Irányítástechnika 4. előadás
|
|
- Ottó Gál
- 8 évvel ezelőtt
- Látták:
Átírás
1 Iránítátechnika 4. előadá Dr. Kovác Levente
2 artalom ipiku tagok amplitúdó- é fázimenete Bode diagram példák Frekvencia átviteli függvén Hurwitz kritérium A zabálozái kör ugráválaza, minőégi követelmének A lineári rendzer mozgáa Állandóult állapot
3 artalom ipiku tagok amplitúdó- é fázimenete Bode diagram példák Frekvencia átviteli függvén Hurwitz kritérium A zabálozái kör ugráválaza, minőégi követelmének A lineári rendzer mozgáa Állandóult állapot
4 ipiku tagok amplitúdó- é fázimenete Aráno P tag t = k ut H = k k > t k t H db = lg k
5 ipiku tagok amplitúdó- é fázimenete Integráló I tag t k u d t u t t t t i H db = lg k lg arg{h} = - π/ H i i i p =
6 ipiku tagok amplitúdó- é fázimenete Differenciáló D tag t = d út H = d d > m > n t t d H db = lg k+ lg arg{h}= + π/ z =
7 ipiku tagok amplitúdó- é fázimenete Egtároló aráno tag P * t+t = k ut k H k>, > t / t k e t H db = lgk -lg / arg{h}= arctgω/ω p = - /
8 ipiku tagok amplitúdó- é fázimenete PD k u d u H = k + d m >n, d > K t t d lgk lg / i p : --- ; z = -/ d
9 ipiku tagok amplitúdó- é fázimenete PD H k u k d k>, >, d >, > d : d u t k d e t / t lg k lg lg / / d < d : p = -/, z =-/ d
10 ipiku tagok amplitúdó- é fázimenete PI K u i t u d lg K lg / t K t i i lg / i H K i i K > ; i > p = ; z = -/ i
11 ipiku tagok amplitúdó- é fázimenete PID u ud u K d i R d i R K H K R > ; i > ; d > p = ; z = - / r ; z = -/ m > n ha i > 4 d : r r r H k k r >, r >, r > ] [ t t t t K d i R / / lg lg lg lg k r r r r r r r arctg
12 ipiku tagok amplitúdó- é fázimenete Kéttároló aráno tag P k u k H k >, >, > < <, j p e e t t K / / t K K in tg, lg lg / k arctg
13 ipiku tagok amplitúdó- é fázimenete Kéttároló aráno tag P Az w < / tartománon aráno P taggal közelíthető Az w > / tartománon wjw -/w kétzereen integráló taggal közelíthető Az w = / körüli frekvenciákon a frekvencia átviteli tulajdonágok a x cillapítái ténezőtől függenek =, =,3 =,7 = = 4dB/dek Az w vágái frekvencián az amplitúdó /ξ a fázizög -9 /
14 ipiku tagok amplitúdó- é fázimenete Kéttároló aráno tag P ξ > eetben való póluok aperiodikuan cillapított tag ξ < eetben komplex-konjugált póluok periodikuan cillapított vag lengő tag w p = w - ξ lengéi frekvenciával =,3 =,7 = =
15 artalom ipiku tagok amplitúdó- é fázimenete Bode diagram példák Frekvencia átviteli függvén Hurwitz kritérium A zabálozái kör ugráválaza, minőégi követelmének A lineári rendzer mozgáa Állandóult állapot
16 Bode diagram példa
17 Bode diagram példa db/dek -db/dek -4dB/dek A fázi diagramra általában nem kielégítő a töréponto közelíté főleg nagobb fokzám eetén
18 Bode diagram példa 3 Amplitúdó menet töréponto közelítée időállandó alak: = jω = heletteítéel: a három töréponti frekvencia:
19 Bode diagram példa 3 Amplitúdó menet töréponto közelítée
20 artalom ipiku tagok amplitúdó- é fázimenete Bode diagram példák Frekvencia átviteli függvén Hurwitz kritérium A zabálozái kör ugráválaza, minőégi követelmének A lineári rendzer mozgáa Állandóult állapot
21 Frekvencia átviteli függvén Az u bemenő é kimenő jel közötti kapcolatot leíró w átviteli függvénből = jw heletteítéel Stabili lineári tag eetén egégni amplitúdójú zéru fáziú zinuzo bemenő jelre a t ut
22 artalom ipiku tagok amplitúdó- é fázimenete Bode diagram példák Frekvencia átviteli függvén Hurwitz kritérium A zabálozái kör ugráválaza, minőégi követelmének A lineári rendzer mozgáa Állandóult állapot
23 ... a a a a n n n n Hurwitz kritérium. H determinán a a a a b b b b W W r W n n n n m m m m Karakteriztiku polinom a a... a a a... a a a H 3 n n 4 n n n 5 n 3 n n Hurwitz determinán H H H 3 Zárt rendzer!
24 Hurwitz kritérium. Megfogalmazá.. a i > zigorúan!!, i = n rendzer fokzáma. H i > zigorúan!!, i = n rendzer fokzáma Ha + teljeül, akkor a rendzer tabili! Megj.: Stabilitái határ kritiku körerőíté zámítáa.
25 Példa r e u u 3 5 z 4 W 4 Z = -3 P = i i -3.
26 artalom ipiku tagok amplitúdó- é fázimenete Bode diagram példák Frekvencia átviteli függvén Hurwitz kritérium A zabálozái kör ugráválaza, minőégi követelmének A lineári rendzer mozgáa Állandóult állapot
27 A zabálozái kör ugráválaza A zárt zabálozái kör ugráválazáról a vt átmenti függvénről leolvahatók a zabálozái kör időtartománbeli jellemzői. Általáno elvárá, hog a zabálozott jellemző t időfüggvéne minél pontoabban kövee az alapjel rt időfüggvénét.
28 A zabálozái kör ugráválaza végérték dinamiku hibaáv felfutái idő zabálozái idő az ugráválaz elő maximumához tartozó idő
29 Minőégi követelmének
30 artalom ipiku tagok amplitúdó- é fázimenete Bode diagram példák Frekvencia átviteli függvén Hurwitz kritérium A zabálozái kör ugráválaza, minőégi követelmének A lineári rendzer mozgáa Állandóult állapot
31 A lineári rendzer mozgáa Nugalmi állapot Egenúli állapotban valamenni állapotváltozó mozgáa megzűnik, xt = állandó Saját mozgá A nugalmi helzetéből kitérített majd pl. a t = időpontban magára hagott rendzer mozgáa Gerjeztett mozgá A nugalmi helzetben lévő rendzerre adott bemenő jel vált ki Stabili rendzer A nugalmi helzetéből kitérített majd magára hagott rendzer vizatér nugalmi helzetébe vag annak közeli körnezetébe Labili rendzer A nugalmi helzetéből kitérített majd magára hagott rendzer nem tér viza nugalmi helzetébe vag annak közeli körnezetébe
32 artalom ipiku tagok amplitúdó- é fázimenete Bode diagram példák Frekvencia átviteli függvén Hurwitz kritérium A zabálozái kör ugráválaza, minőégi követelmének A lineári rendzer mozgáa Állandóult állapot
33 Állandóult állapot dx Ax t Bu t dt t Cx t Du t lim W u t Ax t Cx t Bu t Du t A Laplace végérték tétel az állandóult állapot ha t jelei zámíthatók, amikor ípu Bemenet Kimenet Átviteli fv. P u b u a I u =!!? D u =!! W W W k k
34 Példa ha, akkor / r cak akkor lehet vége r =, ha e = z r e u u Kezdeti feltétel: r = e u u u u z z r e Laplace tartomán: e r e
35 Példa r e u u 5 3 Időtartomán ha =: e z u u r 4 z u 3 5 u e z 4 felhaználva, hog e = felhaználva, hog z = felhaználva, hog =.5 felhaználva, hog u =.75 Kezdeti feltétel: r = z = =.5 u =.75 u =.5
36 Példa r e u u 3 5 z 4 Kezdeti feltétel: r = e = ; z = ; =.5 ; u =.75 ; u =.5 ;
37
38 Közönöm a figelmet! kovac.levente@nik.uni-obuda.hu
Irányítástechnika. II. rész. Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu
Irányítástechnika II. rész Dr. Turóczi Antal turoczi.antal@nik.uni-obuda.hu Lineáris tagok jelátvivő tulajdonságai Lineáris dinamikus rendszerek, folyamatok Lineáris tagok modellje Differenciálegyenlettel
RészletesebbenElektronika 2. TFBE1302
Elektronika. TFBE3 Szűrők TFBE3 Elektronika. nalóg elektronika ismétlődő feladatai, szűrők Szűrő: Olyan elektronikus rendezés, amely a menetére kapcsolt jelből csak a szűrőre jellemző frekenciasába eső
RészletesebbenELLENŐRZŐ KÉRDÉSEK LENGÉSTANBÓL: A rugóállandó a rugómerevség reciproka. (Egyik végén befogott tartóra: , a rugómerevség mértékegysége:
ELLENŐRZŐ ÉRDÉSE LENGÉSNBÓL: Átaáno kérdéek: Mik a engőrendzer eemei?: engőrendzer eemei: a tömeg(ek), a rugó(k), ietve a ciapítá(ok). Mi a rugóáandó?: rugóáandó a rugó egyégnyi terheé aatti aakvátozáát
RészletesebbenSzabályozástechnika II.
TÁMOP-4.1.1.F-14/1/KONV-215-9 A GÉPÉSZETI ÉS INFORMATIKAI ÁGAZATOK DUÁLIS ÉS MODULÁRIS KÉPZÉSEINEK KIALAKÍTÁSA A PÉCSI TUDOMÁNYEGYETEMEN Jancskárné Anweiler Ildikó Szabályozástechnika II. Pécs 215 A tananyag
RészletesebbenIrányítástechnika 3. előadás
Irányítátechnika 3. előadá Dr. Kovác Levente 203. 04. 6. 203.04.6. Tartalom Laplace tranzformáció, fontoabb jelek Laplace tranzformáltja Stabilitá alaptétele Bode diagram, Bode-féle tabilitá kritérium
RészletesebbenFrekvenciatartomány Irányítástechnika PE MI BSc 1
Frekvenciatartomány ny 008.03.4. Irányítátechnika PE MI BSc Frekvenciatartomány bevezetéének indoka: általában időtartománybeli válaz kell alkalmazott teztelek i ezt indokolák információ rendzerek eetében
RészletesebbenSzámítógéppel irányított rendszerek elmélete hatodik házi feladat Beadási határidő: 2014. 04. 03.
Számítógéppel irányított rendzerek elmélete hatodik házi feladat Beadái határidő: 04. 04. 03. A megoldáokat kézzel kell kizámolni é az ábrákat kézzel kell megrajzolni! Számítógépe programok haználhatóak
RészletesebbenCsak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2011. május 31.
Név, felvételi azonoító, Neptun-kód: VI pont(90) : Cak felvételi vizga: cak záróvizga: közö vizga: Közö alapképzée záróvizga meterképzé felvételi vizga Villamomérnöki zak BME Villamomérnöki é Informatikai
RészletesebbenProgramozható vezérlő rendszerek. Szabályozástechnika
- a legtöbb ipari rendszer tartalmaz valamiféle szabályozási feladatot (pozicionálás) - cél: a folyamat egyes paramétereinek megadott határokon belül tartása - a PLC ezeket képes lekezelni (analóg I/O)
RészletesebbenIrányítástechnika 2. előadás
Irányítástechnika 2. előadás Dr. Kovács Levente 2013. 03. 19. 2013.03.19. Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok
RészletesebbenLíneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.
Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m
Részletesebben2007/2008. tanév. Szakács Jenő Megyei Fizika Verseny I. forduló. 2007. november 9. MEGOLDÁSOK
007/008. tané Szakác Jenő Megyei Fizika Vereny I. forduló 007. noeber 9. MEGOLDÁSOK 007-008. tané - Szakác Jenő Megyei Fizika Vereny I. forduló Megoldáok. d = 50 = 4,4 k/h = 4 / a) t =? b) r =? c) =?,
RészletesebbenLTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai
Diszkrét és hibrid diagnosztikai és irányítórendszerek LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium
Részletesebbenö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő ő Ő ö ű
ö ő ü ö ö ő ö ö ö ö ő ő ő ö ő ő ő ö ő ö ő ő ö ö ő ő ö ö ő ö ö ő ö ö ö ő ő ü ö ő ü ű ö ú ő ú ú ú ő ü ő ü ö ö ú ö ö ö ő ü ö ö ö ő ö ő ö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő
RészletesebbenTartóprofilok Raktári program
Tartóproflok Raktár program ThenKrupp Ferroglou ThenKrupp Nolcadk kadá 6. áprl Ötvözetlen é alacon ötvözéú lemeztermékek Betonacélok Szerzámacélok Melegen hengerelt rúdacélok Könnú - é zínefémek Rozdamente
RészletesebbenSzabályozás Irányítástechnika PE MIK MI BSc 1
Szabályozás 2008.03.29. Irányítástechnika PE MIK MI BSc 1 Nyílt hatásláncú rendszerek Az irányító rendszer nem ellenőrzi a beavatkozás eredményét vezérlő rendszerek ahol w(s) bemenő változó / előírt érték
RészletesebbenSoros felépítésű folytonos PID szabályozó
Soros felépítésű folytonos PID szabályozó Főbb funkciók: A program egy PID szabályozót és egy ez által szabályozott folyamatot szimulál, a kimeneti és a beavatkozó jel grafikonon való ábrázolásával. A
RészletesebbenTartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák
Tartalom Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák 215 1 Tervezési célok Szabályozó tervezés célja Stabilitás biztosítása
RészletesebbenDinamika példatár. Szíki Gusztáv Áron
Dinaika példatár Szíki Guztáv Áron TTLOMJEGYZÉK 4 DINMIK 4 4.1 NYGI PONT KINEMTIKÁJ 4 4.1.1 Mozgá adott pályán 4 4.1.1.1 Egyene vonalú pálya 4 4.1.1. Körpálya 1 4.1.1.3 Tetzőlege íkgörbe 19 4.1. Szabad
Részletesebben2-17. ábra 2-18. ábra. Analízis 1. r x = = R = (3)
A -17. ábra olyan centrifugáli tengelykapcolót mutat, melyben a centrifugáli erő hatáára kifelé mozgó golyók ékpálya-hatá egítégével zorítják öze a urlódótárcát. -17. ábra -18. ábra Analízi 1 A -17. ábrán
Részletesebben1. forduló (2010. február 16. 14 17
9. MIKOLA SÁNDOR ORSZÁGOS TEHETSÉGKUTATÓ FIZIKAVERSENY 9. frduló (. február 6. 4 7 a. A KITŰZÖTT FELADATOK: Figyele! A verenyen inden egédezköz (könyv, füzet, táblázatk, zálógép) haználható, é inden feladat
RészletesebbenTartalom. 1. Számítógéppel irányított rendszerek 2. Az egységugrásra ekvivalens diszkrét állapottér
Tartalom 1. Számítógéppel irányított rendszerek 2. Az egységugrásra ekvivalens diszkrét állapottér 2015 1 Számítógéppel irányított rendszerek Számítógéppel irányított rendszer blokkvázlata Tartószerv D/A
RészletesebbenHungaro-Trading Kft. 2700 Cegléd, Szolnoki út 69. Webáruházaink: www.kazanwebaruhaz.hu www.klimawebaruhaz.hu www.konyhawebaruhaz.
Hugaro-Tradig Kft. 2700 Cegléd, Szoloki út 69. Webáruházaik: www.kazawebaruhaz.hu www.kliawebaruhaz.hu www.koyhawebaruhaz.hu 1 Megredelı: Tervezı: Dá: 2013.01.01. Megjegyzés: Mita Jáos 1111 Budapest Fı
RészletesebbenIpari folyamatirányítás
Mechatronika továbbképzé Ipari folyamatirányítá 3. Előadá A zabályozáok minőégi jellemzői. Alapjelköveté é zavarelhárítá. Stabilitá. Általáno követelmények Értéktartó zabályozá biztoíta a zabályozott jellemző
RészletesebbenDT13xx Gyújtószikramentes NAMUR / kontaktus leválasztók
DOC N : DT1361-1393-62 DT13xx Gyújtószikramentes NAMUR / kontaktus leválasztók Felhasználói leírás DT1361, DT1362, DT1363, DT1364, DT1371, DT1372, DT1373, DT1381, DT1382, DT1384, DT1393 típusokhoz Gyártó:
RészletesebbenGyártórendszerek Dinamikája. Irányítástechnikai alapfogalmak
GyRDin-11 p. 1/19 Gyártórendszerek Dinamikája Irányítástechnikai alapfogalmak Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu GyRDin-11 p. 2/19 Tartalom
RészletesebbenE B D C C DD E E g e 112 D 0 e B A B B A e D B25 B B K H K Fejhallgató Antenna A B P C D E 123 456 789 *0# Kijelzés g B A P D C E 0 9* # # g B B 52 Y t ] [ N O S T \ T H H G ? > < p B E E D 0 e B D
Részletesebbenö ö ö ö ő ö ö ő ö ő ő ő ö ö ő ő ö ö ő ő ű ű ő ő ö ű ő ö ö ő ö ő ö ú ő ö ű ű ő ő ö ű ő ö ö ű ű ő ö ű ő ö ö ű ű ű ű ű ű ű ö ű ő É ö ú ö ö ö ö Ő ö ö ö ö ő ö ö ő ö ö ő ö ö ő ű ö ö ö ö ö ö ő Ö ő ö ö ő ö ő ö
RészletesebbenMembránsebesség-visszacsatolásos mélysugárzó direkt digitális szabályozással
udapeti Műzaki é Gazdaágtudoányi Egyete Villaoérnöki é Inforatikai Kar TUDOMÁNYOS DIÁKKÖRI DOLGOZT Mebránebeég-vizacatoláo élyugárzó direkt digitáli zabályozáal Kézítetteték: aláz Géza V. Vill., greae@evtz.be.hu
RészletesebbenIrányítástechnika (BMEGERIA35I) SOROS KOMPENZÁCIÓ. 2010/11/1. félév. Dr. Aradi Petra
Irányítástechnika (BMEGERIA35I) SOROS KOMPENZÁCIÓ 010/11/1. félév Dr. Aradi Petra Soros kompenzáció Hogyan válasszunk szabályozót? xz xa xr YR Y R YZ YSZSZ xs T H s Y R =? 010.11.1. ASZ 1 1 s 1 s e Y SZ
RészletesebbenÉ Ő É É Á É Á Ü Ú ű Á ü Á ú ü ú ü Á Á Ú Ü ü ű ú ü ú Ü ű Ü ü ü ű ü ü ű ű ü ü ü ü ü ü ú ü ü ú ű ü ü ü ü ü ü ú Ü ü ü Á Ü ú ü ú ü ü ü ü ü ü ú ü Ú ú ü ü ü ü ú ú ű ú ü ü ú ű ü ü É ú ü ü ü ü ú Á ü ü É Á ü ü ü
RészletesebbenMECHANIKA / STATIKA ÉS SZILÁRDSÁGTAN / FELADATOK
/CSK ISKOLI HSZNÁLTR / ECHNIK / STTIK ÉS SZILÁRDSÁGTN / ELDTOK ÖSSZEÁLLÍTOTT: SZEKERES GYÖRGY . eladat: Cı ellenırzé, ébredı fezültégekre. z " é " pontok közé hegeztett cı tengelyére merılegeen hegeztett
Részletesebbená ú é é ő é ő á ő ő á á ú ű é é ö ő á ő ú ő ő á é Ü Ü á é á é á é á é á ö ö á é ő á ú ű é é á é é ő á ö ö á á é é ú é é ú á á ő é é é ö ö á á é ű ő á é ű ő ú ő á á é á ú é é á é ö á á ö Ü á á é é ú á á
Részletesebben492 Lantos-Kiss-Harmati: Szabályozástechnika gyakorlatok. 7. Gyakorlat
49 Lanos-Kiss-Harmai: Sabáloásechnika gakorlaok 7. Gakorla 7. anermi gakorla Idenifikációs algorimusok A korábbi gakorlaok során a sabáloási körben a sakas árvielé a legöbbsör adonak éeleük fel vag fiikai
Részletesebben120 Lantos-Kiss-Harmati: Szabályozástechnika gyakorlatok. 2. Gyakorlat. 2. Tantermi gyakorlat Szabályozási kör analízise
Lantos-Kiss-Harmati: Szabályozástechnika gyakorlatok. Gyakorlat. Tantermi gyakorlat Szabályozási kör analízise A tantermi gyakorlat célja, hogy a hallgatók gyakorlati ismereteket szerezzenek dinamikus
RészletesebbenTörténeti Áttekintés
Történeti Áttekintés Történeti Áttekintés Értesülés, Információ Érzékelő Ítéletalkotó Értesülés, Információ Anyag, Energia BE Jelformáló Módosító Termelőeszköz Folyamat Rendelkezés Beavatkozás Anyag,
RészletesebbenÉ ö ü ú ü ö ú ö ü ö ü ú ü ű ü ü ö ö ö ú ü ö ü ü ö ü ü ü ü ü Ü ü ö ú ü ü ö ö ö ö ö ö ö ö ö ö ö ö ö ö ü ö ü ö ü ö ö ú ö ü ö ü ö ö ö ú ö ö ö ö ú ú ö ü ö ü ú ü Ú É ö ö ö ö ö ú ö ű ö ű ö ú ö ö ú Ú ü ö ö ö ö
Részletesebben3. számú mérés Szélessávú transzformátor vizsgálata
3. számú mérés Szélessávú transzformátor vizsgálata A mérésben a hallgatók megismerkedhetnek a szélessávú transzformátorok főbb jellemzőivel. A mérési utasítás első része a méréshez szükséges elméleti
Részletesebbenő ü ő ü ő ü ő Ő ü ő ú ő ű ü ú ő ű ű ű ú ű ő ő ő ő ő Ó Á Á ő ő ő ő ő ő ő ő Ó Ó ü ő ő ő ő ő ő ő ü ő ü ő ü ü ü ü ü ő Á ő ő ő ő ő ő ő ő ő ő ü ő ü ü ő ű ő ü ő ő ü ő ő ő ü ű ű ű ű ű ú ű ú ű ú ü É ü ő É ű ő ű
Részletesebben2. Hatványozás, gyökvonás
2. Hatványozás, gyökvonás I. Elméleti összefoglaló Egész kitevőjű hatvány értelmezése: a 1, ha a R; a 0; a a, ha a R. Ha a R és n N; n > 1, akkor a olyan n tényezős szorzatot jelöl, aminek minden tényezője
RészletesebbenÉ Ú ű Ö ű ű ű ű ű Ü ű ű ű ű ű Ú Ü ű Ú Ö ű ű Ö ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű Ö Ö ű É ű Ö ű Ö Ú Ó ű ű Ü Ú ű É Ó ű ű ű Ö ű ű É ű É É Ö É É É É É Ö Ö É Ú É Ó Ú É É Ö Ö Ö ű Ó ű Ö ű ű ű ű
Részletesebbenű ű ű ű ű ű Ú ű ű ű ű ű ű ű ű Ú ű ű ű Ú ű ű ű ű Ó ű ű ű ű Ü É ű ű ű ű ű ű ű ű ű ű ű ű Ú É ű ű ű É Ó Ú Ó Ü Ő Ó Ó ű É ű ű ű É ű É ű ű ű ű Ö Ü ű ű ű ű ű ű ű ű ű ű ű ű É ű É É ű Ö ű ű ű ű É ű ű ű ű ű ű ű Ö
RészletesebbenÜ Ú Ú Á Á Ő É é ö é é é é é ü ö é é é é é é é é é é ö é ö ö ö é é é é é é ö é é é é ö é ű é é é ö é é é é éé ö é éö é é ö é é é é ö é ű é é é ö ö é é é é é ö é ö é é ö ö é ö é é é é é é ü é é ö é é é é
RészletesebbenÉ Ő ú ú Ü Ú Ü ú Ü Ú Ú Ú Ü Ü Ú ű Ü ú É Ü Ü Ü Ú ú ű Ü Ü Ü ű ű Ü Ü ú Ú ű Ü ű Ú ű Ü ű Ú Ü É É ű É É É É É Ü Ü Ü É ÉÉ Ö ú É É É É ÉÉ É É É ű ú Ó Ö ú Ó Ö ú Ó ú ú Ü Ü ú É É É Ö Ö Ö Ó Ü Ú Ó É É É É Ü Ú Ó Ő Ó ú
Részletesebbenö ó É ó Ú ÜÉ ó ö ó ó ö É ó ó ó ó Ü ó ó É ó ó Ú ó ő Úó É ö ó Ü ó ó ó ó Ú ó Ü ó É Ó ő ó ó ó ó ö É ö ó ó Ü ó É ö ó ó ó É ó É Ü ó ó ö ú Ö É Ú É Ü É ó ó ó Ü ó Ü ő É Ö Ó É ó ó ó ó ó ó ó ó ó ö ó Ó ő ö ó ó ó ó
RészletesebbenÚ É ő ő ő ő ő Ú É ő ő ő ő ű ű ő ő ő ő ő ű ű ő ő ő Ú ő Ú É É Ú Ú ű ű ő ő É ő Ó ű ű ő ő ű ő É Ó Ü ő ű ő ő ű ő ű Ó É É Ó Ü Ü ő Ú Ü É É Ú É É ő É Ú É Ó É Ü ő ő Ú É ő ő ű ő ű Ú ő Ü É Ú É ő ő É É ű ő Ú É Ü ű
RészletesebbenÖ É ű Ú ő Ú ő ű ő ő ő ű Ü ő Ú Ú Ú Ú Ú ű Ü É ű ő ő Ú Ú É Ú ő Ú ő Ú ő É ő Ó É ő ű ű ő ő ő Ó Ú Ó ő ő Ü ő ő ű Ü Ú Ú Ü Ú Ó Ú Ú Ü Ü Ü ő Ö Ö É É É É É É Ó ő ő ű ő ű ű ű ő ő Ú É Ú É Ü űé É Ú ő ő É ő Ü ő ű É É
RészletesebbenElméleti közgazdaságtan I.
Elméleti közgazdaságtan I. lapfogalmak és Mikroökonómia FOGYSZTÓI MGTRTÁS (I. rész) fogasztói preferenciák Eg játék fogasztónak felkínálunk két kosarat azzal, hog bármelik az övé lehet minden egéb feltétel
RészletesebbenÉ ü ü ű ü Ü ü É É ü Ó Ú É É Ö É Ó ű ű ű ű ü ű ü ü Ú ü ű ü ü ű ü Ó ü ü ü ű ü ü ü ü ü ü Ö Ü ű ü ü ü ü ű ü ü É ű ü ü ü ü ű Ü Ö É ü ü ü ü É ü ü ü É ü ű ű ü ü ü ü ü ű ü ü ü Ó ü ü ű ű ü ü ü ü ü ü É ű ü É Ó ü
RészletesebbenMEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KIALAKÍTÁSA 3 REPÜLŐKÉPESSÉG
Dr. Óvári Gula 1 - Dr. Urbán István 2 MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KILKÍTÁS 3 cikk(soroatban)ben a merev sárnú repülőgépek veérsík rendserinek terveését és építését követheti nomon lépésről
Részletesebbenű ű ú ű ű ú ú Í É ú ú ű ú ű ű ű ű Í ű ú Ü ű ű ú ú ú ú ú ű ű Á Í Ú ú Í ú ű ú ú ú ú ú ú ú ú ú ú ú ú ű ú ű Ú ú ú Í ú ú Ü ű ű ű ú ű Í ú ú ű ű ű ű ű Í ú ű ű ű Í ű ú ú ű Á ú ú ú ű ú ú ú ú ú ű Í ú ú ú ű ű ű ű
RészletesebbenÜ ű í í Í ű í í í ű í Í í í í ú Ü Ü í É í ű í Í Ö Í ú ű Ö í ú ű í Ö í É í í í í É Ö É É Ö í í Í É í Ö í í í í ú ú ú í ú í ú É í í í í í Ö í í É í í Ö í í í í í í í í í í í í í Ö Ö Ö í í ú Í Ö Ö í í í
RészletesebbenÉ ö é ö ő é é ű í é ö é é é é ő é é í Ő Ő Ő é ö ö é é ö ő é É é é é é é é é é í é é ö é é é é Ö é é é é é é ö Ü é é ö é é é é í é é é é é é é é ö é é é é Ö Ö í í é é ö é é é é é ő é é é ö é é ő é é ő é
RészletesebbenÖ é ü ú é Ö é ü Ö é ü ú é é ü é é é Ö é ü ú é ü ü é é ú Í é ü é é é ü Í é é é é é ü é é é ú é ü ú Í é Í é ü é é é ü é é é é Í é é é é é é é é é é é é é é é é é é Í é é ú ú é Ö é ü é ú é é ü é é ü é ú ü
RészletesebbenÉ ő é é ő ő ö ú é é é é é é é ő é é é ű é ö é é é é ő é é é é é ő ő é ő ö é é ö ő ú é é ő é é ő é ő é é ű é ő é é é ő ú ú é ö é ő é é é ő é é ö é é ö ő é é é ö ö é ő ö é ő é é é ü ö é ő é é ö é ő ő é é
RészletesebbenKapcsolóüzemű feszültségstabilizátorok túlterhelés elleni védelme ETO 621.376.722.1:621.316,
D. EDL ICHÁD BME Mikrohullámú Híradástechnika Tanszék Kapcsolóüzemű feszültségstabilizátorok túlterhelés elleni védelme ETO 621.376.722.1:621.316, A -félvezető kapcsolóeszközök fejlődésének következtében
Részletesebbenú Ü ü ő ü Í ü ü ü ő ú ú ú ü Í ú Í Í ő ü ő ü ü ü ü ü ő ü ő ú ü ü ü Í ü ő ő ő ő ő ü ü Í ú ú ü ő ő ő ő ü Í ő ő ü ü ú ü ü ü ő ő ú ő ü ú ő ő Í ú ü ú ú ü ő ő ü ő ő ü ú ő ő ő ő ü ü ü ű ő ő Í ő ő ű ő ű Í ő Í ő
Részletesebben3. előadás Stabilitás
Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása
RészletesebbenFogaskerék hajtások I. alapfogalmak
Fogaskeék hajtások I. alapfogalmak A fogaskeekek csopotosítása A fogaskeékhajtást az embeiség évszázadok óta használja. A fogazatok geometiája má a 8-9. században kialakult, de a geometiai és sziládsági
RészletesebbenA gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:
. Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,
RészletesebbenK=1, tiszta anyagokról van szó. Példa: víz, széndioxid. Jelöljük a komponenst A-val.
EGYKOMPONENS RENDSZEREK FÁZISEGYENSÚLYA FÁZISOK STABILITÁSA: A FÁZISDIAGRAMOK K1, tiszta anyagokról van szó Példa: víz, széndioxid Jelöljük a komonenst A-val Legyen jelen egy ázis Hogyan változik az A
RészletesebbenAz analízis néhány alkalmazása
Az analízis néhány alkalmazása SZAKDOLGOZAT Eötvös Loránd Tudományegyetem Természettudományi kar Szerz : Fodor Péter Szak: Matematika Bsc Szakirány: Matematikai elemz Témavezet : Sikolya Eszter, adjunktus
RészletesebbenDT920 Fordulatszámmérő
DOC N : DT920 No EEx-62 DT920 Fordulatszámmérő Felhasználói leírás Gyártó: DATCON Ipari Elektronikai Kft 1148 Budapest, Fogarasi út 5 27 ép Tel: 460-1000, Fax: 460-1001 2 Tartalomjegyzék 1 Rendeltetés4
Részletesebben5. ROBOTOK IRÁNYÍTÓ RENDSZERE. 5.1. Robotok belső adatfeldolgozásának struktúrája
TARTALOM 5. ROBOTOK IRÁNYÍTÓ RENDSZERE... 7 5.. Robotok belső adatfeldolgozásának struktúrája... 7 5.. Koordináta transzformációk... 5... Forgatás... 5... R-P-Y szögek... 5... Homogén transzformációk...
RészletesebbenKiegészítés a Párbeszédes Informatikai Rendszerek tantárgyhoz
Kiegészítés a Párbeszédes Informatikai Rendszerek tantárgyhoz Fazekas István 2011 R1 Tartalomjegyzék 1. Hangtani alapok...5 1.1 Periodikus jelek...5 1.1.1 Időben periodikus jelek...5 1.1.2 Térben periodikus
RészletesebbenÉ É ö ű ő ő ü ö ü ö Í ú ö ö ö ö ú ö ü ö ö ö ö ö ü ö ö ő ö ö ö ő ő ú ö ö ő ő ő ő ü ő ő ö ő ö ö ö ő ú ő ö ö ü ö ö ö ő ú ö ö ő ő ő ő ű ú ő ö ő ő ő ő ü ő ő ö ú Ü ő Í ö ö ö ö ő ő ő ö ö ö ö ö ü Í ö ő ő ő ő ö
RészletesebbenMérés és adatgyűjtés
Mérés és adatgyűjtés 5. óra Mingesz Róbert Szegedi Tudományegyetem 2012. március 10. MA - 5. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/47 Tartalom I 1 Elektromos mennyiségek mérése 2 A/D konverterek
RészletesebbenÁ Á É É É ö É Ó ú Á ú Á Á Á Á ö Á ő ű ú ö ö ú ű ú É ő ö ú ú ű ö ű ő Ú Ú ú ő ö ö ő ö ö Á ö Á ö ú ű ö ö ö ö ö ö ö ö ö ő ö ö ö ö ő ö Á ö ő ö ö ő ú ú ö ö ő ö ö ö ö ú ö ú ö ő ú ö ö ö ö ö ú ö ú ú ö Ú ő ű ő ö
RészletesebbenBevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi
Tartalom Bevezetés az állapottér-elméletbe Irányítható alak Megfigyelhetőségi alak Diagonális alak Állapottér transzformáció 2018 1 A szabályozáselmélet klasszikus, BODE, NICHOLS, NYQUIST nevéhez kötődő,
RészletesebbenLaplace transzformáció
Laplace tranzformáció 27. márciu 19. 1. Bevezeté Definíció: Legyen f :, R. Az F ) = f t) e t dt függvényt az f függvény Laplace-tranzformáltjának nevezzük, ha a fenti impropriu integrál valamilyen R zámokra
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. október 21. 8:00. Az írásbeli vizsga időtartama: 240 perc
É RETTSÉGI VIZSGA 2008. október 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenÍ Á É ő ő ő ú ú ő ő ő ő ő ő ő ő í ő ő ő ő ő ű í ő ű ő ú ő ű ő ő ő ő Á í í í ő ő ő ő í í ő í ü ő í ő í í í ő í ő í ő í ő ő í í ő ő ü ő í ő í ő ő ő ő í í í ő í ő ü í í ő ő ő ő ő í ü ű ő í í í ő í í ő ő ő
RészletesebbenDeterminisztikus folyamatok. Kun Ferenc
Determinisztikus folyamatok számítógépes modellezése kézirat Kun Ferenc Debreceni Egyetem Elméleti Fizikai Tanszék Debrecen 2001 2 Determinisztikus folyamatok Tartalomjegyzék 1. Determinisztikus folyamatok
Részletesebben1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója?
1. Prefix jelentések. 10 1 deka 10-1 deci 10 2 hektó 10-2 centi 10 3 kiló 10-3 milli 10 6 mega 10-6 mikró 10 9 giga 10-9 nano 10 12 tera 10-12 piko 10 15 peta 10-15 fento 10 18 exa 10-18 atto 2. Mi alapján
RészletesebbenHobbi Elektronika. Bevezetés az elektronikába: Scmitt-trigger kapcsolások
Hobbi Elektronika Bevezetés az elektronikába: Scmitt-trigger kapcsolások 1 Az NE555 mint Schmitt-trigger Ha az NE555 trigger és treshold bemeneteit közös jellel vezéreljük, hiszterézissel rendelkező billenő
RészletesebbenSZABÁLYOZÁSI KÖRÖK 2.
Irányítástechnika (BMEGERIA35I) SZABÁLYOZÁSI KÖRÖK 2. 2010/11/1. félév Dr. Aradi Petra Zárt szabályozási körrel szemben támasztott követelmények tulajdonság időtartományban frekvenciatartományban pontosság
RészletesebbenÉ ú ú ú ú ú ú ú ú ú É É ú ű ú ű ú Ú Ü ú ú ú ú ű ú ú ű ú ú ú ú ú ú ű ú ú ű Ü ű ű ú É É ű É ű É ú ú ú ű É ú ú ú ú ú ú ú ú ú ú ú ű ú ú ű Á ú É ű ű ú ú ú ú ű ű ű ú ű ú ú ú ú ú ú ű ú ú Ú ű ú ű ű ú ú ű Ü ú ű
RészletesebbenÉ ú ú Á É ú É ű Á Ú ú ú ú ű ú É ű ú ú ű ú ú ű ú ú ű ú ú ú ú ú ú ű ű ű ú Á Á ű É É ú ú ú ú ú ú ű Ü ű ű ű Ö Ú ú Ú ú ű ú ú ű ú ű ű ú ú Ö ű ú ú ú ű ű ű ű ú ú É É ű ű É É ú ú ű Á ú ú ú É Ú ű ú ú ű ú ú ú Ü ú
RészletesebbenFeladatgy jtemény az Irányítástechnika II. c. tárgyhoz
BME Közlekedéautomatikai Tanzék Feladatgy jtemény az Irányítátechnika II. c. tárgyhoz Özeállította: Dr. Bokor Józef egyetemi tanár Dr. Gápár Péter egyetemi tanár Bauer Péter tudományo munkatár Lupay Tamá
RészletesebbenSzivattyú- és ventilátorvezérlı alkalmazás
6-1 (par. 0. 1 = 7) TARTALOM 6.. 6-1 6.1 Általános bevezetı.. 6-2 6.2 Vezérlı I/O. 6-2 6.3 Vezérlıjel-logika.. 6-3 6.4 Alapparaméterek, 1. csoport. 6-4 6.4.1 Paramétertáblázat, 1. csoport 6-4 6.4.2 Az
RészletesebbenÉ Ő É é ö í é í é í í Ú é é é í í ő ö ö é É Ó É Á í é ő é í í í Í Í í í É É É í é é í Í é Íő é í é í é í í Í ú é é ű í í é í í Í ö ö ő é ö ö é é í Á ő é é é í é Í ö é é é é é é ö Í ö é é é í í é ö í í
Részletesebbenő Á ú ő ú ő ú ú ú ő ő ő ű ú ű ő ő ú ő ő ő ú Á ő ú ő ő ú ő ő É É ú ő ő Ú ő É ú ú ő ő ő ő ő É ő ő ú É ű ű ű ú ő ő É ő ű ő ő É ú É ú ő ő ű ú ű ő ő ú ú Ú ú Ü ő ű ú ő ű ő ő ú ő ő ő ő ú ő ő ú ú ő ú ő ú ű ű É
RészletesebbenÁ ö ü ö ő ö ű ö ú ú ö ú ő ő Á ő ő ö ú ü ő ő ú ő ő ő ő ö ü ő ő ú ő ö ö ü ü ő ö ü ü ö ő ú ő ő ő ö ú ú ö ö ú ő ü ü Ü ő ö ő ű ü ö ú ú ú ö ő ö ő ö ú ö ű ő ő ö ő ö ü ö É É É É Ú É É É É É öö É É ő É ö É
RészletesebbenPILÓTANÉLKÜLI REPÜLŐGÉP REPÜLÉSSZABÁLYOZÓ RENDSZERÉNEK ELŐZETES MÉRETEZÉSE. Bevezetés. 1. Időtartománybeli szabályozótervezési módszerek
Szabolcsi Róbert Szegedi Péter PILÓTANÉLÜLI REPÜLŐGÉP REPÜLÉSSZABÁLYOZÓ RENDSZERÉNE ELŐZETES MÉRETEZÉSE Bevezetés A cikkben a Szojka III pilótanélküli repülőgép [8] szakirodalomban rendelkezésre álló matematikai
RészletesebbenÉ Ú ú Á Ú Ú Á Á Ú ú ú ú Ú ú Á Ú Ü Ü ű ű ú ú ú ú Ü ú Ü Ú ú ű ú É ú Ü ű ú ú Ú É É Á Á Á Á Ü ú Á Á É Ú É ú Á Ü É Ü Ü Ü Ü Á Á ű ú ű ú Ü ű Á ú ű ű ú ű ű ű ú ű ű ű ű ú Ü É ű ú ű Ü ű ú ű Ü Ü Ü ú Ú ú ú ú ű ú ű
RészletesebbenÁ ű Ú ÚÉ Á Á Ü Ü ű Ü Ü Ü Ú Ü Ü Ü É Ú Ü ű Ü Ü Ö ű ű Ü Ü Ü Ü Ü ű ű ű Ú ű ű Ú ű ű ű ű Á Ú É Á ű Á É Á Ú ű Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á ű Á Á Á Á Á É ű Ü ű Á ű ű ű Á ű Ú Ó Á Á ű Ú ű Ü ű Ü Á Á ű ű É
Részletesebbenú ő ü ő ő ü ő ű ű ő ü ü ő ő Ü Á ő ü ő ő ü ő ő ü ő ú ő ő ő ü ő ő ő ő ő ő ü ő ü ő ő ű ű ő ü ő ő ő ü ő ü ő ű ő ü ő ő ő ő ü ü ü ő ő ű ú ü ü ő ő ő ő ü ü ő ő ő ü ő ő ő ő ű ő ú ő ő ü ő ő ü ő ő ő ű ő ő ű ü ü ő
RészletesebbenÍ Ó ö ő ő ö ö ó ö ö ó ö ö ö ő ó ó ö ö ő ő ő ó ö ö ó ó ó ó ó ó ó ö ó ú ő ö ő ó ö ó ö ő ö ő ö ő ö ö ó ó ő É É Ú Ú Ő ú ó ó Ü Ő ő É É ú É ő ó ó ú ö ó ó ő É É É ó ű ő ú ó ő ő ó ó ó ó ö ö ó ó ö ő ú ö ö É É É
Részletesebben