IV.4. EGYENLŐTLENSÉGEK. A feladatsor jellemzői
|
|
- Mihály Barta
- 9 évvel ezelőtt
- Látták:
Átírás
1 IV.4. EGYENLŐTLENSÉGEK Tárgy, téma A feladatsor jellemzői Egyenlőtlenségek megoldási módszerei, egyenlőtlenségekre vezető szöveges feladatok megoldása. A legalább és legfeljebb fogalma. Előzmények Egyenletek megoldási módszerei, egyenlőtlenségek alapvető megoldási módszerei (rendezés, egyenlőtlenségek negatív számmal való szorzása). Cél A tanulók az egyenlőtlenségek megoldásában szerzett jártasságukat mélyítsék el játékos formájú feladatok megoldásával. Szöveges feladatokon keresztül a modellalkotás és a szövegértés fejlesztése. A legkisebb, legnagyobb, legalább és legfeljebb fogalmának felismerése különböző gyakorlati szituációkban. A feladatsor által fejleszthető kompetenciák Tájékozódás a térben + Ismeretek alkalmazása + Tájékozódás az időben Problémakezelés és -megoldás + Tájékozódás a világ mennyiségi viszonyaiban + Alkotás és kreativitás + Tapasztalatszerzés + Kommunikáció + Képzelet + Együttműködés + Emlékezés + Motiváltság + Gondolkodás + Önismeret, önértékelés + Ismeretek rendszerezése + A matematika épülésének elvei Ismerethordozók használata Felhasználási útmutató A feladatsor első két feladata az egyenlőtlenségek megoldási lépéseit gyakoroltatja, a relációs jelek beírásával a tanulóknak fel kell ismerniük, hogy a negatív számmal való szorzás mikor gyakorol hatást az egyenlőtlenségre, illetve a hibakeresés játékos formában az egyenlőtlenségek rendezésének típushibáira irányítja a figyelmet. A 3. és 4. feladat szöveges problémák algebrai megfogalmazását, valamint a legalább és a legkisebb fogalmak jelentésének megértését és algebrai megfogalmazását igényli. Szemléletesen felhasználható a maimum és minimum fogalma is, ha egyenlőtlenség helyett egyenletekkel kívánunk dolgozni. Ebben az esetben monotonitási megfontolások is szükségesek. A feladatok megoldásánál ügyeljünk arra, hogy kétszeres hiba a helyes eredményt adhatja, ezért mindenképpen szükségesnek tartjuk a megoldások közös megbeszélését. IV. Szöveges egyenletek, egyenlőtlenségek IV.4. Egyenlőtlenségek.oldal/5
2 EGYENLŐTLENSÉGEK Feladat sor HIBAKERESÉS. A következőkben ugyanazt az egyenlőtlenséget oldottuk meg többféleképpen, de kihagytuk a relációs jeleket. Írd be az egyenlőtlenségek két oldala közé tett négyzetbe a megfelelő relációs jelet! a) + 5 > b) + 5 > c) + 5 > A következőkben egyenlőtlenségek megoldási menetét írjuk le. Döntsd el, hogy melyikben van hiba! Ha hibát találsz, akkor javítsd ki végig a megoldás menetében leírt számításokat vagy relációs jeleket! Keresd meg egy-egy megoldásban az összes hibát (azaz az összes olyan esetet, amikor egy egyenlőtlenségből nem következik az utána levő egyenlőtlenség)! a) b) 7 3 < < < 2 3 < < 8 34 < 7 8 < 7 2 < c) d) IV. Szöveges egyenletek, egyenlőtlenségek IV.4. Egyenlőtlenségek 2.oldal/5
3 SZÖVEGELÉS 3. Írd fel egyenlőtlenséggel az alábbiakban megfogalmazott állításokat! Az egyenlőtlenségek megoldásával válaszolj a kérdésekre! a) Pisti és Sanyi testvérek. Ha Pistinek háromszor annyi pénze lenne, mint Sanyinak és még kapna 0 forintot, akkor több mint 340 forintja lenne. Mit mondhatunk Sanyi pénzéről? Mit mondhatunk Pisti pénzéről? b) Péternek háromszor annyi pénze volt, mint öccsének, Lacinak. Elhatározták, hogy vesznek egy 3500 forintba kerülő, nagy doboz építőkockát. Ehhez még kaptak édesanyjuktól 500 forintot, de még így sem tudták megvenni a játékot. Mennyi pénze lehetett Lacinak és Péternek külön-külön? c) Zsófiék udvarán sok mogyorófa van, ezért Zsófi elhatározza, hogy zsebpénzét kibővíti azzal, hogy a kertben termő mogyorót összegyűjti, megszárítja és megtöri, majd a megtisztított mogyoróbelet eladja az ismerősöknek. Zsófinak jelenleg van 5200 forintja. Kemény munkával 2,5 kiló tisztított mogyoróhoz jutott. Legalább hány forintért kell eladnia egy kiló mogyorót ahhoz, hogy meg tudja venni az új íróasztalát, ami 500 forintba kerül, ha a mogyoró kilónkénti árát 00 forintra kerek összegben állapítja meg? 4. Pistiék fürdőszobáját fel kell újítani. A fürdőszoba 2 2,5 méter alapterületű, a lakás belmagassága 2,7 méter. A felújításkor a teljes falfelületet fogják valamilyen magasságig csempézni. A csempéből a csempézendő területhez képest +0% tartalékot kell vásárolni a csempék vágásakor keletkező törések, illetve a későbbi esetleges javítások miatt. Pistiék legfeljebb forintot tudnak a csempére költeni. a) Legfeljebb mennyit költhetnek egy négyzetméret csempére, ha teljes magasságban akarják a falat csempézni? b) A boltban kapható fürdőszobai csempék legalább 2800 Ft-ba kerülnek négyzetméterenként. Legfeljebb milyen magasságig csempézhetik ki a fürdőszobát? (A csempézendő magasság egész cm.) c) Pistiék a konyha felújítását is el akarják végeztetni. A konyha alapterülete 4 méter, a belmagasság ugyanakkora, mint a fürdőszobában. Itt forintot szánnak a padlólapra és a csempére összesen. A padlólap árát még nem tudják, de az biztos, hogy egy négyzetméter ára legalább annyi, mint a csempe egy négyzetméter árának,3-szerese. Pistiék itt megelégednek azzal, ha a fal 80 cm magasságig van csempézve. Ebben a helyzetben legfeljebb mennyi pénzt adhatnak egy négyzetméter csempéért? IV. Szöveges egyenletek, egyenlőtlenségek IV.4. Egyenlőtlenségek 3.oldal/5
4 MEGOLDÁSOK. a) + 5 > > 2 7 > 7 > b) + 5 > > > 7 < (a 7-tel való osztás miatt) c) + 5 > < 2 2 [a ( )-gyel való szorzás miatt] 7 5 < 2 7 < 7 7 > 7 [a ( )-gyel való szorzás miatt] > 2. a) 7 3 < < 2 7 < 8 Helyesen: 7 < 34 8 < Helyesen: < 2 7 b) Az utolsó sorban van a hiba, a 7-tel való osztásnál megfordul az egyenlőtlenség iránya, tehát az utolsó sor helyesen: 2 >. c) A hiba a második sorban a beszorzásnál van. A zárójelet helyettesítő törtvonal elvételekor az előjele nem, hanem + lesz, továbbá az -et is meg kell szorozni 2-vel. Helyesen: IV. Szöveges egyenletek, egyenlőtlenségek IV.4. Egyenlőtlenségek 4.oldal/5
5 d) A megoldásban három hiba van, bár a végeredmény helyes. Először a beszorzásnál a zárójelet helyettesítő törtvonalak elvételekor az és az előjele nem, hanem + lesz. Másodszor pedig az utolsó előtti sorból az utolsóra térve a 4-gyel való osztás a jobb oldalon -et eredményezne, és a relációs jel is megfordulna. Ezek a halmazati hibák azonban oda vezetnek, hogy összességében a helyes eredményt kapjuk! A megoldás helyesen: a) Legyen Sanyi pénze. Az állítás egyenlőtlenségként megfogalmazva: > 340. Innen -et kifejezve > 0. Tehát Sanyinak több mint 0 forintja van. Pisti pénzéről semmilyen információt nem ad a feladat! b) Legyen Laci pénze forint, Péter pénze ekkor 3. Az alábbi egyenlőtlenség írható fel: < Rendezve < 750. Tehát Lacinak kevesebb mint 750 forintja volt, Péternek pedig kevesebb mint 2250 forintja. c) Legyen forint a mogyoró kilónkénti ára. Zsófi pénze 2,5 kiló mogyoró eladása után 2, Ft lesz, amire teljesül, hogy 2, > 500, innen > Mivel a mogyoró ára 00 Ft-ra kerek, ezért legalább 2600 Ft-ért kell adnia egy kiló mogyorót. 4. a) Legyen a csempe ára négyzetméterenként Ft. A fürdőszoba kerülete 9 méter, így a szükséges mennyiség 9 2,7, = 26,73 m 2. Tehát annak kell teljesülnie, hogy 26,73 < , így < 2244,67, azaz legfeljebb 2244 Ft-ot adhatnak egy négyzetméter csempéért. b) Ha a csempézendő terület magasságát -szel jelöljük, akkor a szükséges mennyiség 9,, így a teljes árra a 9, 2800 < egyenlőtlenség írható fel. Innen < 2,645, tehát legfeljebb 26 cm-es magasságig csempézhetnek. c) A csempe ára legyen négyzetméterenként, a padlólap ára négyzetméterenként legalább,3. Csempéből 4,8, = 27,72 m 2, padlólapból 2, = 3,2 m 2 szükséges. A csempe megvásárlása után ,72 forintjuk marad, és annak kell teljesülnie, hogy ,72 > 3,2,3. Innen > 44,88, azaz 782,53 >. Tehát legfeljebb 782 forintért vehetnek csempét a konyhába négyzetméterenként. IV. Szöveges egyenletek, egyenlőtlenségek IV.4. Egyenlőtlenségek 5.oldal/5
10.3. A MÁSODFOKÚ EGYENLET
.. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.
Szakközépiskola 9. évfolyam. I/1 gyakorló feladatsor
Szakközépiskola 9. évfolyam I/1 gyakorló feladatsor 1. Adott az A={1,,3,4,5,6} és a B={1,3,5,7,9} halmaz. Adjuk meg elemeinek felsorolásával az AUB és az A\B halmazokat!. Számítsuk ki a 40 és 560 legnagyobb
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet
VI.9. KÖRÖK. A feladatsor jellemzői
VI.9. KÖRÖK Tárgy, téma A feladatsor jellemzői A kör területe, arányok változatlansága sokszorozás esetén. Előzmények Cél A kör részeinek területe egyszerű esetben, szimmetriák, a négyzet és átlójának
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 3. évfolyam Diák mérőlapok A kiadvány KHF/3992-8/2008. engedélyszámon 2008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási
EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK
X. Témakör: feladatok 1 Huszk@ Jenő X.TÉMAKÖR EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK Téma Egyenletek, egyenlőtlenségek grafikus megoldása Egyszerűbb modellalkotást igénylő, elsőfokú egyenletre
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV Tankönyv második kötet Számok és műveletek 0-től 0-ig Kompetenciák, fejlesztési feladatok:
Szent István Tanulmányi Verseny Matematika 3.osztály
SZENT ISTVÁN RÓMAI KATOLIKUS ÁLTALÁNOS ISKOLA ÉS ÓVODA 5094 Tiszajenő, Széchenyi út 28. Tel.: 56/434-501 OM azonosító: 201 669 Szent István Tanulmányi Verseny Matematika 3.osztály 1. Hányféleképpen lehet
Az oszlopdiagram kinézhet például úgy, mint a bal oldali ábra. 1,2 1,0 0,8 0,6 0,4 0,2. Kategória busz teherautó furgon személyautó összesen
STATISZTIKA 9.7. STATISZTIKA Az adatok ábrázolása megoldások wx76 Az oszlopdiagram kinézhet például úgy, mint a bal oldali ábra. Napi futásteljesítmény Almafajták megtett kilométerek 9 7 6 hétfô kedd szerda
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. október 21. 8:00. Az írásbeli vizsga időtartama: 240 perc
É RETTSÉGI VIZSGA 2008. október 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika RÉ megoldókulcs 0. január. MTEMTIK RÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. a Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
PÉNZÜGYI SZÁMÍTÁSOK. I. Kamatos kamat számítása
PÉNZÜGYI SZÁMÍTÁSOK I. Kamatos kamat számítása Kamat: a kölcsönök után az adós által időarányosan fizetendő pénzösszeg. Kamatláb: 100 pénzegység egy meghatározott időre, a kamatidőre vonatkozó kamata.
Minta 1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
Név:. Dátum: 2013... 01a-1
Név:. Dátum: 2013... 01a-1 Ezeket a szorzásokat a fejben, szorzótábla nélkül végezze el! 1. Mennyi 3 és 3 szorzata?.. 2. Mennyi 4 és 3 szorzata?.. 3. Mennyi 4 és 4 szorzata?.. 4. Mennyi 5 és 3 szorzata?..
4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket!
) Alakítsd szorzattá a következő kifejezéseket! 4 c) d) e) f) 9k + 6k l + l = ay + 7ay + 54a = 4 k l = b 6bc + 9c 4 + 4y + y 4 4b 9a évfolyam javítóvizsgára ) Végezd el az alábbi műveleteket és hozd a
PRÓBAÉRETTSÉGI VIZSGA
STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím SG-s csoport Pontszám 2016. január 16. II. Időtartam: 135 perc STUDIUM
Matematikai modellalkotás
Konferencia A Korszerű Oktatásért Almássy Téri Szabadidőközpont, 2004. november 22. Matematikai modellalkotás (ötletek, javaslatok) Kosztolányi József I. Elméleti kitekintés oktatási koncepciók 1. Realisztikus
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet
Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit
Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2006. február 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. február 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT
Matematika Próbaérettségi Megoldókulcs 016. január 16. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Egyszerűsítse a következő kifejezést: Válaszát
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 0814 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
M A T EMATIKA 9. évfo lyam
Fıvárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet Az iskola Az osztály A tanuló A tanuló neme: Kompetenciaalapú mérés 2007/2008. M A T EMATIKA 9. évfo lyam A változat Az FPPTI nem járul hozzá a
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE A felmérő feladatsorok értékelése A felmérő feladatsorokat úgy állítottuk össze, hogy azok
MS Access Feladatgyűjtemény
SZENT ISTVÁN EGYETEM GAZDASÁG- ÉS TÁRSADALOMTUDOMÁNYI KAR MS Access Feladatgyűjtemény Klárné Barta Éva 2014.01.01. Microsoft Access - Feladatok 1 Feladatok 1. Hozzon létre egy új adatbázist SZÁMÍTÓGÉPEK
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport
Operációkutatás I. 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Számítógépes Optimalizálás Tanszék 6. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát
XI.6. NYARALÁS. A feladatsor jellemzői
XI.6. NYARALÁS Tárgy, téma A feladatsor jellemzői Szövegértés, szövegből matematikai modell felállítása, számítás, az eredmény értékelése. Előzmények Szöveges feladatok, százalékszámítás, aritmetikai átlag,
E B D C C DD E E g e 112 D 0 e B A B B A e D B25 B B K H K Fejhallgató Antenna A B P C D E 123 456 789 *0# Kijelzés g B A P D C E 0 9* # # g B B 52 Y t ] [ N O S T \ T H H G ? > < p B E E D 0 e B D
JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok
JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Alfa tanár úr 5 tanulót vizsgáztatott matematikából. Az elért pontszámokat véletlen sorrendben írta
Curie Matematika Emlékverseny 5. évfolyam Országos döntő 2011/2012. Fontos tudnivalók
A feladatokat írta: Kódszám: Tóth Jánosné, Szolnok Lektorálta:. Kozma Lászlóné, Sajószentpéter 2012.április 14. Curie Matematika Emlékverseny 5. évfolyam Országos döntő 2011/2012. Feladat 1. 2. 3. 4. 5.
Logaritmikus egyenletek Szakközépiskola, 11. osztály. 2. feladat. Oldjuk meg a következ logaritmikus egyenletet!
Logaritmikus egyenletek Szakközépiskola,. osztály. feladat. Oldjuk meg a következ logaritmikus egyenletet! lg(0x ) lg(x + ) = lg () Kikötések: x > 5 és x >. lg(0x ) lg(x + ) = lg () lg 0x (x + ) = lg (3)
MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2013. október 15. 2013. október 15. 8:00 MINISZTÉRIUMA EMBERI ERFORRÁSOK
I. rész II. rész a feladat sorszáma maximális pontszám elért pontszám maximális pontszám 1. 11 2. 12 51 3. 14 4. 14 16 16 64 16 16 8 nem választott feladat Az írásbeli vizsgarész pontszáma 115 elért pontszám
3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy
1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
Összeállította: Seres Sándorné főiskolai docens
Segédlet a szakspecifikus számvitel oktatásához a levelező tagozat Pénzügy számvitel szak IV. évfolyamos hallgatóinak Összeállította: Seres Sándorné főiskolai docens I. A követelések és a pénzeszközök
Próba érettségi feladatsor 2008. április 11. I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
FEJSZÁMOLÁS A TÍZEZRES SZÁMKÖRBEN A KÉTJEGYŰEKKEL ANALÓG ESETEKBEN. AZ ÖSSZEADÁS ÉS KIVONÁS MONOTONITÁSA. 5. modul
Matematika A 4. évfolyam FEJSZÁMOLÁS A TÍZEZRES SZÁMKÖRBEN A KÉTJEGYŰEKKEL ANALÓG ESETEKBEN. AZ ÖSSZEADÁS ÉS KIVONÁS MONOTONITÁSA 5. modul Készítette: KONRÁD ÁGNES matematika A 4. ÉVFOLYAM 5. modul FEJSZÁMOLÁS
Árvainé Libor Ildikó Murátiné Szél Edit. Tanítói kézikönyv. tanmenetjavaslattal. Sokszínû matematika. 4
Árvainé Libor Ildikó Murátiné Szél Edit Tanítói kézikönyv tanmenetjavaslattal Sokszínû matematika. 4 Mozaik Kiadó - Szeged, 2007 Készítette: ÁRVAINÉ LIBOR ILDIKÓ szakvezetõ tanító MURÁTINÉ SZÉL EDIT szakvezetõ
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok
Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak)
Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Erre a dokumentumra az Edemmester Gamer Blog kiadványokra vonatkozó szabályai érvényesek. 1. feladat: Határozd meg az a, b és
Síklefedések Erdősné Németh Ágnes, Nagykanizsa
Magas szintű matematikai tehetséggondozás Síklefedések Erdősné Németh Ágnes, Nagykanizsa Kisebbeknek és nagyobbaknak a programozási versenyfeladatok között nagyon gyakran fordul elő olyan, hogy valamilyen
A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató FELADATOK
Oktatási Hivatal A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA Javítási-értékelési útmutató FELADATOK Hogyan fújják fel egymást a léggömbök A méréshez
4. modul Poliéderek felszíne, térfogata
Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott
Béres Mária TANÍTÓI KÉZIKÖNYV. Színes matematika tankönyvsorozat 2. osztályos elemeihez
Béres Mária TANÍTÓI KÉZIKÖNYV a Színes matematika tankönyvsorozat 2. osztályos elemeihez Béres Mária, Nemzeti Tankönyvkiadó Zrt., 2009 Nemzeti Tankönyvkiadó Zrt. www.ntk.hu Vevőszolgálat: info@ntk.hu Telefon:
Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész
Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.
Mikroökonómia előadás. Dr. Kertész Krisztián főiskolai docens k.krisztian@efp.hu
Mikroökonómia előadás Dr. Kertész Krisztián főiskolai docens k.krisztian@efp.hu Árrugalmasság A kereslet árrugalmassága = megmutatja, hogy ha egy százalékkal változik a termék ára, akkor a piacon hány
Valószínűség-számítás II.
Valószínűség-számítás II. Geometriai valószínűség: Ha egy valószínűségi kísérletben az események valamilyen geometriai alakzat részhalmazainak felelnek meg úgy, hogy az egyes események valószínűsége az
ZSEBEDBEN A JÖVŐD Mi a véleményed? Mit tanácsolsz?
1. ÓRA ZSEBEDBEN A JÖVŐD Mi a véleményed? Mit tanácsolsz? MI A VÉLEMÉNYED? MIT TANÁCSOLSZ? (Egyesével olvassuk fel a történetet, utána jelezzék, melyik állítással értenek egyet, illetve van-e valaki, aki
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára
Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa
7. A Poisson folyamat
7. A Poisson folyamat 1. Egy boltba független exponenciális időközönként érkeznek vevők, óránként átlagosan tíz. Legyen N(t), t 0 a vevőket számláló folyamat. a. Igaz-e, hogy N(t) Poisson-folyamat? Mi
BÓNUSZ. az alábbi szolgáltatásra/termékre jogosít. 2 db-os törölköző csomagok két méretben, 33-40%-os kedvezménnyel 2 db-os törölköző szett 50x100 cm
BÓNUSZ az alábbi szolgáltatásra/termékre jogosít Bónuszkód 2 db-os törölköző csomagok két méretben, 33-40%-os kedvezménnyel 2 db-os törölköző szett 50x100 cm S-14876AAA012 A bónusz tulajdonosa: Gábor Tóth
BÉRSZÁMFEJTÉST ÉRINTİ VÁLTOZÁSOK 2011
BÉRSZÁMFEJTÉST ÉRINTİ VÁLTOZÁSOK 2011 VÁLTOZÁSOK 2011.ÉVRİL SZEMÉLYI JÖVEDELEMADÓ Egykulcsos SZJA 2011. január 1-jétıl az adó mértéke egységesen 16 százalék, ami a felbruttósítás elıtti jövedelemre vetítve
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot
A lineáris programozás 1 A geometriai megoldás
A lineáris programozás A geometriai megoldás Készítette: Dr. Ábrahám István A döntési, gazdasági problémák optimalizálásának jelentős részét lineáris programozással oldjuk meg. A módszer lényege: Az adott
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT I. rész: Az alábbi 4 feladat megoldása kötelező volt! 1) Egy idegen nyelvekkel kapcsolatos online kérdőívet hetven SG-s töltött ki. Tudja, hogy minden
Vargha András PSZICHOLÓGIAI STATISZTIKA DIÓHÉJBAN 1. X.1. táblázat: Egy iskolai bizonyítvány. Magyar irodalom. Biológia Földrajz
Megjelent: Vargha A. (7). Pszichológiai statisztika dióhéjban. In: Czigler I. és Oláh A. (szerk.), Találkozás a pszichológiával. Osiris Kiadó, Budapest, 7-46. Mi az, hogy statisztika? Vargha András PSZICHOLÓGIAI
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
MÛVELETEK TIZEDES TÖRTEKKEL
MÛVELETEK TIZEDES TÖRTEKKEL Tizedes törtek írása, olvasása, összehasonlítása 7. a) Két egész hét tized; kilenc tized; három egész huszonnégy század; hetvenkét század; öt egész száztizenkét ezred; ötszázhetvenegy
Matematika 8. PROGRAM. általános iskola 8. osztály nyolcosztályos gimnázium 4. osztály hatosztályos gimnázium 2. osztály. Átdolgozott kiadás
Dr. Czeglédy István fôiskolai tanár Dr. Czeglédy Istvánné vezetôtanár Dr. Hajdu Sándor fôiskolai docens Novák Lászlóné tanár Dr. Sümegi Lászlóné szaktanácsadó Zankó Istvánné tanár Matematika 8. PROGRAM
A Feldmann ~ Sapiro - elv igazolása
A Feldmann ~ Sapiro - elv igazolása Bevezetés Már középiskolás koromban is érdekelt, hogy mi lehet az a borzasztó nehéz számítás, aminek csak a végeredményét közölték velünk, s amit Feldmann ~ Sapiro -
Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek
Elsôfokú egyváltozós egyenletek 6 Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek. Elsôfokú egyváltozós egyenletek 000. Érdemes egyes tagokat, illetve tényezôket alkalmasan csoportosítani, valamint
6. modul Egyenesen előre!
MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő
HALMAZOK TULAJDONSÁGAI,
Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI,. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A:= { a csoport tanulói b) B:= { Magyarország városai ma c) C:=
Analízis lépésről - lépésre
Analízis lépésről - lépésre interaktív tananyag Dr. Stettner Eleonóra Klingné Takács Anna Analízis lépésről - lépésre: interaktív tananyag írta Dr. Stettner Eleonóra és Klingné Takács Anna Tartalom Előszó...
II. A számtani és mértani közép közötti összefüggés
4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
Készült: Kisberzseny Község Önkormányzata Képviselő-testületének 2014. november 27-én (csütörtök) 8,30 órai kezdettel megtartott nyilvános üléséről.
ÖNKORMÁNYZAT KÉPVISELŐ-TESTÜLETE 8477 KISBERZSENY Szám: 129-37/2014/Tv. J E G Y Z Ő K Ö N Y V Készült: Kisberzseny Község Önkormányzata Képviselő-testületének 2014. november 27-én (csütörtök) 8,30 órai
Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.
Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
FELADATOK ÉS MEGOLDÁSOK
3. osztály Egy asztal körül 24-en ülnek, mindannyian mindig igazat mondanak. Minden lány azt mondja, hogy a közvetlen szomszédjaim közül pontosan az egyik fiú, és minden fiú azt mondja, hogy mindkét közvetlen
8. osztály. 2013. november 18.
8. osztály 2013. november 18. Feladatok: PÉCSI ISTVÁN, középiskolai tanár SZÉP JÁNOS, középiskolai tanár Lektorok: LADÁNYI-SZITTYAI ANDREA, középiskolai tanár DANKOVICS ATTILA, ELTE-TTK matematikus hallgató,
III.4. JÁRŐRÖK. A feladatsor jellemzői
III.4. JÁŐÖK Tárgy, téma A feladatsor jellemzői Algebra (és számelmélet), szöveges feladatok, mozgásos feladatok, geometria. Előzmények Az idő fogalma, mértékegység-váltás (perc óra), a sebesség fogalma:
MATEMATIKA 1-2.osztály
MATEMATIKA 1-2.osztály A matematikatanítás feladata a matematika különböző arculatainak bemutatása. A tanulók matematikai gondolkodásának fejlesztése során alapvető cél, hogy mind inkább ki tudják választani
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 113 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fontos tudnivalók
MATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 01. május 8. EMELT SZINT I. 1) Egy 011-ben készült statisztikai összehasonlításban az alábbiakat olvashatjuk: Ha New York-ban az átlagfizetést és az átlagos árszínvonalat egyaránt
Kompetencia alapú matematika oktatás Oláhné Téglási Ilona
Kompetencia alapú matematika oktatás Oláhné Téglási Ilona Ítéletalkotás, döntés képességének fejlesztése Rezner-Szabó Zsuzsanna Matematikatanár, MA Eszterházy Károly Főiskola 1. feladat Építs piramist!
10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M
10. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós
FELADATOK ÉS MEGOLDÁSOK
3. osztály Az első oldalon 1-gyel kezdve egyesével beszámozták egy könyv összes oldalát. Hány oldalas ez a könyv, ha ehhez 55 számjegyet használtak fel? Az első 9 oldalhoz 9 számjegyet használtak, a további
Feladatok és megoldások a 4. hétre
Feladatok és megoldások a. hétre Építőkari Matematika A3. Pisti nem tanult semmit a vizsgára, ahol 0 darab eldöntendő kérdésre kell válaszolnia. Az anyagból valami kicsi dereng, ezért kicsit több, mint
Megoldások. I. Osztályozás, rendezés, kombinatorika. 1. osztály
Megoldások I. Osztályozás, rendezés, kombinatorika 1. osztály 4. Lackó kezében egy gesztenye van. 5. Kettő. 1 + 1 = 2. 6. Öt. 3 + 2 = 5. 7. Igaz állítás: A), D), E). 2. osztály 1. 6 lehetőség van. Ha ismétel,
Rugalmas ágyazású gerenda számítása Eredmények
Tarcsai út. 157/18 Budapest Üzletközpont Black Rose Rugalmas ágyazású gerenda számítása Eredmények A számítás lefutott. Altalaj vizsgálat tipikus kombinációja : HHÁ: Q3:G1+G2+Q4 Számítás 1 Név : Analysis
FELADATOK MIKROÖKONÓMIÁBÓL
FELADATOK MIKROÖKONÓMIÁBÓL Az alábbiakban példamegoldaásra javasolt feladatok találhatók mikroökonómiából. Az összeállítás formailag nem úgy épül fel, mint a dolgozat, célja, hogy segítse a vizsgára való
HITELKONSTRUKCIÓK. Mekkora lesz a jelzáloghitel értéke a második évben, a második éves törlesztő-részlet kifizetését követően?
Hitelkonstrukciók HITELKONSTRUKCIÓK 1. FELADAT Ön 1 000 000 Ft évi 18%-os kamatozású kedvezményes jelzálogkölcsönt kap vállalatától, amit 15 év alatt kell visszafizetnie úgy, hogy minden évben ugyanakkora
Mintapéldák és gyakorló feladatok
Mintapéldák és gyakorló feladatok Közgazdaságtan II. (Makroökonómia) címû tárgyból mérnök és jogász szakos hallgatók számára Az alábbi feladatok a diasorozatokon található mintapéldákon túl további gyakorlási
XI.5. LÉGY TE A TANÁR! A feladatsor jellemzői
XI.5. LÉGY TE A TANÁR! Tárgy, téma A feladatsor jellemzői Algebrai, geometriai, kombinatorikai és valószínűségszámítási tipikus gondolkodási hibák, buktatók. Előzmények Mérlegelv, másodfokú egyenletek
Analízisfeladat-gyűjtemény IV.
Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította
Sokszínû matematika 7. A KITÛZÖTT FELADATOK EREDMÉNYE
Sokszínû matematika 7. A KITÛZÖTT FELADATOK EREDMÉNYE Szerzõk: IRÓNÉ FÜLE ZSUZSANNA középiskolai tanár DR. SZEDERKÉNYI ANTALNÉ ny. gyakorlóiskolai vezetõtanár Tartalom. TERMÉSZETES SZÁMOK, RACIONÁLIS SZÁMOK....
közti kapcsolatok, Ellenőrzés, Játék 21. modul
Matematika A 4. évfolyam MŰVELETi tulajdonságok, a műveletek közti kapcsolatok, Ellenőrzés, Játék 21. modul Készítette: KONRÁD ÁGNES matematika A 4. ÉVFOLYAM 21. modul Műveleti tulajdonságok, a műveletek
A MEGÚJULÓ MAGYARORSZÁG ADÓRENDSZERE... 4. I. Célok... 4. II. Javasolt intézkedések... 5. 1. Személyi jövedelemadó... 5
Tartalom A MEGÚJULÓ MAGYARORSZÁG ADÓRENDSZERE... 4 I. Célok... 4 II. Javasolt intézkedések... 5 1. Személyi jövedelemadó... 5 1.1. 2013. január elsejétől valódi, arányos, egykulcsos személyi jövedelemadó...
A projektek megvalósítására minimum 9 hónap, de maximum 15 hónap áll rendelkezésre.
portfólió Gyakornoki program pályakezdők támogatására GINOP-5.2.4-16 A pályázat célja A pályázat elsődleges célja, hogy a fiatalok számára közvetlen módón munkahelyet teremtsen, valamint az iskolai rendszerű
7. évfolyam I. félév, 2. feladatsor 1/6
7. évfolyam I. félév, 2. feladatsor 1/6 6. Egy kocka élei 2 cm hosszúak. A kocka fehér, de rendelkezésünkre áll sok a) 1cm 3cm-es b) 1cm 4cm-es c) 1cm 5cm-es d) 1cm 6cm-es piros papírszalag, amelyeket