatok a tervező által meghatározandóak Gazdasági, műszaki, esztétikai érdekek Ellenőrzés:
MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KIALAKÍTÁSA 3 REPÜLŐKÉPESSÉG
Dr. Óvári Gula 1 - Dr. Urbán István 2 MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KILKÍTÁS 3 cikk(soroatban)ben a merev sárnú repülőgépek veérsík rendserinek terveését és építését követheti nomon lépésről
FÜGGVÉNYEK. A derékszögű koordináta-rendszer
FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot
MECHANIKA-SZILÁRDSÁGTAN 12. hét gyakorlati anyaga (kidolgozta : dr. Nagy Zoltán egy.adjunktus, Bojtár Gergely egy.tanársegéd)
ZÉHENY TVÁN EGYETE LKLZOTT EHNK TNZÉK EHNK-ZLÁRÁGTN 1. hét gakorlati anaga (kidolgota : dr. Nag Zoltán eg.adjunktus, ojtár Gergel eg.tanársegéd) 1.1 feladat : Primatikus rudak össetett igénbevételei (
Inverz függvények Inverz függvények / 26
Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás
FÜGGVÉNYEK. 2. a) Írj fel olyan lineáris függvényt, amely illeszkedik a ( 2 ; 1) és (2 ; 3) pontokra!
FÜGGVÉNYEK. Döntsd el, hogy melyik állítás iga, illetve melyik hamis! a Minden absolutérték függvénynek van sigorúan monoton csökkenő sakasa b Minden absolutérték függvénynek van maimuma c Minden másodfokú
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
MATEMATIKA 9. osztály Segédanyag 4 óra/hét
MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
10. OPTIMÁLÁSI LEHETŐSÉGEK A MŰVELET-ELEMEK TERVEZÉSEKOR
10. OPIMÁLÁSI LEHEŐSÉGEK A MŰVELE-ELEMEK ERVEZÉSEKOR A technológiai terezés ezen szintén a fő feladatok a köetkezők: a forgácsolási paraméterek meghatározása, a szerszám mozgásciklusok (üresárati, munkautak)
1. Lineáris leképezések
Lineáris leképezések A lineáris leképezés fogalma Definíció (F5 Definíció) Legenek V és W vektorterek UGYANAZON T test fölött Az A : V W lineáris leképezés, ha összegtartó, azaz v,v 2 V esetén A(v +v 2
ö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő ő Ő ö ű
ö ő ü ö ö ő ö ö ö ö ő ő ő ö ő ő ő ö ő ö ő ő ö ö ő ő ö ö ő ö ö ő ö ö ö ő ő ü ö ő ü ű ö ú ő ú ú ú ő ü ő ü ö ö ú ö ö ö ő ü ö ö ö ő ö ő ö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
Analízisfeladat-gyűjtemény IV.
Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította
MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.
MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált
Rugalmas ágyazású gerenda számítása Eredmények
Tarcsai út. 157/18 Budapest Üzletközpont Black Rose Rugalmas ágyazású gerenda számítása Eredmények A számítás lefutott. Altalaj vizsgálat tipikus kombinációja : HHÁ: Q3:G1+G2+Q4 Számítás 1 Név : Analysis
JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok
JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet
Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim
Függvének határértéke és oltonossága Deiníció: Az -hoz megadható olan üggvénnek az A. pontban van határértéke és ez A ha bármel küszöbszám hog ha A akkor. Jele: a) Függvén határértékének ogalma visszavezethető
Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész
Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.
Előadó: Dr. Bukovics Ádám
SZÉCHYI ISTVÁ GYT TARTÓSZRKZTK III. lőadó: Dr. Bukovics Ádám Az ábrák forrása: 6. LŐADÁS [] Dr. émeth Görg: Tartószerkezetek III., Acélszerkezetek méretezésének alapjai [2] Halász Ottó - Platth Pál: Acélszerkezetek
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
Elemi függvények, függvénytranszformációk
Elemi üggvények, üggvénytranszormációk Összeállította: dr. Leitold Adrien egyetemi docens 2013. 09. 06. 1 Függvénytani alapogalmak Függvény: két halmaz elemei közötti egyértelmű hozzárendelés. Jel.: :
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
a.) b.) c.) d.) e.) össz. 4 pont 2 pont 4 pont 2 pont 3 pont 15 pont
1. Az alábbi feladatok egszerűek, akár fejben is kiszámíthatóak, de a piszkozatpapíron is gondolkodhat. A megoldásokat azonban erre a papírra írja! a.) A 2x 2 5x 3 0 egenlet megoldása nélkül határozza
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Második zárthelyi dolgozat megoldásai biomatematikából * A verzió
Második zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mit értünk eponenciális üggvényen? Adjon példát alulról korlátos szigorúan monoton csökkenő eponenciális üggvényre.
13. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) Rácsos tartók
SZÉHYI ISTVÁ YTM LKLMZOTT MHIK TSZÉK. MHIK-STTIK YKORLT (kidolgozt: Triesz Péter, eg. ts.; Trni ábor, mérnöktnár).. Péld Rácsos trtók dott: z ábrán láthtó rácsos trtó méretei és terhelése. = k, = k. eldt:
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten ANALÍZIS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Nevezetes halmazok
Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5
1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat
Függvények vizsgálata
Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük.
Hozzárendelések A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. A B Egyértelmű a hozzárendelés, ha az A halmaz mindegyik
Elméleti közgazdaságtan I.
Elméleti közgazdaságtan I. lapfogalmak és Mikroökonómia FOGYSZTÓI MGTRTÁS (I. rész) fogasztói preferenciák Eg játék fogasztónak felkínálunk két kosarat azzal, hog bármelik az övé lehet minden egéb feltétel
Matematikai alapismeretek. Huszti Andrea
Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá
- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez
1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak
K Ü L Ö N L E G E S T R A N S Z F O R M Á T O R O K
VILLANYSZERELŐ KÉPZÉS 0 5 K Ü L Ö N L E G E S T R A N S Z F O R M Á T O R O K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - - Tartalomjegyzék Különleges transzformátorok fogalma...3 Biztonsági és elválasztó
Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR
Miskolci Egetem GÉÉMÉRNÖKI É INORMTIKI KR ilárságtan (Oktatási segélet a Gépésmérnöki és Informatikai Kar sc leveleős hallgatói résére) Késítette: Nánori riges, irbik ánor Miskolc, 2008. Een kéirat a Gépésmérnöki
MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június
MIKROÖKONÓMIA I Készült a TÁMOP-412-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
A derivált alkalmazásai
A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls
Bolyai János Matematikai Társulat. Rátz László Vándorgyűlés Baja
Bolai János Matematikai Társulat Rátz László Vándorgűlés 06. Baja Záródolgozat dr. Nag Piroska Mária, Dunakeszi Dunakeszi, 06.07.. A Vándorgűlésen Erdős Gábor az általános iskolai szekcióban tartott szemináriumot
Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak
ábra: Ábra Bodó Bea, Somonné Szabó Klára Matematika. közgazdászoknak III. modul: Többváltozós üggvének 5. lecke: Többváltozós üggvének, parciális deriválás Tanulási cél: Megismerkedni a többváltozós üggvének
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. október 21. 8:00. Az írásbeli vizsga időtartama: 240 perc
É RETTSÉGI VIZSGA 2008. október 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI
FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI FÜGGVÉNY: Adott két halmaz, H és K. Ha a H halmaz minden egyes eleméhez egyértelműen hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést
Tartóprofilok Raktári program
Tartóproflok Raktár program ThenKrupp Ferroglou ThenKrupp Nolcadk kadá 6. áprl Ötvözetlen é alacon ötvözéú lemeztermékek Betonacélok Szerzámacélok Melegen hengerelt rúdacélok Könnú - é zínefémek Rozdamente
Irányítástechnika 4. előadás
Iránítátechnika 4. előadá Dr. Kovác Levente 3. 4. 3. 3.5.. artalom ipiku tagok amplitúdó- é fázimenete Bode diagram példák Frekvencia átviteli függvén Hurwitz kritérium A zabálozái kör ugráválaza, minőégi
2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
Az alkalmazott matematika tantárgy oktatásának sokszínűsége és módszertanának modernizálása az MSc képzésében
DIMENZIÓK 35 Matematikai Közlemének III. kötet, 5 doi:.3/dim.5.5 Az alkalmazott matematika tantárg oktatásának sokszínűsége és módszertanának modernizálása az MSc képzésében Horváth-Szováti Erika NME EMK
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
A jövedelem- és árváltozások hatása a fogyasztói döntésre. Az ICC görbe. Az Engel-görbe. 4-5. előadás
4-5. előadás A jövedelem- és árváltozások hatása a fogasztói döntésre CC és Engel-görbe, PCC és egéni keresleti függvén. A iaci keresleti görbe származtatása. A fogasztói többlet. Kereslet-rugalmassági
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás
Kvadratikus alakok gyakorlás.
Kvadratikus alakok gakorlás Kúpszeletek: Adott eg kvadratikus alak a következő formában: ax 2 + 2bx + c 2 + k 1 x + k 2 + d = 0, a, b, c, k 1, k 2, d R (1) Ezt felírhatjuk a x T A x + K x + d = 0 alakban,
Analízis I. jegyzet. László István. 2008. november 3.
Analízis I. jegzet László István 2008. november 3. Tartalomjegzék 1. Halmazok 5 1.1. Halmaz fogalma............................ 5 1.2. Halmaz megadása........................... 6 1.2.1. Eplicit megadás.......................
Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény
Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek
Próba érettségi feladatsor 2008. április 11. I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!
III. rész: A VÁLLALATI MAGATARTÁS
III. rész: A VÁAATI MAGATARTÁS Az árupiacon a kínálati oldalon a termelőegységek, a vállalatok állnak. A vállalatok különböznek tevékenységük, méretük, tulajdonformájuk szerint. Különböző vállalatok közös
Valószínűség-számítás II.
Valószínűség-számítás II. Geometriai valószínűség: Ha egy valószínűségi kísérletben az események valamilyen geometriai alakzat részhalmazainak felelnek meg úgy, hogy az egyes események valószínűsége az
Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és
2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend
LEKÉRDEZÉSEK SQL-BEN. A relációs algebra A SELECT utasítás Összesítés és csoportosítás Speciális feltételek
LEKÉRDEZÉSEK SQL-BEN A relációs algebra A SELECT utasítás Összesítés és csoportosítás Speciális feltételek RELÁCIÓS ALGEBRA A relációs adatbázisokon végzett műveletek matematikai alapjai Halmazműveletek:
A vezeték legmélyebb pontjának meghatározása
A ezeték legméle pontjánk megtározás Elődó: Htiois Alen E 58. Vándorgűlés Szeged,. szeptemer 5. Vízszintes és ferde felfüggesztés - ezeték legméle pontj m / > < B Trtlom. Lángöre és prol függének A C m
A készülék használata elõtt kérjük olvassa el figyelmesen a használati utasítást.
7LC048A 7LC048A E B D C C DD E E g e P 112 D 0 e B A B B A e D B26 B B E B D C C DD E E g e P 112 D 0 e B A B B A e D B26 B B K H K K H K A B P C D E 123 456 789 *0# g B A P D C E : 0 9* # # A B P C
VASBETON LEMEZEK. Oktatási segédlet v1.0. Összeállította: Dr. Bódi István - Dr. Farkas György. Budapest, 2001. május hó
BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építőmérnöki Kar Hidak és Szerkezetek Tanszéke VASBETON LEMEZEK Oktatási segédlet v1.0 Összeállította: Dr. Bódi István - Dr. Farkas Görg Budapest, 001. május
Mikroökonómia szeminárium 2. Konzultáció
Mikroökonómia szeminárium 2. Konzultáció Révész Sándor Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011. október 12. Tesztek - Preferenciák, közömbösségi görbék Egy közömbösségi görbe mentén biztosan
Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport
Analízis I. zártheli dolgozat javítókulcs, Informatika I. 0. okt. 9. Elméleti kérdések A csoport. Hogan számíthatjuk ki két trigonometrikus alakban megadott komple szám szorzatát más alakba való átváltás
1. feladat. 2. feladat
1. felada Írja á az alábbi függvénee úg, hog azoban ne az eredei válozó, hanem az eredei válozó haéonsági egsére juó érée szerepeljen (azaz például az Y hele az szerepeljen, ahol = Y E L. Legen a munaerőállomán
az eredő átmegy a közös ponton.
M Műszaki Mechanikai Tanszék STTIK dr. Uj József c. egetemi tanár g közös ponton támadó koncentrált erők (centrális erőrendszer) Két erő eredője: = +, Több erő eredője: = + ++...+ n, az eredő átmeg a közös
Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások
Országos Középiskolai Tanulmáni Versen / Matematika I kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Eg papírlapra felírtuk a pozitív egész számokat n -től n -ig Azt vettük észre hog a felírt páros számok
1.1 A függvény fogalma
1.1 A üggvény ogalma Deiníció: Adott két (nem üres) halmaz H és K. Ha a H halmaz minden egyes eleméhez valamilyen módon hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést üggvénynek nevezzük.
Halmazelmélet alapfogalmai
1. Az A halmaz elemei a kétjegyű négyzetszámok. Adja meg az A halmaz elemeit felsorolással! 2. Adott három halmaz: A = {1; 3; 5; 7; 9}; B = {3; 5; 7}; C = {5;10;15} Ábrázolja Venn-diagrammal az adott halmazokat!
5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14.
Tartalomjegyzék 1 A matematikai logika elemei 1 11 Az ítéletkalkulus elemei 1 12 A predikátum-kalkulus elemei 7 13 Halmazok 10 14 A matematikai indukció elve 14 2 Valós számok 19 21 Valós számhalmazok
2. Halmazelmélet (megoldások)
(megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
Írásbeli vizsgafeladat Számvitel alapjai tárgyból. 2008. október 28. Összesen 45...
Minta ZH BUDAPESTI CORVINUS EGYETEM PÉNZÜGYI SZÁMVITEL ÉS VEZETI SZÁMVITEL TANSZÉK Írásbeli vizsgafeladat Számvitel alapjai tárgyból 2008. október 28. Kérjük, a dolgozat megkezdése eltt az alábbi adatokat
Boronkay György Műszaki Középiskola és Gimnázium
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Halmazok
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 113 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fontos tudnivalók
Beadható feladatok. 2006. december 4. 1. Add meg az alábbi probléma állapottér-reprezentációját!
Beadható feladatok 2006. december 4. 1. Feladatok 2006. szeptember 13-án kitűzött feladat: 1. Add meg az alábbi probléma állapottér-reprezentációját! Adott I 1,..., I n [0, 1] intervallumokból szeretnénk
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.
IV.4. EGYENLŐTLENSÉGEK. A feladatsor jellemzői
IV.4. EGYENLŐTLENSÉGEK Tárgy, téma A feladatsor jellemzői Egyenlőtlenségek megoldási módszerei, egyenlőtlenségekre vezető szöveges feladatok megoldása. A legalább és legfeljebb fogalma. Előzmények Egyenletek
ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ
Szolnoki Főiskola Üzleti Fakultás, 5000 Szolnok, Tiszaligeti sétány ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ A 4/1996. (I. 18.) Korm. rendelet a közgazdasági felsőoktatás alapképzési szakjainak képesítési
13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai
Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk
e s gyakorlati alkalmaza sai
Sze lso e rte k-sza mı ta s e s gyakorlati alkalmaza sai Szakdolgozat ı rta: Pallagi Dia na Matematika BSc szak, elemzo szakira ny Te mavezeto : Svantnerne Sebestye n Gabriella Tana rsege d Alkalmazott