Logaritmikus egyenletek Szakközépiskola, 11. osztály. 2. feladat. Oldjuk meg a következ logaritmikus egyenletet!
|
|
- Benjámin Barta
- 9 évvel ezelőtt
- Látták:
Átírás
1 Logaritmikus egyenletek Szakközépiskola,. osztály. feladat. Oldjuk meg a következ logaritmikus egyenletet! lg(0x ) lg(x + ) = lg () Kikötések: x > 5 és x >. lg(0x ) lg(x + ) = lg () lg 0x (x + ) = lg (3) 0x (x + ) = lg (4) 0x x + x + = lg (5) 0x = x + 4x + (6) 0 = x 6x + 4 (7) 0 = x 3x + (8) x = x = (9). feladat. Oldjuk meg a következ logaritmikus egyenletet! log 3 x log3 (x 5) + log 3 = 0 () Kikötések: x > (gyök miatt!), x > 5. x log 3 = log 3 () x 5 x = (3) x 5 x = x 5 (4) 4 (x ) = x 0x + 5 (5) 4x 8 = x 0x + 5 (6) 0 = x 4x + 33 (7) x = 3 x = (8) A kikötés miatt csak az x = a jó megoldás.
2 3. feladat. Oldjuk meg a valós számpárok halmazán a következ egyenletrendszert! Legyen a = lgx és b = lgy. 5 lgx + 3 lgy = () lgx lgy = 3 5a + 3b = () a b = 3 A második egyenletb l b-t kifejezve: b = a 3, ezt behelyettesítve az els egyenletbe: 5a + 3 (a 3) = (3) a = (4) a = b = (5) lgx = lgy = (6) x = 0 y = 0 (7) Ellen rzéssel kapjuk, hogy a ( 0; 0) számpár valóban jó megoldás. 4. feladat. Oldjuk meg a valós számpárok halmazán a következ egyenletrendszert! lg(x + ) + lg(y 3) = () lg(y ) lgx = 0 Kikötések: x >, y > 3. lg[(x + )(y 3)] = lg0 () lg y x = lg (x + )(y 3) = 0 (3) y x = A második egyenletb l x = y következik, így az els egyenlet behelyettesítés után a következ képpen alakul: y(y 3) = 0 (4) y 3y 0 = 0 (5) y = 5 y = (6)
3 A kikötések miatt y = nem lehet megoldás. A (4; 5) számpár megoldás. 5. feladat. Számítsa ki az ismeretlen értékét! lgb = lg4 3 lg9 () lgb = lg4 3 lg9 () lgb = lg 4 lg( 9) 3 (3) lgb = lg lg7 (4) b = 7 (5) 6. feladat. Számítsa ki az ismeretlen értékét! lgw = lgq lgr lgs lgt + lgu () lgw = lg q lgs lgt + lgu () r lgw = lg q lgt + lgu (3) rs lgw = lg q + lgu (4) rst lgw = lg qu rst w = qu rst Természetesen a kikötéseket meg kell tennünk: w > 0, q > 0, r > 0, s > 0, t > 0, u > 0. (5) (6) 3
4 7. feladat. Oldja meg a következ egyenl tlenséget a valós számok halmazán! 3 > log (x + ) () log 8 > log (x + ) () 8 < x + (3) 7 8 < x (4) 7 6 < x (5) A kikötés (x > ) nem jelent megszorítást a megoldásra nézve. 8. feladat. Oldja meg a következ egyenl tlenséget a valós számok halmazán! log 4 (4x + 4x ) > 0 () log 4 (4x + 4x ) > log 4 () 4x + 4x > (3) 4x + 4x 3 > 0 (4) A másodfokú egyenl tlenséget egyenletként megoldva kapjuk az x = és x = 3 megoldásokat. Mivel a másodfokú kifejezés normál állású parabolát 4 határoz meg, így a megoldáshalmaz: M = {x x [ ; 3 4 ] [ ; ]} 9. feladat. Oldja meg az egyenletet a valós számok halmazán. (5) 5 x+ = 5 x () log 5 5 x+ = log 5 5 x () x + = (x ) log 5 5 (3) x + = (x ) 3 (4) x + = 3x 3 (5) 4 = x (6) x = (7) 4
5 0. feladat. Oldja meg az egyenl tlenséget a valós számok halmazán! log x (x + x 4) < () log x (x + x 4) < log x x () Kikötés:. eset: x > x + x 4 > 0 x < 7 x > + 7 x + x 4 < x (3) x 4 < 0 (4) x = + x = (5) Itt a megoldáshalmaz (a kikötések gyelembe vételével): 7 < x <. eset: (0 <)x < x + x 4 > x (6) x 4 > 0 (7) x = + x = (8) Itt nem találunk megoldást. A feladat megoldáshalmaza tehát: 7 < x <. 5
6 . feladat. Oldja meg a következ egyenletet a valós számok halmazán! Legyen y = lgx. lg x = 3 lgx () (lgx) = 3 lgx () y = 3 y (3) y = 4 3y (4) y + 3y 4 = 0 (5) y = y = 4 (6) lgx = lgx = 4 (7) x = 0 x = = 0, 000 (8) 000 Az x > 0 kikötés nem jelent megszorítást a megoldásokra nézve. Megjegyzés. Ahogyan a sin, cos, stb. függvényeknél is, úgy itt is a következ jelölés van érvényben: lg x = (lgx). feladat. Oldja meg a következ egyenletet a valós számok halmazán! 3 lgx + lg x = () 3 lgx ( ) + lg = () x 3 lgx + lg x = (3) 3 lgx + lgx = (4) 3 lgx lgx = (5) (6) 6
7 Legyen most y = lgx. Ekkor lgx = y. 3y y = (7) 0 = y 3y + (8) y = y = (9) lgx = lgx = (0) lgx = 4 lgx = () x = 0000 x = 0 () Az x > 0 kikötéssel egyik megoldás sem ütközik. 3. feladat. Oldja meg a következ egyenletet a valós számok halmazán! 0, 5 lg(x ) + lg x 9 = () lg x + lg x 9 = () lg (x )(x 9) = lg0 (3) (x )(x 9) = 0 (4) (x )(x 9) = 00 (5) x 9x + 9 = 00 (6) x 9x 9 = 0 (7) x = 3 x = 7 (8) A kikötések: x > és x > 9, így csak az x = 3 jó megoldás. 4. feladat. Oldja meg a következ egyenletet a valós számok halmazán! log (log 4 (log 5 x)) = () log 4 (log 5 x) = () log 5 x = 6 (3) x = 5 6 (4) Az egyenlet értelmezési tartománya x > 0, amelynek megfelel a megoldás, tehát jó. 5. feladat. Számítsa ki zsebszámológép segítségével a következ logaritmus értékét. Az eredményt adja meg tizedesjegyre kerekítve! log 4 7 = lg7 lg4 = 0, 85 0, 6 =, 4037, 4 7
8 6. feladat. Egy diagnosztikai m szer újkori ára Ft. A m szer minden évben 5%-ot veszít értékéb l (avul). A m szert ki kell selejtezni, ha értéke Ft. alá csökken. Hány év múlva következik be ez? , 85 n < () 0, 85 n < 0, () lg 0, 85 n < lg 0, (3) n lg 0, 85 < lg 0, (4) n ( 0, 0706) < ( 0, 699) (5) Válasz: Tehát a m szert 0 év után kell leselejtezni. n > 9, 9 (6) 7. feladat. Egy múmiából vett mintában 0 g szénb l, g volt a radioaktív 4 C izotóp. Hány éves lehet a múmia? A radioaktív bomlástörvény: N = N 0 t T, ahol N: a még el nem bomlott atommagok száma, N 0 : a kezdeti atommagok száma, t: az eltelt id a bomlás kezdete óta, T : a felezési id. A 4 C felezési ideje 5736 év, ennyi id alatt a 4 C atommagok fele bétabomlással nitrogén atommagokká alakul. Amíg a szervezet él, az izotóparány állandó, a szervezet anyagcseréjének leállásával a radioaktív izotóp aránya exponenciálisan csökken a radioaktív bomlás miatt. Az egyszer ség kedvéért a 4 C izotóp el fordulási aránya : nak, azaz : 0 -nek vehet. Természetesen, mivel arányokról van szó, a bomlástörvénybe a tömeget is behelyettesíthetjük: m = m 0 t T. 8
9 Megoldás. A múmia halálakor a testében lév 0 g szénb l 0 0 = 0 g 4 C van. Behelyettesítéssel a következ exponenciális egyenletet kapjuk, melyet logaritmálás segítségével tudunk megoldani:, = 0 x 5736 (), 334 = x 5736 () 0, 667 = x 5736 (3) lg 0, 667 = lg x 5736 (4) lg 0, 667 = x lg 5736 (5) Válasz: A múmia ezek szerint 4000 éves lg 0, 667 x = (6) lg x 4000, 0565 (7) 8. feladat. Egy tóba honosítás céljából 500 darab csíkos sügért telepítettek 005 márciusában. A halbiológusok gyelemmel kísérték az állomány gyarapodását és azt találták, hogy a halak száma h(t) = 500 log 3 (t + 3) függvénnyel írható le, ahol t a telepítést l eltelt évek számát jelenti. a) Mennyi csíkos sügér élt a tóban 006 márciusában? b) Hány százalékkal n tt a halak száma 007 és 009 márciusa között? c) Várhatóan mikor éri el a halpopuláció az 500 darabot? 9. feladat. Egy biológiai kísérlet során baktériumokat szaporítanak. Azt tapasztalják, hogy megfelel körülmények között a baktériumállomány 6 óra alatt megduplázódik. A kísérlet kezdetén 000 baktérium volt. a) Mennyi baktérium volt a kísérlet kezdete után nappal? b) A kísérlet addig tart, amíg a baktériumok száma el nem éri a 0 9 darabot. Mennyi ideig folyik a kísérlet? 9
10 0. feladat. Oldjuk meg a következ egyenletrendszert a valós számok halmazán! log 3 (y x) = () x 3 y = 97 () Mivel 97 = 3 5, ezért x = és y = 5 megoldás, ha kielégítik az () egyenletet is. Mivel log 3 3 =, ezért a fenti megoldáspár jó.. feladat. Oldjuk meg a következ egyenletrendszert a valós számok halmazán! Az () egyenletet rendezve: Ezt a () egyenletbe behelyettesítve: x + y x y = () lg(x + y) + lg(x y) = lg () x + y = x y (3) x = 3y (4) lg(3y + y) + lg(3y y) = lg (5) lg 8y = lg (6) y, = ± x, = ± 3 (7) (8). feladat. Oldjuk meg a következ egyenletrendszert a valós számok halmazán! 3 x y = 0 () log 3 xy = () 3. feladat. Oldjuk meg a következ egyenletrendszert a valós számok halmazán! log x log y = 3 log 3 () 0, 5 y x = () 0
11 4. feladat. Egy óra alatt hány grammra csökken 00 g 9,7 perc felezési idej radioaktív bizmut izotóp tömege? m = m 0 t T, ahol m a pillanatnyi tömeg, m 0 a kezdeti tömeg, t az eltelt id, T pedig az anyag felezési ideje. m = ,7 =, 5. feladat. A világméret szociológiai kutatások eredményeként a fejlett ipari országok egy f re jutó nemzeti összeterméke (GDP) és a lakosság várható élettartama között hozzávet leg az alábbi tapasztalati összefüggés állítható fel: E = 75, 5 5, G 06, ahol E az átlagos várható élettartam években, G pedig a GDP, reálértékben átszámítva 980-as dollárra. Mennyi várható élettartam-növekedést okoz kétszeres GDP-növekedés, ha ez a növekedés a) 500$-ról 3000$-ra; b) 3000$-ról 6000$-ra; c) 6000$-ról 000$-ra történik? a) E = 75, 5 5, = 48, 09 E = 75, 5 5, = 59, 96 Válasz:,87 év a várható élettartam-növekedés. b) E = 75, 5 5, = 70, 5 Válasz: 0,54 év a várható élettartam-növekedés. c) E = 75, 5 5, = 74, 98 Válasz: 4,48 év a várható élettartam-növekedés. 6. feladat. A fenti összefüggést felhasználva válaszoljunk az alábbi kérdésre: mennyi GDP-növekedés szükséges a várható élettartam 0 évvel való meghosszabbodásához, ha ez
12 a) 40 évr l 50 évre; 40 = 75, 5 5, G 06 () 7, =, G 06 () lg 7, = lg, G 06 (3) 0, 85 = 6000 G 0, 03 (4) , = 6000 G (5) G = 85, 8 (6) 50 = 75, 5 5, G 06 (7) 5, =, G 06 (8) lg 5, = lg, G 06 (9) 0, 7 = 6000 G 0, 03 (0) , 3 = 6000 G () G = 690, 87 () b) 50 évr l 60 évre; c) 60 évr l 70 évre történik? 60 = 75, 5 5, G 06 (3) =, G 06 (4) lg 3, = lg, G 06 (5) 99, 4 = 6000 G (6) G = 3007, 59 (7) 70 = 75, 5 5, G 06 (8), =, G 06 (9) lg, = lg, G 06 (0) G = 5747, 9 ()
13 7. feladat. Ha D összeget heti p%-os kamatozással befektetünk, akkor ( D + p ) n 00 n hét elteltével összeget vehetünk fel. a) Mennyi id múlva lesz befektetésünk értéke D, ha p = 4, 5? D = ( D + 4, 5 ) n 00 () =, 045 n () lg = n lg, 045 (3) n = 5, 75 (4) a) Mennyi id múlva lesz befektetésünk értéke D, ha p = 6? D = ( D + 6 ) n 00 (5) =, 06 n (6) lg = n lg, 06 (7) n =, 9 (8) 3
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő exponenciális egyenletrendszereket! (Alaphalmaz: R) 5 3 x 2 2 y = 7 2 3 x + 2 y = 10 7 x+1 6 y+3 = 1 6 y+2 7 x = 5 (6 y + 1) c) 25 (5 x ) y = 1 3 y 27 x = 3 Megoldás:
Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?
Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.
Minta 1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
Hiányos másodfokú egyenletek. x 8x 0 4. A másodfokú egyenlet megoldóképlete
Hiányos másodfokú egyenletek Oldjuk meg a következő egyenleteket a valós számok halmazán! 1. = 0 /:. = 8 /:. 8 0 4. 4 4 0 A másodfokú egyenlet megoldóképlete A másodfokú egyenletek általános alakja: a
Komplex számok. 2014. szeptember 4. 1. Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét!
Komplex számok 014. szeptember 4. 1. Feladat: Legyen z 1 i és z 4i 1. (z 1 z ) (z 1 z ) (( i) (4i 1)) (6 9i 8i + ) 8 17i 8 + 17i. Feladat: Legyen z 1 i és z 4i 1. Határozza meg az alábbi kifejezés értékét!
EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK
X. Témakör: feladatok 1 Huszk@ Jenő X.TÉMAKÖR EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK Téma Egyenletek, egyenlőtlenségek grafikus megoldása Egyszerűbb modellalkotást igénylő, elsőfokú egyenletre
Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész
Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Határozd meg a következő kifejezésekben a c értékét!
Megoldások. Határozd meg a következő kifejezésekben a c értékét! log 4 = c log 7 = c log 5 5 = c lg 0 = c log 7 49 = c A feladatok megoldásához használjuk a definíciót: log a b = c b = a c. log 4 = c 4
GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert)
GYAKORLAT. Elemi logika, matematikai állítások és következtetések, halmazok lásd EA-ban is; iskolából ismert I. Halmazok.. Alapfogalmak: "halmaz" és "eleme". Halmaz kritériuma: egyértelm en eldönthet,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot
Exponenciális és logaritmikus kifejezések Megoldások
Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása
Feladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika RÉ megoldókulcs 0. január. MTEMTIK RÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. a Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
Egyenletek, egyenlőtlenségek X.
Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2006. február 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. február 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
TARTALOM. Ismétlő tesztek...248 ÚTMUTATÁSOK ÉS EREDMÉNYEK...255
TARTALOM. SZÁMHALMAZOK...5.. Természetes kitevőjű hatványok...5.. Negatív egész kitevőjű hatványok...6.. Racionális kitevőjű hatványok...7.4. Irracionális kitevőjű hatványok...0.5. Négyzetgyök és köbgyök...
MATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 008. október 1. KÖZÉPSZINT I. 1) Adja meg a 4 egyjegyű pozitív osztóinak halmazát! A keresett halmaz: {1 4 6 8}. ) Hányszorosára nő egy cm sugarú kör területe, ha a sugarát háromszorosára
Matematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék
10.3. A MÁSODFOKÚ EGYENLET
.. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.
A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
egyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek
Elsôfokú egyváltozós egyenletek 6 Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek. Elsôfokú egyváltozós egyenletek 000. Érdemes egyes tagokat, illetve tényezôket alkalmasan csoportosítani, valamint
A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:
. Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 00. február. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Matematika emelt szint Fontos tudnivalók Formai
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert!
A 13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert! x y 600 x 10 y 5 600 12 pont írásbeli vizsga, II. összetev 4 / 20 2008. október 21. 14. a) Fogalmazza meg, hogy az f : R R, f x
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz
MATEMATIKA ÉRETTSÉGI 2011. október 18. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 0. október 8. EMELT SZINT I. ) Kinga 0. születésnapja óta kap havi zsebpénzt a szüleitől. Az első összeget a 0. születésnapján adták a szülők, és minden hónapban 50 Fttal többet adnak,
Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:
Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével
KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN)
0801 ÉRETTSÉGI VIZSGA 009. május. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM JAVÍTÁSI ÚTMUTATÓ
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. október 21. 8:00. Az írásbeli vizsga időtartama: 240 perc
É RETTSÉGI VIZSGA 2008. október 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport
Operációkutatás I. 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Számítógépes Optimalizálás Tanszék 6. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát
Matematikai programozás gyakorlatok
VÁRTERÉSZ MAGDA Matematikai programozás gyakorlatok 2003/04-es tanév 1. félév Tartalomjegyzék 1. Számrendszerek 3 1.1. Javasolt órai feladat.............................. 3 1.2. Javasolt házi feladatok.............................
MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok
MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: R) a) log 4 (x ) = 3 b) lg (x 4) = lg (8x 10) c) log x + log 3 = log 15 d) log x 0x log x 5 = e) log 3 (x 1) = log 3 4 f) log 5 x = 4 g) lg
A vas-oxidok redukciós folyamatainak termodinamikája
BUDAESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék Anyag- és gyártástechnológia (hd) féléves házi feladat A vas-oxidok redukciós folyamatainak termodinamikája Thiele Ádám WTOSJ Budapest, 11
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
Makroökonómia I. segédanyag 2004. február
Makroökonómia I. segédanyag 2004. február. feladat Egy gazdaságra vonatkozóan ismertek az alábbi adatok a beruházási függvény I 600 2000R,a netto export függvény X 500 3000R, A fogyasztási határhajlandóság
Hatvány gyök logaritmus
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Hatvány gyök logaritmus Hatványozás azonosságai 1. Döntse el az alábbi állításról, hogy igaz-e vagy hamis! Ha két szám négyzete egyenl, akkor
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11.E OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
1. A korrelációs együttható
1 A KORRELÁCIÓS EGYÜTTHATÓ 1. A korrelációs együttható A tapasztalati korrelációs együttható képlete: (X i X)(Y i Y ) R(X, Y ) = (X i X) 2. (Y i Y ) 2 Az együttható tulajdonságai: LINEÁRIS kapcsolat szorossága.
Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
I. rész. x 100. Melyik a legkisebb egész szám,
Dobos Sándor, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: 005. november 1. feladat A 70-nek 80%-a mely számnak a 70%-a? I. rész. feladat Egy szabályos
MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I.
1) x x MATEMATIKA ÉRETTSÉGI 007. október 5. EMELT SZINT I. a) Oldja meg a valós számok halmazán az alábbi egyenletet! (5 pont) b) Oldja meg a valós számpárok halmazán az alábbi egyenletrendszert! lg x
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
Matematika POKLICNA MATURA
Szakmai érettségi tantárgyi vizsgakatalógus Matematika POKLICNA MATURA A tantárgyi vizsgakatalógus a 0-es tavaszi vizsgaidőszaktól kezdve alkalmazható mindaddig, amíg új nem készül. A katalógus érvényességét
Matematika szintfelmérő dolgozat a 2018 nyarán felvettek részére augusztus
Matematika szintfelmérő dolgozat a 018 nyarán felvettek részére 018. augusztus 1. (8 pont) Oldjuk meg a következő egyenletet a valós számok halmazán: 6 4 x 13 6 x + 6 9 x = 0 6 ( ) x 4 13 9 6 4 x 13 6
3. Konzultáció: Kondenzátorok, tekercsek, RC és RL tagok, bekapcsolási jelenségek (még nagyon Béta-verzió)
3. Konzultáció: Kondenzátorok, tekercsek, R és RL tagok, bekapcsolási jelenségek (még nagyon Béta-verzió Zoli 2009. október 28. 1 Tartalomjegyzék 1. Frekvenciafüggő elemek, kondenzátorok és tekercsek:
Az oszlopdiagram kinézhet például úgy, mint a bal oldali ábra. 1,2 1,0 0,8 0,6 0,4 0,2. Kategória busz teherautó furgon személyautó összesen
STATISZTIKA 9.7. STATISZTIKA Az adatok ábrázolása megoldások wx76 Az oszlopdiagram kinézhet például úgy, mint a bal oldali ábra. Napi futásteljesítmény Almafajták megtett kilométerek 9 7 6 hétfô kedd szerda
Differenciaegyenletek
Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Differenciaegyenletek 1 / 24 3.1 Differenciaegyenlet fogalma, egzisztencia- és unicitástétel
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Az Excel Solver bővítményének megismerése Feladatok gyakorlása BMF-NIK 2008. ősz 3
2008/09 ősz 1. Windows / Word / Excel, önálló feldolgozás! 2. Solver 3. ZH 4. Windows 5. Windows 6. ZH 7. HTML 8. HTML 9. ZH 10. Adatszerkezetek, változók, tömbök 11. Számábrázolási kérdések 12. ZH 13.
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
Abszolútértékes és gyökös kifejezések Megoldások
Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása
Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz
Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz Vas Gabriella 204. február A feladatgy jtemény a TÁMOP-4.2.4.A/2-/-202-000 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
MIKROÖKONÓMIA II. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely. 2011. február
MIKROÖKONÓMIA II. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?
5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,
Elsőfokú egyenletek...
1. Hozza egyszerűbb alakra a következő kifejezést: 1967. N 1. Elsőfokú egyenletek... I. sorozat ( 1 a 1 + 1 ) ( 1 : a+1 a 1 1 ). a+1 2. Oldja meg a következő egyenletet: 1981. G 1. 3x 1 2x 6 + 5 2 = 3x+1
Á ő ő ő ő ő ő ű ó ó ő ó ő ő ó ő ő ő ő ó ő ó ő ő ő ő ő ü ő ő ó ő ó ő ő ő ó ó ő ő ű ő ó ő ó ő ő ő ő ő ű ő ü ó ű ő ó Á ó ő ő ó ü ő ő ó ő ő ü ő ő ü ó ő ő ó ó ü ő ü ő ő ő ő ő ó ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő
VI.11. TORONY-HÁZ-TETŐ. A feladatsor jellemzői
VI.11. TORONY-HÁZ-TETŐ Tárgy, téma A feladatsor jellemzői Szögfüggvények derékszögű háromszögben, szinusztétel, koszinusztétel, Pitagorasz-tétel. Előzmények Pitagorasz-tétel, derékszögű háromszög trigonometriája,
a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
IV.4. EGYENLŐTLENSÉGEK. A feladatsor jellemzői
IV.4. EGYENLŐTLENSÉGEK Tárgy, téma A feladatsor jellemzői Egyenlőtlenségek megoldási módszerei, egyenlőtlenségekre vezető szöveges feladatok megoldása. A legalább és legfeljebb fogalma. Előzmények Egyenletek
A továbbhaladás feltételei fizikából és matematikából
A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban
Próba érettségi feladatsor 2008. április 11. I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
4. sz. Füzet. A hibafa számszerű kiértékelése 2002.
M Ű S Z A K I B I Z O N S Á G I F Ő F E L Ü G Y E L E 4. sz. Füzet A hibafa számszerű kiértékelése 00. Sem a Műszaki Biztonsági Főfelügyelet, sem annak nevében, képviseletében vagy részéről eljáró személy
9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.
9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok
M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!
Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének
4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket!
) Alakítsd szorzattá a következő kifejezéseket! 4 c) d) e) f) 9k + 6k l + l = ay + 7ay + 54a = 4 k l = b 6bc + 9c 4 + 4y + y 4 4b 9a évfolyam javítóvizsgára ) Végezd el az alábbi műveleteket és hozd a
Elektromos térerősség érzékelők gyakorlati tapasztalatai
Elektromos térerősség érzékelők gyakorlati tapasztalatai Az elmúlt 3 év átlagát tekintve évente átlagosan 14 000 olyan eseménynél avatkoztak be tűzoltók, ahol számítani kellett az elektromos áram jelenlétével.
Szimplex módszer, szimplex tábla Példaként tekintsük a következ LP feladatot:
Szimplex módszer, szimplex tábla Példaként tekintsük a következ LP feladatot: z = 5x 1 + 4x 2 + 3x 3 2x 1 + 3x 2 + x 3 5 4x 1 + x 2 + 2x 3 11 3x 1 + 4x 2 + 2x 3 8 x 1, x 2, x 3 0 = maximum, feltéve, hogy
Arany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév. forduló haladók I. kategória Megoldások
ő ő ő ő ű Ó ő ő ű ű ő ő Ó ő ő ő ő ő ő ű ő ő ű ű ő ő ű Ó ő ő ő Ó ő ű ő ő ő ű ű ű ő ő ő ő ő ő ő Ó ő ő ő ű ő ő ő ő ő ű ő ő Ó ő ő ű ő ő ő ő ő ő ő ű ű ő ő ő ű ű ő ű ő ő Ó Ó ő Ó Ó ő Ó ű ő ő ő ő ő ű ő ű ű ű ű
2. Interpolációs görbetervezés
2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,
A REAKCIÓKINETIKA ALAPJAI
A REAKCIÓKINETIKA ALAPJAI Egy kémiai reakció sztöchiometriai egyenletének általános alakja a következő formában adható meg k i=1 ν i A i = 0, (1) ahol A i a reakcióban résztvevő i-edik részecske, ν i pedig
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
Bináris keres fák kiegyensúlyozásai. Egyed Boglárka
Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi
Általános Szerződési Feltételek Nyilvános televízióműsor-elosztás és nyilvános rádióműsor-elosztás (kábeltévé) szolgáltatás igénybevételére Szélmalom Kábeltévé Zrt. a tagja Szeged Kiskundorozsma, 2011.
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT I. rész: Az alábbi 4 feladat megoldása kötelező volt! 1) Egy idegen nyelvekkel kapcsolatos online kérdőívet hetven SG-s töltött ki. Tudja, hogy minden
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Exponenciális és Logaritmusos feladatok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Eponenciális és Logaritmusos feladatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független
Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
CÉGÉNYDÁNYÁD KÖZSÉG TELEPÜLÉSRENDEZÉSI TERVÉNEK MÓDOSÍTÁSA TELJES ELJÁRÁSBAN ELŐZETES TÁJÉKOZTATÁSI TERVDOKUMENTÁCIÓ
LA-URBE ÉPÍTÉSZIRODA KFT. 3525 Miskolc, Patak utca 10. sz. Telefon: 06-46-504-338~Fax: 06-46-504-339 Mobil: 06-20-9692-361 E-mail: la.urbekft@chello.hu CÉGÉNYDÁNYÁD KÖZSÉG TELEPÜLÉSRENDEZÉSI TERVÉNEK MÓDOSÍTÁSA
Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból
Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.
5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14.
Tartalomjegyzék 1 A matematikai logika elemei 1 11 Az ítéletkalkulus elemei 1 12 A predikátum-kalkulus elemei 7 13 Halmazok 10 14 A matematikai indukció elve 14 2 Valós számok 19 21 Valós számhalmazok
Matematikai összefoglaló elméleti alapok érettségiz knek. Dézsi Krisztián 2011. május 20.
Matematikai összefoglaló elméleti alapok érettségiz knek Dézsi Krisztián 011. május 0. 1 Hatványok alapvet dolgok: log a b = c a a a a... } {{ } c = b ez a hatványozás inverze (FONTOS: a "b" nem lehet
4. Laplace transzformáció és alkalmazása
4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:
Egyenletek, egyenlőtlenségek XIII.
Egyenletek, egyenlőtlenségek XIII. Szöveges feladatok megoldása: Az olyan szöveges feladatban, ahol exponenciális, illetve logaritmikus kifejezést tartalmazó képlet szerepel, a megoldás során először helyettesítsük
Mintavételezés: Kvantálás:
Mintavételezés: Időbeli diszkretizálást jelent. Mintavételezési törvény: Ha a jel nem tartalmaz B-nél magasabb frekvenciájú komponenseket, akkor a jel egyértelműen visszaállítható a legalább 2B frekvenciával