A vezeték legmélyebb pontjának meghatározása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A vezeték legmélyebb pontjának meghatározása"

Átírás

1 A ezeték legméle pontjánk megtározás Elődó: Htiois Alen E 58. Vándorgűlés Szeged,. szeptemer 5.

2 Vízszintes és ferde felfüggesztés - ezeték legméle pontj m / > <

3 B Trtlom. Lángöre és prol függének A C m ψ fk m C C' -. Prol lpú számítási lgoritmus C Belógási göre függénének f megtározás, Felfüggesztési köz egenes függénének fk f megtározás, Vezetékgöre függénének f megtározás, Vezeték legméle pontjánk megtározás koordinát megtározás koordinát megtározás elógás ezeték legméle pontján megtározás 3. Ferde felfüggesztés etrém esetei 3

4 Lángöre tenr és prol - ig...!...! 8! 6!!! origón n mikor súspont z! lángöre prmétere - os m A n n e e pr n n lán n n n lán lán >. SZ5-56F96. SZ5/ SZ5-: m,7 m m < < ferde felfüggesztés 5 6, ízszintes,75 m m m < <

5 Lángöre és prol összefüggés A súszásmentesen gördülő prol fokuszpontj lángörét ír le. Prol definíiój: A prol zoknk pontoknk z összessége mértni ele síkn, melek sík eg dott egenestől ezéregenes és sík eg dott ezéregenesre nem illeszkedő pontjától fókusz egenlő táolságr nnk. 5

6 Prol és lángöre közötti különség KÖF péld 35 mm BSZV σ 8 N/mm m m t C m,73 m A A B B C/ - m C5 7,7 A pr lán?? B Prol függén: pr 9 6 Lángöre függén : lán 9 5 5,597 58,397 os 58,397 pr lán mm C 6

7 Prol és lángöre közötti különség NAF péld 35/ mm ACSR σ 8 N/mm 35 m m t 6 C m, m A A B B35 C/ - m C6,5 7,9 A pr lán?? B Prol pr függén: 58 6 Lángöre függén : lán ,5 85,789 93,789 os 93,789 pr lán m C 7

8 Belógási göre függén megtározás Három ismert pont,, / m, 8 A B C A A A A A? A / m m m A A / m

9 9 m m m m m m m m m p q q p p qp q q pq p m [ ],

10 függénnek minimum n függénnek mimum n m C B A m m [ ], m m m m C B A < > A A m < A m ' C A m m A [ ], m m C '

11 Belógási göre függén áltozti: m C m m Csúspont: C' m m m Értelmezési trtomán: [, ]

12 A számítási lgoritmust ferde felfüggesztésre kell kidolgozni, ízszintes felfüggesztés nnk sk eg speiális esete, mikor két felfüggesztési pont mgsság zonos, zz. B fk A C ψ m C - m C' C Ismert dtok: oszlopköz, l felfüggesztési pont mgsság, jo felfüggesztési pont mgsság, m mimlis elógás. Töi jelölések: Ψ szög, elógás ezeték legméle pontján, elógási göre, ezeték göre, fk felfüggesztési köz egenese, ezeték legméle pontj,. C C C ezeték mimális elógás pontj, ízszintes táolság l oszloptól.

13 3 tg fk ψ m fk m [ ],. Felfüggesztési köz egenes függéne: Belógási göre függéne: Vezetékgöre függéne: A fenti képlet unierzális, zz > esetén is érénes, - / kkor negtí lesz. Vízszintes felfüggesztés esetén Ψ, ill.. m [ ],

14 A B C m m m m m m m [, ] A m B m C A > függénnek minimum n. Vízszintes felfüggesztés esetén Ψ, ill.. m m [, ]

15 5 Vezetékgöre függén deriálás, koordinát megtározás m m m m ' 8 ' 8 m m 8 m m [ ] m m 8 [ ] m m 8 m m 8 IN AX > < '' '' 8 m ' ' '' > m f ''

16 6 koordinát megtározás m m f m m m m m m m m m m m m m m m m m m m m m m

17 7 Vezeték legméle pontj m f m m m m m m elógás ezeték legméle pontján megtározás m m m

18 8 Vezetékgöre függén áltozti: / m [ ] [ ] [ ],,, m m m m m m m. Ferde felfüggesztés :. Vízszintes felfüggesztés : [ ] [ ] [ ],,, m m m m m

19 9 Fontos összefüggések: m m m m m m m m m m fk. Ferde felfüggesztés :. Vízszintes felfüggesztés : m m m fk

20 Ferde felfüggesztés etrém esetei IN : A ezeték legméle pontj és prol súspontj IN nem zonos pontr esik. m m m IN IN fk : eset. <

21 Ferde felfüggesztés etrém esetei IN : A ezeték legméle pontj és prol súspontj IN nem zonos pontr esik. m m m IN IN fk : eset. >

22 ÖSSZEFOGLALÁS IN Etrém esetek IN Nem etrém esetek IN IN IN IN IN <, >, IN IN [, ] < > IN és etrém és nem etrém eseteken IN IN IN IN [, ],, IN,, IN,, IN IN IN IN IN IN < < [, ] > etrém eset [, ] etrém eset etrém eset > etrém eset

23 3 Köszönöm figelmüket!

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit.

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit. modul: Erőrendserek lecke: Erőrendserek egenértékűsége és egensúl lecke célj: tnng felhsnálój megsmerje erőrendserek egenértékűségének és egensúlánk feltételet Követelmének: Ön kkor sjátított el megfelelően

Részletesebben

Ptolemaios-tétele, Casey-tétel, feladatok

Ptolemaios-tétele, Casey-tétel, feladatok Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor

Részletesebben

13. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) Rácsos tartók

13. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) Rácsos tartók SZÉHYI ISTVÁ YTM LKLMZOTT MHIK TSZÉK. MHIK-STTIK YKORLT (kidolgozt: Triesz Péter, eg. ts.; Trni ábor, mérnöktnár).. Péld Rácsos trtók dott: z ábrán láthtó rácsos trtó méretei és terhelése. = k, = k. eldt:

Részletesebben

Jobbra és balraforgatás

Jobbra és balraforgatás Def A P F pont (mgsság-)egyensúly: AVL f Egy(P) = h(jo(p)) h(bl(p)) Def Az F inf AVL-f, h ( P F)( Egy(P) ) tétel H F AVL-f, kkor h(f).44 lg(n + ), hol n z F f pontjink számát jelöli. Biz Legyen N m z m

Részletesebben

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

VB-EC2012 program rövid szakmai ismertetése

VB-EC2012 program rövid szakmai ismertetése VB-EC01 progrm rövid szkmi ismertetése A VB-EC01 progrmcsomg hrdver- és szoftverigénye: o Windows XP vgy újbb Windows operációs rendszer o Min. Gb memóri és 100 Mb üres lemezterület o Leglább 104*768-s

Részletesebben

Sűrűségmérés. 1. Szilárd test sűrűségének mérése

Sűrűségmérés. 1. Szilárd test sűrűségének mérése Sűrűségérés. Szilárd test sűrűségének érése A sűrűség,, definíciój hoogén test esetén: test töege osztv test V térfogtávl: V A sűrűség SI értékegysége kg/, hsználtos ég kg/d, kg/l és g/c Ne hoogén testnél

Részletesebben

QP és QX mélykútszivattyúk 4"

QP és QX mélykútszivattyúk 4 QP 4A-8 0,25 2,8 A - 20 681 mm 11,5 kg 1 1/4" QP 4A-12 0,37 3,3 A 1,6 A 20 761 mm 12,0 kg 1 1/4" QP 4A-18 0,55 4,4 A 1,7 A 25 896 mm 13,5 kg 1 1/4" QP 4A-25 0,75 5,8 A 2,5 A 35 1061 mm 15,4 kg 1 1/4" QX

Részletesebben

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A

Részletesebben

Mátrix-vektor feladatok Összeállította dr. Salánki József egyetemi adjunktus Begépelte Dr. Dudás László és Bálint Gusztáv

Mátrix-vektor feladatok Összeállította dr. Salánki József egyetemi adjunktus Begépelte Dr. Dudás László és Bálint Gusztáv Mátrx-vektor feldtok Összeállított dr. Slánk József egyetem djunktus Begépelte Dr. Dudás László és Bálnt Gusztáv 1. feldt Adottk z n elemű, b vektorok. Képezn kell c vektort, hol c = b / Σ( ), ( = 0,1,,

Részletesebben

HOSSZTARTÓ TERVEZÉSE HEGESZTETT GERINCLEMEZES TARTÓBÓL

HOSSZTARTÓ TERVEZÉSE HEGESZTETT GERINCLEMEZES TARTÓBÓL HOSSZARÓ ERVEZÉSE HEGESZE GERNCLEMEZES ARÓBÓL 9 Anyaminőséek: Acél: A 8 σ H 00 N/ mm [99] H 115 N/ mm [99] σ ph 50 N /mm [99] Csaar: M 0 és M ill. 5. H 195 N/ mm [100] σ ph 90 N /mm [100] Varrrat:.o. sarok.

Részletesebben

E B D C C DD E E g e 112 D 0 e B A B B A e D B25 B B K H K Fejhallgató Antenna A B P C D E 123 456 789 *0# Kijelzés g B A P D C E 0 9* # # g B B 52 Y t ] [ N O S T \ T H H G ? > < p B E E D 0 e B D

Részletesebben

II. A számtani és mértani közép közötti összefüggés

II. A számtani és mértani közép közötti összefüggés 4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2008. jnuár 31. MATEMATIKA FELADATLAP 8. évfolymosok számár 2008. jnuár 31. 15:00 ór M 2 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto

Részletesebben

10. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár.

10. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár. 10.1. Ferde hjlítás 10. ECHNK-ZLÁRDÁGTN GYKORLT (kidolgot: dr. Ng Zoltán eg. djunktus; ojtár Gergel eg. Ts.; Trni Gábor mérnöktnár.) dott: b 60 b 20 mm, mm, ( 40 j 120 k ) knm. Feldt: ) Htáro meg és sámíts

Részletesebben

2000. évi XXV. törvény a kémiai biztonságról1

2000. évi XXV. törvény a kémiai biztonságról1 j)10 R (1)4 2000. évi XXV. törvény kémii biztonságról1 z Országgyűlés figyelembe véve z ember legmgsbb szintű testi és lelki egészségéhez, vlmint z egészséges környezethez fűződő lpvető lkotmányos jogit

Részletesebben

PÁLYÁZATI ÚTMUTATÓ. a Társadalmi Megújulás Operatív Program keretében

PÁLYÁZATI ÚTMUTATÓ. a Társadalmi Megújulás Operatív Program keretében PÁLYÁZATI ÚTMUTATÓ Társdlmi Megújulás Opertív Progrm keretében Munkhelyi képzések támogtás mikro- és kisválllkozások számár címmel meghirdetett pályázti felhívásához Kódszám: TÁMOP-2.1.3/07/1 v 1.2 A projektek

Részletesebben

19. Függvények rekurzív megadása, a mester módszer

19. Függvények rekurzív megadása, a mester módszer 19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.

Részletesebben

5.3 Erővel záró kötések

5.3 Erővel záró kötések 5.3 Erővel záró köések Az erővel záró köésekben z elemeke olyn mérékben szoríják össze, hogy felfekvő felüleükön ébreő súrlóás elmozulásuk megkályozz. Teherbírásuk z összeszoríó erő ( felülei nyomás) és

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

(Nem jogalkotási aktusok) HATÁROZATOK

(Nem jogalkotási aktusok) HATÁROZATOK 2013.4.9. Az Európi Unió Hivtlos Lpj L 100/1 II (Nem joglkotási ktusok) HATÁROZATOK A BIZOTTSÁG VÉGREHAJTÁSI HATÁROZATA (2013. márius 26.) z ipri kiosátásokról szóló 2010/75/EU európi prlmenti és tnási

Részletesebben

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük. Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m

Részletesebben

Oszlopok. Dr. Németh György főiskolai docens. Oszloptípusok

Oszlopok. Dr. Németh György főiskolai docens. Oszloptípusok Dr. émet Görg ősko docens Oszopok Oszoptípusok Sttk váz szernt: ngoszop (mndkét végén csukós) eogott oszop Keresztmetszet szernt: ándó keresztmetszetű (druztn csrnok, vg ks druteer) épcsőzetesen vátozó

Részletesebben

GAZDASÁGI MATEMATIKA I.

GAZDASÁGI MATEMATIKA I. GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z

Részletesebben

A betonok összetételének tervezése

A betonok összetételének tervezése A betonok összetételének tervezése A beton összetételének tervezése: (1m 3 ) A megoldásakor figyelembe kell venni: - az előírt betonszilárdságot - megfelelő tartósságot (környezeti hatások) - az adalékanyag

Részletesebben

3-4.elıadás: Optimális választás; A fogyasztó kereslete

3-4.elıadás: Optimális választás; A fogyasztó kereslete (C) htt://kgt.e.hu/ / 3-4.elıdás: Otiális válsztás; A fogysztó kereslete A fogysztó válsztási roléáj A fogysztó száár elérhetı (egfizethetı) jószágkosrk közül neki legjot válsztj A fogysztó költségvetési

Részletesebben

VIESMANN. VITODENS Égéstermék elvezetések kondenzációs falikazánokhoz 3,8 105,0 kw. Tervezési segédlet. Vitodens égéstermék-elvezető rendszerek

VIESMANN. VITODENS Égéstermék elvezetések kondenzációs falikazánokhoz 3,8 105,0 kw. Tervezési segédlet. Vitodens égéstermék-elvezető rendszerek VIESMANN VITODENS Égéstermék elvezetések kondenzáiós flikzánokhoz 3,8 105,0 kw Tervezési segédlet Vitodens égéstermék-elvezető rendszerek 5/011 Trtlomjegyzék Trtlomjegyzék 1. Égéstermék-elvezető rendszerek

Részletesebben

II. Fejezet Értelmező rendelkezések

II. Fejezet Értelmező rendelkezések SZEGHALOM VÁROS ÖNORMÁNYZATA ÉPVISELŐ-TESTÜLETÉNE 7/202. (VI. 26.) önkormányzti renelete közterületek elnevezéséről, házszámozásról és ezek megjelölésének mójáról Szeghlom Város épviselő-testülete z Alptörvény

Részletesebben

Darupályatartók. Dr. Németh György főiskolai docens. A daruteher. Keréknyomás (K) Fékezőerő (F)

Darupályatartók. Dr. Németh György főiskolai docens. A daruteher. Keréknyomás (K) Fékezőerő (F) Dr. émeth Görg főiskoli docens Drupáltrtók s f c 6vg e f sz c/ >,5 e s ~,.. A druteher Q 4 4 eréknomás () Fékezőerő (F) F Oldlerő () Biztonsági ténező dru fjtájától (híddru/függődru) és névleges teherírástól

Részletesebben

ELASTO - LINE I. Vasalatlan saruk

ELASTO - LINE I. Vasalatlan saruk ELASTO - LINE I. Vltln ruk Trtlomjegyzék Beezeté Sruk zerepe mgépítében 1. Méretezéi lki tényezők Vltln, pontzerű, ngyteherbíráú elztomer ruk. Igénybeételek zámítá ELASTO-N1 é -N Termékleírá műzki prméterek

Részletesebben

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám 2. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 02

Részletesebben

hajlító nyomaték és a T nyíróerő között ugyanolyan összefüggés van, mint az egyenes rudaknál.

hajlító nyomaték és a T nyíróerő között ugyanolyan összefüggés van, mint az egyenes rudaknál. 5 RÚDELADATOK 51 íkgörbe rudk Grhof 1 -féle elmélete íkgörbe rúd: rúd köépvonl ( ponti ál) íkgörbe e P n e t Jelöléek: A köépvonl mentén pontokt ívkoordinátávl onoítjuk Pl P pont A P pontbn (P pontho trtoó

Részletesebben

14. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Tarnai Gábor, mérnöktanár) Érdes testek - súrlódás

14. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Tarnai Gábor, mérnöktanár) Érdes testek - súrlódás SZÉCHENYI ISTVÁN EYETEM LKLMZOTT MECHNIK TNSZÉK 4. MECHNIK-STTIK YKORLT (kidolgozt: Trni ábor, mérnöktnár) Érdes testek - súrlódás 4.. Péld. dott: z ábrán láthtó letőn elhelezett test méretei és terhelése.

Részletesebben

Végeredmények, emelt szintû feladatok részletes megoldása

Végeredmények, emelt szintû feladatok részletes megoldása Végeredmények, emelt szintû feldtok részletes megoldás I. gyökvonás. gyökfoglom kiterjesztése. négyzetgyök lklmzási. számok n-edik gyöke 5. z n-edik gyökfüggvény, z n-edik gyök lklmzás 6 II. Másodfokú

Részletesebben

Kvantum-hibajavítás II.

Kvantum-hibajavítás II. LOGO Kvantum-hibajavítás II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar A Shor-kódolás QECC Quantum Error Correction Coding A Shor-féle kódolás segítségével egyidejűleg mindkét típusú hiba

Részletesebben

Előadó: Dr. Bukovics Ádám

Előadó: Dr. Bukovics Ádám SZÉCHYI ISTVÁ GYT TARTÓSZRKZTK III. lőadó: Dr. Bukovics Ádám Az ábrák forrása: 6. LŐADÁS [] Dr. émeth Görg: Tartószerkezetek III., Acélszerkezetek méretezésének alapjai [2] Halász Ottó - Platth Pál: Acélszerkezetek

Részletesebben

KIMUTATÁS A TARTÓS BENTLAKÁSOS ÉS ÁTMENETI ELHELYEZÉST NYÚJTÓ INTÉZMÉNYEK MŰKÖDÉSI ADATAIRÓL 2011

KIMUTATÁS A TARTÓS BENTLAKÁSOS ÉS ÁTMENETI ELHELYEZÉST NYÚJTÓ INTÉZMÉNYEK MŰKÖDÉSI ADATAIRÓL 2011 KÖZPONTI STATISZTIKAI HIVATAL Telefon: 5-6000 Internet: www.ksh.hu Adtszolgálttóinknk Nyomttványok Az dtszolgálttás sttisztikáról szóló 99. évi XLVI. törvény (Stt.) 8. () bekezdése lpján kötelező. KIMUTATÁS

Részletesebben

HATÁROZAT. zajkibocsátási határértékeket állapítok meg

HATÁROZAT. zajkibocsátási határértékeket állapítok meg Alsó-Tisz-vidéki Környezetvédelmi, Természetvédelmi és Vízügyi Felügyel ség Ikttószám: 80664-1-2/2011. Tárgy: Zjkibocsátási htárérték megállpítás kérelemre Ügyintéz : Csomor László Hiv. szám: Zjkibocsátási

Részletesebben

Számjel. Megye. Éves beszámoló. 2012 Éves beszámoló ... a beszámoló elkészítéséért kijelölt felelős személy. ... (név)... (név)

Számjel. Megye. Éves beszámoló. 2012 Éves beszámoló ... a beszámoló elkészítéséért kijelölt felelős személy. ... (név)... (név) A megye megnevezése, székhelye: Irányító szerv: Számjel 490638 1251 01 9100 910200 PIR-törzsszám Szektor Megye PÜK Szakágazat A költségvetési szerv megnevezése, székhelye: 1014 Budapest Szent György tér

Részletesebben

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória 1. ktegóri 1.1.1. Adtok: ) Cseh László átlgsebessége b) Chd le Clos átlgsebessége Ezzel z átlgsebességgel Cseh László ideje ( ) ltt megtett távolság Így -re volt céltól. Jn Switkowski átlgsebessége Ezzel

Részletesebben

KÉRDŐÍV A SZOCIÁLIS SZOLGÁLTATÁSOKRÓL ÉS GYERMEKELLÁTÁSOKRÓL 2010

KÉRDŐÍV A SZOCIÁLIS SZOLGÁLTATÁSOKRÓL ÉS GYERMEKELLÁTÁSOKRÓL 2010 KÖZPONTI STATISZTIKAI HIVATAL Telefon: 345-6 Internet: www.ksh.hu Adtszolgálttóinknk Nyomttványok Az dtszolgálttás sttisztikáról szóló 1993. évi XLVI. törvény (Stt.) 8. (2) bekezdése lpján kötelező. Nyilvántrtási

Részletesebben

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám 8. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 03

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

A bizonytalanság és az információ közgazdaságtana

A bizonytalanság és az információ közgazdaságtana (C) hp://kg.be.h/ /4 A bizonylnság és z inforáció közgzdságn Mjor Iván A közgzdságn fıárlánk lpelvei A neoklssziks közgzdságn lpji: közgzdságn, in ársdli fizik (Jevons, Menger, Böh-Bwerk és z oszrák iskol)

Részletesebben

Kvadratikus alakok gyakorlás.

Kvadratikus alakok gyakorlás. Kvadratikus alakok gakorlás Kúpszeletek: Adott eg kvadratikus alak a következő formában: ax 2 + 2bx + c 2 + k 1 x + k 2 + d = 0, a, b, c, k 1, k 2, d R (1) Ezt felírhatjuk a x T A x + K x + d = 0 alakban,

Részletesebben

Anyagmozgatás és gépei. 3. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék.

Anyagmozgatás és gépei. 3. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék. Anyagmozgatás és gépei tantárgy 3. témakör Egyetemi szintű gépészmérnöki szak 3-4. II. félé MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék - 1 - Graitációs szállítás Jellemzője: hajtóerő nélküli,

Részletesebben

A Szolgáltatás minőségével kapcsolatos viták

A Szolgáltatás minőségével kapcsolatos viták I. A Szolgálttó neve, címe DITEL 2000 Kereskedelmi és Szolgálttó Korlátolt Felelősségű Társság 1051. Budpest, Nádor u 26. Adószám:11905648-2- 41cégjegyzékszám: 01-09-682492 Ügyfélszolgált: Cím: 1163 Budpest,

Részletesebben

Mechanika. 6. Hogyan határozza meg a kötegelt fázisvezetőt feszítő szigetelőlánc tehermentesítéséhez

Mechanika. 6. Hogyan határozza meg a kötegelt fázisvezetőt feszítő szigetelőlánc tehermentesítéséhez Mechanika 1. Ismertesse a nagyfeszültségű távvezetékek tartóláncainál alkalmazott közvetlen teher-mentesítés szabályait! Magyarázatához készítsen vektorábrát! 2. Ismertesse a nagyfeszültségű távvezetékek

Részletesebben

HÁLÓZATOK I. 10. Segédlet a gyakorlati órákhoz. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék. 2015-16. tanév 1.

HÁLÓZATOK I. 10. Segédlet a gyakorlati órákhoz. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék. 2015-16. tanév 1. HÁLÓZTOK I. Segédlet a gyakorlati órákhoz. Készítette: öcs László mérnöktanár K-M Informatika Tanszék -. tanév. félév Elosztott forgalomirányítás Bellman-ord algoritmus . eladat B . eladat a, dja meg a

Részletesebben

MAGICAR 441 E TÍPUSÚ AUTÓRIASZTÓ-RENDSZER

MAGICAR 441 E TÍPUSÚ AUTÓRIASZTÓ-RENDSZER MAGICAR 441 E TÍPUSÚ AUTÓRIASZTÓ-RENDSZER 1. TULAJDONSÁGOK, FŐ FUNKCIÓK 1. A risztóberendezéshez 2 db ugrókódos (progrmozhtó) távirányító trtozik. 2. Fontos funkciój z utomtikus inditásgátlás, mely egy

Részletesebben

Név:... osztály:... Matematika záróvizsga 2005. 1. Ugyanazon értékek szerepelnek mindhárom oszlopban. Kösd össze az egyenlőket!

Név:... osztály:... Matematika záróvizsga 2005. 1. Ugyanazon értékek szerepelnek mindhárom oszlopban. Kösd össze az egyenlőket! Mtmtik záróvizs 00. Név:... osztály:.... Uynzon értékk szrplnk minhárom oszlopn. Kös össz z ynlőkt! 0, % pl.:., 0 % 0,66 6 8, : 0,8 66 : 6 0,7 8 0 0,6 6 : 0 6, 80 % 66,6% 0 %. T ki rláiójlkt!. 00 k 0,0

Részletesebben

VII. Gyakorlat: Használhatósági határállapotok MSZ EN 1992 alapján Betonszerkezetek alakváltozása és repedéstágassága

VII. Gyakorlat: Használhatósági határállapotok MSZ EN 1992 alapján Betonszerkezetek alakváltozása és repedéstágassága VII. Gyakorlat: Használhatósági határállapotok MSZ EN 199 alapján Betonszerkezetek alakváltozása és repedéstágassága Készítették: Kovács Tamás és Völgyi István -1- Készítették: Kovács Tamás, Völgyi István

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

Kezelési útmutató ECO és ECO Plus

Kezelési útmutató ECO és ECO Plus Kezelési útmuttó ECO és ECO Plus Kidás: 2012.12.15. Eredeti kezelési útmuttó Gép Clssic Plus Gép szám Clssic Plus Gép típus Clssic Plus Verzió Berendezés jellege Álltfj Ügyfél neve & Co. KG Ügyfél címe

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

5. A logaritmus fogalma, a logaritmus azonosságai

5. A logaritmus fogalma, a logaritmus azonosságai A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton

Részletesebben

Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR

Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Miskolci Egetem GÉÉMÉRNÖKI É INORMTIKI KR ilárságtan (Oktatási segélet a Gépésmérnöki és Informatikai Kar sc leveleős hallgatói résére) Késítette: Nánori riges, irbik ánor Miskolc, 2008. Een kéirat a Gépésmérnöki

Részletesebben

A BETON NYOMÓSZILÁRDSÁGI OSZTÁLYÁNAK ÉRTELMEZÉSE ÉS VÁLTOZÁSA 1949-TŐL NAPJAINKIG

A BETON NYOMÓSZILÁRDSÁGI OSZTÁLYÁNAK ÉRTELMEZÉSE ÉS VÁLTOZÁSA 1949-TŐL NAPJAINKIG 1 Dr. Kausay Tibor A BETON NYOMÓSZILÁRDSÁGI OSZTÁLYÁNAK ÉRTELMEZÉSE ÉS VÁLTOZÁSA 1949-TŐL NAPJAINKIG A beton legfontosabb tulajdonsága általában a nyomószilárdság, és szilárdság szerinti besorolása szempontjából

Részletesebben

TBS Nagy fejű csavar Szénacél fehér horganyzással

TBS Nagy fejű csavar Szénacél fehér horganyzással TBS Nagy fejű csavar Szénacél fehér horganyzással ETA 11/0030 CSOMAGOLÁS Doboz + Ce papír + bit SPECIÁLIS ACÉL nagy rugalmasságú acél (lehetővé teszi a fa mozgását) és nagy ellenállású (f y,k = 1000 n/mm

Részletesebben

Kerületi Közoktatási Esélyegyenlőségi Program Felülvizsgálata Budapest Főváros IX. Kerület Ferencváros Önkormányzata 2011.

Kerületi Közoktatási Esélyegyenlőségi Program Felülvizsgálata Budapest Főváros IX. Kerület Ferencváros Önkormányzata 2011. Kerületi Közokttási Esélyegyenlőségi Progrm Felülvizsgált Budpest Főváros IX. Kerület Ferencváros Önkormányzt 2011. A felülvizsgált 2010-ben z OKM esélyegyenlőségi szkértője áltl ellenjegyzett és z önkormányzt

Részletesebben

( ) Schultz János EGYENLŐTLENSÉGEK A HÁROMSZÖG GEOMETRIÁJÁBAN

( ) Schultz János EGYENLŐTLENSÉGEK A HÁROMSZÖG GEOMETRIÁJÁBAN Shultz János EGYENLŐLENSÉGEK A HÁOMSZÖG GEOMEIÁJÁBAN Igzoljuk hogy egy szályos háromszög első pontját súsokkl összekötő három szkszól mindig szerkeszthető háromszög Egy tégllp elsejéen vegyünk fel egy

Részletesebben

Felvonók méretezése. Üzemi viszonyok. (villamos felvonók) Hlatky Endre

Felvonók méretezése. Üzemi viszonyok. (villamos felvonók) Hlatky Endre Felvonók méretezése Üzemi viszonyok (villmos felvonók) Hltky Endre Trtlom A felvonó üzemviszonyi Cél: felvonó működése során előforduló üzemállpotokbn kilkuló erők és nyomtékok meghtározás, berendezés

Részletesebben

45/150. rúdzár 45/150. M12x120 metrikus csavar. M12x120. metrikus csavar +1,50. padlóba süllyesztett. rúdzár 45/150 -0,04-0,15 45/60.

45/150. rúdzár 45/150. M12x120 metrikus csavar. M12x120. metrikus csavar +1,50. padlóba süllyesztett. rúdzár 45/150 -0,04-0,15 45/60. 3,56 9 3,47 1,99 1,99 1 1,52 30 36 3,52 7 5 1,39 5 5 cserépfedés 45/60 45/120 5/15 gerenda a deszkázat rögzítésére rovarháló +3,67 6/4 a deszkázat rögzítésére talpszelemen talpszelemen +3,52 talpszelemen

Részletesebben

Csatlakozási lehetőségek 11. Méretek 12-13. A dilatációs tüske méretezésének a folyamata 14. Acél teherbírása 15

Csatlakozási lehetőségek 11. Méretek 12-13. A dilatációs tüske méretezésének a folyamata 14. Acél teherbírása 15 Schöck Dorn Schöck Dorn Tartalom Oldal Termékleírás 10 Csatlakozási lehetőségek 11 Méretek 12-13 A dilatációs tüske méretezésének a folyamata 14 Acél teherbírása 15 Minimális szerkezeti méretek és tüsketávolságok

Részletesebben

Közgazdaságtan - 3. elıadás

Közgazdaságtan - 3. elıadás Közgazdaságtan - 3. elıadás A FOGYASZTÓI DÖNTÉS TÉNYEZİI 1 A FOGYASZTÓI DÖNTÉS ELEMEI Példa: Eg személ naponta 2000 Ft jövedelmet költhet el pogácsára és szendvicsre. Melikbıl mennit tud venni? 1 db pogácsa

Részletesebben

Tartóprofilok Raktári program

Tartóprofilok Raktári program Tartóproflok Raktár program ThenKrupp Ferroglou ThenKrupp Nolcadk kadá 6. áprl Ötvözetlen é alacon ötvözéú lemeztermékek Betonacélok Szerzámacélok Melegen hengerelt rúdacélok Könnú - é zínefémek Rozdamente

Részletesebben

FÁCÁNKERT HELYI ÉRTÉKVÉDELMI KATASZTER

FÁCÁNKERT HELYI ÉRTÉKVÉDELMI KATASZTER FÁCÁNKERT HEYI ÉRTÉKVÉDEMI KATASZTER PÉCSÉPTERV STÚDIÓ VÁROSRENDEZÉS ÉPÍTÉSZET BESŐ ÉPÍTÉSZET SZAKTANÁCSADÁS TERVEZÉS EBONYOÍTÁS F Á C Á N K E R T TEEPÜÉSRENDEZÉSI TERVE HEYI ÉRTÉKVÉDEMI KATASZTER Készítette

Részletesebben

Tartalomjegyzék. 6. T keresztmetszetű gerendák vizsgálata. 1.9. Vasalási tervek készítése...12. 2. Vasbeton szerkezetek anyagai,

Tartalomjegyzék. 6. T keresztmetszetű gerendák vizsgálata. 1.9. Vasalási tervek készítése...12. 2. Vasbeton szerkezetek anyagai, Tartalomjegyzék 1. Alapfogalmak, betontörténelem...5 1.1. A beton é vabeton fogalma...5 1.. Vabeton zerkezetek oportoítáa...6 1.3. A vabeton előnyö tulajdonágai...7 1.4. A vabeton hátrányo tulajdonágai...7

Részletesebben

x + 3 sorozat első hat tagját, ha

x + 3 sorozat első hat tagját, ha Soroztok, soroztok megdás rekurzív módo.. Az ( ) soroztot rekurzív módo dtuk meg 7 -, sorozt első két tgj ( < ) egybe gyökei következő egyeletek: sorozt első öt tgját. y.adott ( ). Írd fel ( ) x 0 x. Htározd

Részletesebben

Az áru megnevezése: Felhasználásra kész, gyárilag előkevert, por alakú, cement és mészkötésű, adalékanyagot tartalmazó száraz habarcs.

Az áru megnevezése: Felhasználásra kész, gyárilag előkevert, por alakú, cement és mészkötésű, adalékanyagot tartalmazó száraz habarcs. MŰSZAKI ADATLAP AQUANIL VÍZZÁRÓ VAKOLAT Az áru megnevezése: Felhasználásra kész, gyárilag előkevert, por alakú, cement és mészkötésű, adalékanyagot tartalmazó száraz habarcs. Alkalmazási terület: Különböző

Részletesebben

4. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár) F q

4. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár) F q 1 ZÉCHENY TVÁN EGYETE LKLZOTT ECHNK TNZÉK. ECHNK-ZLÁDÁGTN GYKOLT (kidogot: dr. Ng Zotán eg. djunktus; ojtár Gerge eg. ts.; Trni Gáor mérnöktnár).1. rimtikus rúd hjítás: q q / 60 N / m 15 N 75 N m 1 m T

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 2016. jnuár 16. 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

A VI. FEKETE MIHÁLY EMLÉKVERSENY

A VI. FEKETE MIHÁLY EMLÉKVERSENY A VI. FEKETE MIHÁLY EMLÉKVERSENY Elődó: Bgi Márk Elődás címe: Csillgászti elődás és kvíz A versenyzők feldtmegoldásokon törik fejüket. 88 VI. FEKETE MIHÁLY EMLÉKVERSENY Zent, 008. december. 9. évfolym.

Részletesebben

Írásbeli szorzás kétjegyû szorzóval

Írásbeli szorzás kétjegyû szorzóval Írásli szorzás kétjgyû szorzóvl Kiolgozott mintpél Egy krtész 36 plántát ültttt gy sor. Hány plántát ül - t ttt 24 sor? Atok: sor 36 plánt 24 sor x Trv: x = 24 36 vgy x = 36 24 Bslés: x 20 40 = 800 Számolás:

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

kétállószékes fedélszék tervezése

kétállószékes fedélszék tervezése Dr. Németh Gör főikoai docen fééve feadat: kétáózéke fedézék tervezée Kétáózéke fedézék Õ SZARUÁLLÁS LLÉK SZARUÁLLÁS kézítendő feadatrézek Kereztmetzet : Statikai zámítá Terhek mehatározáa Tetőécek méretezée

Részletesebben

Néhány érdekes függvényről és alkalmazásukról

Néhány érdekes függvényről és alkalmazásukról Néhán érdekes függvénről és alkalmazásukról Bevezetés Meglehet, a középiskola óta nem kedveltük az abszolútérték - függvént; most itt az ideje, hog változtassunk ezen. Erre az adhat okot, hog belátjuk:

Részletesebben

A készülék használata elõtt kérjük olvassa el figyelmesen a használati utasítást.

A készülék használata elõtt kérjük olvassa el figyelmesen a használati utasítást. 7LC048A 7LC048A E B D C C DD E E g e P 112 D 0 e B A B B A e D B26 B B E B D C C DD E E g e P 112 D 0 e B A B B A e D B26 B B K H K K H K A B P C D E 123 456 789 *0# g B A P D C E : 0 9* # # A B P C

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR

VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR védőeryő az ismeretleek záporába VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR www.matektaitas.hu www.matektaitas.hu ifo@matektaitas.hu 1 védőeryő az ismeretleek záporába Kombiatorika Permutáció Ismétlés élküli permutáció

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

Rugalmas ágyazású gerenda számítása Eredmények

Rugalmas ágyazású gerenda számítása Eredmények Tarcsai út. 157/18 Budapest Üzletközpont Black Rose Rugalmas ágyazású gerenda számítása Eredmények A számítás lefutott. Altalaj vizsgálat tipikus kombinációja : HHÁ: Q3:G1+G2+Q4 Számítás 1 Név : Analysis

Részletesebben

Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez

Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Gépszerkezettan tanszék Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez Összeállította: Dr. Stampfer Mihály Pécs, 0. . A fogaskerekek előtervezése.

Részletesebben

ELŐTERJESZTÉS a Képviselő-testület 2010. május 27-i ülésére

ELŐTERJESZTÉS a Képviselő-testület 2010. május 27-i ülésére Gödöllő Város Polgármestere ELŐTERJESZTÉS a Képviselő-testület 2010. május 27-i ülésére Tárgy: Javaslat a Királyi váró teljes épület rekonstrukciójának kivitelezésére közbeszerzési eljárás indítására és

Részletesebben

MATEMATIKA A változat. A tanuló neve, osztálya:...

MATEMATIKA A változat. A tanuló neve, osztálya:... MATEMATIKA A változt A tnuló nv, osztály:... Az lmúlt tnév véi osztályzt mtmtikáól:... Olvs l iylmsn ltokt! A ltokt ttszés szrinti sorrnn olto m. Törkj rr, oy molások lírás yértlmő lyn, iylj rnztt küllkr!

Részletesebben

Vertikális és konglomerátum

Vertikális és konglomerátum 1-13. elõdás Vetikális és konglomeátum típusú fúziók Kovás Noet SZE GT Kiegészítõ kpsolt kiknázás Vetikális fúzió fuzionáló vállltok temelési lán különözõ szintjein tevékenykednek n. upstem válllt (u)

Részletesebben

BMEEOHSAT17 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

BMEEOHSAT17 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK A C É L S Z E R K E Z E T E K I. BMEEOHSAT17 segédlet a BME Építőmérnöki Kar hallgatói részére Az építész- és az építőmérnök képzés szerkezeti és tartalmi ejlesztése HEFOP/004/3.3.1/0001.01

Részletesebben

1988. évi I. törvény Hatályos: 2011.09.01 -

1988. évi I. törvény Hatályos: 2011.09.01 - 1988. évi I. törvény Htályos: 2011.09.01-1988. évi I. TÖRVÉNY közúti közlekedésről1 ( végrehjtásáról szóló 30/1988. (IV. 21.) MT rendelettel egységes szerkezetben.) [ vstg betűs szöveg z 1988: I. törvény

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL

KÖZPONTI STATISZTIKAI HIVATAL KÖZPONTI STATISZTIKAI HIVATAL Telefon: 345-6 Internet: www.ksh.hu Adtgyűjtések Letölthető kérdőívek, útmuttók Az dtszolgálttás 265/28. (XI. 6.) Korm. rendelet lpján kötelező. Nyilvántrtási szám: 223/9

Részletesebben

Óravázlatok: Matematika 2. Tartományintegrálok

Óravázlatok: Matematika 2. Tartományintegrálok Órvázltok: Mtemtik 2. rtományintegrálok Brth Ferenc zegedi udományegyetem, Elméleti Fiziki nszék készültség: April 23, 23 http://www.jte.u-szeged.hu/ brthf/oktts.htm) ontents 1. A kettős integrál 1 1.1.

Részletesebben

??? Milyen nagyságrendben kering a plazmában a hcg szint normál terhességben? 2009. november, továbbképzés Szeged.

??? Milyen nagyságrendben kering a plazmában a hcg szint normál terhességben? 2009. november, továbbképzés Szeged. ESETISMERTETÉS: BIOKÉMIAI HYPERTHYREOTIKUS KRÍZIS? Toldy Erzsébet,5, Kneffel Pál 2, Lőcsei Zoltán 3, Cooke Justin 4 Vs Megye és Szombthely MJV Mrkusovszky Kórház, Központi Lbortórium, Szülészeti és Nőgyógyászti

Részletesebben

A Szakács Jenő Megyei Fizika Verseny I. forduló feladatainak megoldása 1

A Szakács Jenő Megyei Fizika Verseny I. forduló feladatainak megoldása 1 A Szkác Jenő Megyei Fizik Vereny I. forduló feldtink egoldá. 0, c 0,7 /, /, 0, /. c )? d? ) Az elő ut ebeége: c +,7 /. pont A áodik ut ebeége: c 0, /. 3 pont Az elő ut ozgáánk ideje: 0 t 30. pont,7 A áodik

Részletesebben

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke ( 9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R

Részletesebben

10. OPTIMÁLÁSI LEHETŐSÉGEK A MŰVELET-ELEMEK TERVEZÉSEKOR

10. OPTIMÁLÁSI LEHETŐSÉGEK A MŰVELET-ELEMEK TERVEZÉSEKOR 10. OPIMÁLÁSI LEHEŐSÉGEK A MŰVELE-ELEMEK ERVEZÉSEKOR A technológiai terezés ezen szintén a fő feladatok a köetkezők: a forgácsolási paraméterek meghatározása, a szerszám mozgásciklusok (üresárati, munkautak)

Részletesebben

Gépszerkezettan. A gépelemek méretezésének alapjai

Gépszerkezettan. A gépelemek méretezésének alapjai Gépszerkezettan A gépelemek méretezésének alapjai 1. A gépelemek méretezésének alapjai A gépalkatrészeket leggyakrabban szilárdsági alapon, a megengedhető feszültség figyelembevételével méretezzük. Szükséges:

Részletesebben

MARADÉKANOMÁLIA-SZÁMÍTÁS

MARADÉKANOMÁLIA-SZÁMÍTÁS MARADÉKANOMÁLIASZÁMÍTÁS **'* Kivont STEINER FERENC" okl középiskoli tnárnk Nehézipri Műszki Egyetem Bánymérnöki Krához benyújtott és elfogdott doktori értekezéséből Az értekezés bírálói: Dr csókás János

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym Mt2 feltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2015. jnuár 22. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben