Fogaskerék hajtások I. alapfogalmak

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fogaskerék hajtások I. alapfogalmak"

Átírás

1 Fogaskeék hajtások I. alapfogalmak

2 A fogaskeekek csopotosítása A fogaskeékhajtást az embeiség évszázadok óta használja. A fogazatok geometiája má a 8-9. században kialakult, de a geometiai és sziládsági méetezés kifejlesztése jóészt a 0. században tötént. A fogaskeékhajtást alkotó fogaskeekeken kialakított fogazat biztosítja a kényszekapcsolatot a tengelyek között. A fogaskeékhajtások feladata mozgás átvitele (fogó, hossziányú eltolás), átalakítása illetve, nyomatékátvitel megvalósítása. A mozgásátvitel fogazatuk évén alakzáással töténik, miközben a kimenő fodulatszámot is megváltoztathatják (módosíthatják) a bemenő fodulatszámhoz képest.

3 Az egymással kapcsolódó fogaskeekek tengelyvonalainak viszonylagos helyzete szeint páhuzamos, metsződő és kitéő helyzetű tengelyvonalú hajtásokat különböztetünk meg. Páhuzamos tengelyek esetén (. ába): Abban az esetben, ha a hengees keekek külső felületén helyezkedik el a fogazat, külső fogazatól beszélünk, míg a keék belső hengepalástján belső fogazat alakítható ki. A hengees keekek készülhetnek egyenes vagy fede fogiányvonallal. Végtelen nagy sugaú hengees keéknek tekinthető a fogasléc 3

4 a) egyenes fogazat b) fede fogazat c) nyíl fogazat d) belső fogazat. ába. Fogazat kapcsolódások páhuzamos tengelyek esetén 4

5 Metsződő tengelyek esetén: A két tengely közötti kapcsolatot kúpkeekekkel lehet megvalósítani, amelyek általában külső fogazatúak és kialakíthatóak egyenes, fede, nyíl vagy ívelt fogiányvonallal (. ába). A metsződő tengelyvonalak által bezát szög legtöbbszö90 o,deettőleltéőislehet. a) egyenes b) fede c) nyíl d) ívelt fogiányvonal. ába. Fogazat kapcsolódások metsződő tengelyek esetén 5 (kúp és tányékeék kapcsolatok)

6 Kúpkeék kapcsolatok Egyenes, fede, ívelt fogazat (kúpkeék kapcsolatok) 6

7 Kitéő tengelyek esetén: A hajtás megvalósítható az ún. csavakeékpáal, amely különböző hajlás ételmű fede fogazatú hengees keékpá különleges esete (3.a ába). A csigahajtást, amely hengees csigából és csigakeékből áll, 90 o -os tengelyszög esetén használják. A leggyakoibb kivitel a henge-globoid(3.b ába) és a globoid-globoid hajtás. (3.c ába). a) Csavakeékpá b) Csigahajtás: henge-globoid c) Csigahajtás: globoid-globoid 3. ába. Fogazat kapcsolódások kitéő tengelyek esetén 7

8 Fogaskeekek jellemző geometiai méetei Elnevezések 4. ába 8

9 5. ába 9

10 p osztás m modul h f foglábmagasság b fogszélesség ρ f fogtő lekeekítési sugá s osztóköi fogvastagság d osztóköátméő d a fejköátméő d f lábköátméő e osztóköi fogáokszélesség h teljes fogmagasság s a fogfejvastagság d l hatáköátméő s a fogfejmagasság 0

11 A fogaskeekek méeteinek meghatáozásáa bevezették a modul fogalmát (m), melynek méetválasztékát szabványosították. Így az osztóköátméő: d = m z Az osztókö keületén zdb fogat elosztva kapjuk az osztóköi íven mét osztást: p d π m z π = = = m z z π

12 A kapcsolódási feltételek, az áttétel és a fogszámviszony A csúszásmentes gödülés feltétele a kapcsolódó keekek éintkezési pontjában a keületi sebességek megegyezése a O ω n n ω v =. ω v =. ω O 6. ába

13 v = ω = π n = v = ω = π n az -es index a hajtó keéke, a -es index a hajtott keéke vonatkozik a hajtás áttétele: i = = = = ω ω n n d d i i > < lassító áttétel esetén, gyosító áttétel esetén. A keekek fogszámát -veljelölve bevezethető a fogszámviszony fogalma: z u = u > z az -es index a kisebb fogszámú keéke (kiskeék), a -es index a nagyobb 3 fogszámú keéke vonatkozik.

14 A fogazat kapcsolódás alap feltétele A fogaskeékpá helyes fogazatkapcsolódásának alapvető feltétele, hogy i=ω / ω állandó maadjon a kapcsolódás egész folyamata alatt! Az áttétel állandóságának a feltétele, hogy a két fogpofil (p, p ) bámely éintkezési pontjában (P) állított közös fogmeőleges (n) átmenjen a C főponton (amely az, köök éintkezési pontja), (5. ába). A P pontban a sugaak R, R, a keületi sebességek nagyságúak. A pofilmeőleges iányába eső sebességkomponenseknek egyenlőnek kell lenni ahhoz, hogy a két fogpofil a kapcsolódás egész folyamata alatt éintkezésben maadjon: 4

15 b b b ψ v n = R ω cos ψ = R ω cos ψ = v n O b v b t t b p v t v = v n n n n n n n n R R v v v v =R =R =R =R ω N C P v =R ω n p ψ ψ ψ N b R b b b R O b 7. Ába Fogmeőleges (Willis) tétel 5

16 az O N P és O N P háomszögekből cos ψ = b R cosψ = b R R R R R b b = ω ω i b b = = ω ω az O N C és O N C háomszögekből, = = = i b b állandó Tehát bebizonyítottuk, hogy az áttétel állandó, ha a közös pofilmeőleges átmegy a C főponton. Ez a fogmeőlegességől szóló tétel (Willis-tétel). A keületi sebességek éintőiányba eső sebességkomponensei nem egyenlők (csak a C főpontban!), tehát csúszásól beszélünk. 6

17 A keületi sebességek éintőiányba eső vt vt sebességkomponensei nem egyenlők (csak a C főpontban!), tehát csúszásól beszélünk. A csúszási sebesség: vs = vt vt A kapcsolóvonal, az ellenpofil és a kapcsolószám Az előzőekben látottak alapján: ha felveszünk egy tetszőleges fogpofilt, és az éintkezési ponton keesztül meghúzzuk a pofil meőlegest, akko az átmegy a Cfőponton. Ez az eljáás a Reuleaux szekesztés, amely segítségével egy fogpofilhoz két lépésben ellenpofilt szekeszthetünk: 7

18 adott fogpofilhoz kapcsolóvonal szekesztése 8. ába 8

19 adott fogpofilhoz és kapcsolóvonalhoz ellenpofil szekesztése 9. ába 9

20 Az a ponthoz tatozó A kapcsolópontot megkapjuk - Az a ponton keesztül köívet ajzolunk, mivel az a csakis az O középpontból húzott köíven mozoghat. - Az a pontban a foggöbée meőlegest állítunk, ami kimetszi az a ' talppontot. a a Az távolság a fogmeőleges hossz. - Az a kapcsolódási helye az A pont egyészt ajta van az a - en keesztül ajzolt köíven (a fejköön), másészt a C főponttól a a ' távolsága helyezkedik el ( AC ), mivel a kapcsolódás pillanatában az a a C-ben van! 0

21 Ellenpofil: -A keekek összegödítéseko az a a ntalppontok meghatáozzák az ellenpofil a a ntalppontjait. -A b a '' távolságnak ugyanakkoának kell lenni mint, az a a ' távolságnak! -Az A kapcsolópont az ellenkeéken az O középpontú köíven mozdulhat el, tehát a -ből a a ' távolsággal elmetsszük a köívet, akko megkapjuk a b pontot.

22 Pofil kapcsolószám Egy fogoldal kapcsolódása soán, a gödülőköökön az ' ' '' '' a és ívdaabok gödülnek le egymáson. Ahhoz, an aa n hogy a folyamatos kapcsolódást biztosítani tudjuk, a ' ' teljes aanív legödülése előtt a következő fogpának is má éintkezésbe kell lépni egymással! Ez azt jelenti, hogy a fogak gödülőköön (osztóköön) mét távolságának, vagyis a posztásnak kisebbnek kell ' ' lenni, mint az a a ívhosszúság! n ' ' a a ε = n > α p ε α =,5,

Hajtások 2 2014.11.08.

Hajtások 2 2014.11.08. Hajtások 2 2014.11.08. 3. Lánchajtás Lánc típusok Folyóméteres görgős láncokat kívánság szerinti hosszúságúra vágják A füles láncok számos típusa elérhetõ, mellyel a szállítási feladatok döntõ része megvalósítható.

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA

BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA Pék Johanna BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA (Matematika tanárszakos hallgatók számára) Tartalomjegyzék Előszó ii 0. Alapismeretek 1 0.1. Térgeometriai alapok............................. 1 0.2. Az ábrázoló

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

GÉPSZERKEZETTAN - TERVEZÉS. Kúpkerekek tervezése

GÉPSZERKEZETTAN - TERVEZÉS. Kúpkerekek tervezése GÉPSZERKEZETTAN - TERVEZÉS Kúpkerekek tervezése 1 Egyenes fogú Ferde fogú Ívelt fogú Zerol fogazat Kúpkerekek típusai egyenes ferde ívelt zerol Gépszerkezettan - tervezés Kúpkerekek 2 Egyenes fogú kúpkerékpár

Részletesebben

Mikrohullámok vizsgálata. x o

Mikrohullámok vizsgálata. x o Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I. Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.

Részletesebben

(2) A R. 3. (2) bekezdése helyébe a következő rendelkezés lép: (2) A képviselő-testület az önkormányzat összes kiadását 1.1369.

(2) A R. 3. (2) bekezdése helyébe a következő rendelkezés lép: (2) A képviselő-testület az önkormányzat összes kiadását 1.1369. Enying Város Önkormányzata Képviselő-testületének 20/2010. (X. 05.) önkormányzati rendelete az Enying Város Önkormányzatának 2100. évi költségvetéséről szóló 7/2010. (II. 26.) önkormányzati rendelete módosításáról

Részletesebben

Villamos művek 8. GYŰJTŐSÍNEK

Villamos művek 8. GYŰJTŐSÍNEK 8.1 Felaata, anyaga, elenezése 8. GYŰJTŐSÍNE A gyűjtősín a villamos kapcsolóbeenezés azon észe, amelye a leágazások csatlakoznak. A gyűjtősínnek, mint a kapcsolóbeenezés tében széthúzott csomópontjának

Részletesebben

Gyakorló feladatok Tömegpont kinematikája

Gyakorló feladatok Tömegpont kinematikája Gyakorló feladatok Tömegpont kinematikája 2.3.1. Feladat Egy részecske helyzetének időfüggését az x ( t) = 3t 3 [m], t[s] pályagörbe írja le, amint a = indulva a pozitív x -tengely mentén mozog. Határozza

Részletesebben

TERMÉKEK MÉRETVÁLASZTÉKA ÉS KERESZTMETSZETI JELLEMZŐI

TERMÉKEK MÉRETVÁLASZTÉKA ÉS KERESZTMETSZETI JELLEMZŐI TERÉKEK ÉRETVÁLASZTÉKA ÉS KERESZTETSZETI JELLEZŐI Alkalmazott jelöléek r ajlítái ugár, mm zelvény falvatagága, mm A a kereztmetzet felülete, cm 2 a zelvény egyégnyi tömege, kg/m S a kereztmetzet úlypontja

Részletesebben

2. előadás: További gömbi fogalmak

2. előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással

Részletesebben

Mobilszerkezetek mechatronikája

Mobilszerkezetek mechatronikája Mobilszekezetek mechatonikája A közeljövő új navigációs endszeei Ütközés-megelőzés Kocsi követés Automatikus pakolás Ütközés-megelőzés Az adaptív menetvezélés (ACC egyik alapvető feltétele a jámű megfelelő

Részletesebben

Feladatok GEFIT021B. 3 km

Feladatok GEFIT021B. 3 km Feladatok GEFT021B 1. Egy autóbusz sebessége 30 km/h. z iskolához legközelebb eső két megálló távolsága az iskola kapujától a menetirány sorrendjében 200 m, illetve 140 m. Két fiú beszélget a buszon. ndrás

Részletesebben

VONALVEZETÉS TERVEZÉSE

VONALVEZETÉS TERVEZÉSE VONALVEZETÉS TERVEZÉSE A vonalvezetés tervezésének általános követelményei A tervezési sebesség Látótávolságok Vízszintes vonalvezetés Magassági vonalvezetés Burkolatszélek vonalvezetése Térbeli tervezés

Részletesebben

Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés

Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés 6. MENETMEGMUNKÁLÁSOK A csavarfelületek egyrészt gépelemek összekapcsolására (kötő menetek), másrészt mechanizmusokban mozgás átadásra (kinematikai menetek) szolgálnak. 6.1. Gyártási eljárások a) Öntés

Részletesebben

A műszaki rezgéstan alapjai

A műszaki rezgéstan alapjai A műszaki rezgéstan alapjai Dr. Csernák Gábor - Dr. Stépán Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanikai Tanszék 2012 Előszó Ez a jegyzet elsősorban gépészmérnök hallgatóknak

Részletesebben

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK A ALAPFOGALMAK ÉS ALAPTÖVÉNYEK Elektromos töltés, elektromos tér A kémiai módszerekkel tová nem ontható anyag atomokól épül fel. Az atom atommagól és az atommagot körülvevő elektronhéjakól áll. Az atommagot

Részletesebben

Újrakristályosodás (Rekristallizáció)

Újrakristályosodás (Rekristallizáció) Név: Szatai Sebestyén Zalán Neptun-kód: C7283Z N I 11 A Újrakristályosodás (Rekristallizáció) Eszközök: 99,99%-os tisztaságú alumínium próbatest Fém körző Vonalzó Karcolótű Fémnyújtó C-ra hevített kemence

Részletesebben

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges

Részletesebben

1. A kutatások elméleti alapjai

1. A kutatások elméleti alapjai 1. A kutatások elméleti alapjai A kedvezőbb kapcsolódás érdekében a hipoid fogaskerekek és az ívelt fogú kúpkerekek korrigált fogfelülettel készülnek, aminek eredményeként az elméletileg konjugált fogfelületek

Részletesebben

Szuszpenziók tisztítása centrifugálással

Szuszpenziók tisztítása centrifugálással Szuszpenziók tisztítása centiugálással 1. Elméleti bevezető A centiugálás művelete a centiugális eőté kihasználásán alapuló hidodinamikai szepaációs művelet. A centiugális eőtében a centipetális eőnek

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

II./2. FOGASKEREKEK ÉS FOGAZOTT HAJTÁSOK

II./2. FOGASKEREKEK ÉS FOGAZOTT HAJTÁSOK II./. FOGASKEREKEK ÉS FOGAZOTT HAJTÁSOK A FOGASKEREKEK FUNKCIÓJA ÉS TÍPUSAI : Az áéel (ahol az index mindig a hajó kereke jelöli): n ω i n ω A fogszámviszony (ahol az index mindig a kisebb kereke jelöli):

Részletesebben

2. ábra Soros RL- és soros RC-kör fázorábrája

2. ábra Soros RL- és soros RC-kör fázorábrája SOOS C-KÖ Ellenállás, kondenzátor és tekercs soros kapcsolása Az átmeneti jelenségek vizsgálatakor soros - és soros C-körben egyértelművé vált, hogy a tekercsen késik az áram a feszültséghez képest, a

Részletesebben

Körmozgás és forgómozgás (Vázlat)

Körmozgás és forgómozgás (Vázlat) Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen

Részletesebben

Szuszpenziók tisztítása centrifugálással

Szuszpenziók tisztítása centrifugálással Szuszpenziók tisztítása centiugálással Vegyipai mveletek labogyakolat 1. Elméleti bevezető A centiugálás mvelete a centiugális eőté kihasználásán alapuló hidodinamikai szepaációs mvelet. A centiugális

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elektronika. TFBE3 Szűrők TFBE3 Elektronika. nalóg elektronika ismétlődő feladatai, szűrők Szűrő: Olyan elektronikus rendezés, amely a menetére kapcsolt jelből csak a szűrőre jellemző frekenciasába eső

Részletesebben

Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez

Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Gépszerkezettan tanszék Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez Összeállította: Dr. Stampfer Mihály Pécs, 0. . A fogaskerekek előtervezése.

Részletesebben

SZABADALMI LEÍRÁS 771H7. szám.

SZABADALMI LEÍRÁS 771H7. szám. Megjelent 1 í>1920. évi szeptember hó 18-án. MAGYAR KIRÁLYI SZABADALMI HIVATAL. SZABADALMI LEÍRÁS 771H7. szám. VII/a. OSZTÁLY. Eljárás és kéazülék rendszerestávlati (torzított)átvitelreoptikai vagyfényképészeti

Részletesebben

Egy irányított szakasz egyértelműen meghatároz egy vektort.

Egy irányított szakasz egyértelműen meghatároz egy vektort. VEKTOROK VEKTOROK FOGALMA Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon, hogy az egyik pont a kezdőpont, a másik pont a végpont, akkor irányított szakaszt kapunk. Egy irányított szakasz

Részletesebben

Differenciaegyenletek

Differenciaegyenletek Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Differenciaegyenletek 1 / 24 3.1 Differenciaegyenlet fogalma, egzisztencia- és unicitástétel

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Engler Péter. Fotogrammetria 2. FOT2 modul. A fotogrammetria geometriai és matematikai alapjai

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Engler Péter. Fotogrammetria 2. FOT2 modul. A fotogrammetria geometriai és matematikai alapjai Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Engler Péter Fotogrammetria 2. FOT2 modul A fotogrammetria geometriai és matematikai alapjai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői

Részletesebben

Tanulmányozza az 5. pontnál ismertetett MATLAB-modell felépítést és működését a leírás alapján.

Tanulmányozza az 5. pontnál ismertetett MATLAB-modell felépítést és működését a leírás alapján. Tevékenység: Rajzolja le a koordinaátarendszerek közti transzformációk blokkvázlatait, az önvezérelt szinkronmotor sebességszabályozási körének néhány megjelölt részletét, a rezolver felépítését és kimenőjeleit,

Részletesebben

Geometriai alapfogalmak

Geometriai alapfogalmak Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.

Részletesebben

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5 1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat

Részletesebben

Elemi matematika szakkör

Elemi matematika szakkör lemi matematika szakkör Kolozsvár, 2015. október 26. 1.1. eladat. z konvex négyszögben {} = és { } = (lásd a mellékelt ábrát). izonyítsd be, hogy a következő három kijelentés egyenértékű: 1. z négyszögbe

Részletesebben

3. számú mérés Szélessávú transzformátor vizsgálata

3. számú mérés Szélessávú transzformátor vizsgálata 3. számú mérés Szélessávú transzformátor vizsgálata A mérésben a hallgatók megismerkedhetnek a szélessávú transzformátorok főbb jellemzőivel. A mérési utasítás első része a méréshez szükséges elméleti

Részletesebben

Többváltozós függvények Riemann integrálja

Többváltozós függvények Riemann integrálja Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Az integrál konstrukciója tetszőleges változószám esetén Deiníció: n dimenziós

Részletesebben

Áramlástechnikai gépek. Különböző volumetrikus elven működő gépek, azok szerkezeti megoldásai

Áramlástechnikai gépek. Különböző volumetrikus elven működő gépek, azok szerkezeti megoldásai Áramlástecnikai gépek Különböző volumetrikus elven működő gépek, azok szerkezeti megoldásai 1 A térfogatkiszorítás elvén működő gépeknél az energia átalakítás úgy történik, ogy egy körülatárolt térben

Részletesebben

Statisztika I. 6. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 6. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 6. előadás Előadó: Dr. Ertsey Imre GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE szorosan kapcsolódik a szóródás elemzéshez, elméleti

Részletesebben

ö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő ő Ő ö ű

ö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő ő Ő ö ű ö ő ü ö ö ő ö ö ö ö ő ő ő ö ő ő ő ö ő ö ő ő ö ö ő ő ö ö ő ö ö ő ö ö ö ő ő ü ö ő ü ű ö ú ő ú ú ú ő ü ő ü ö ö ú ö ö ö ő ü ö ö ö ő ö ő ö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő

Részletesebben

BURKOLATSZÉLEK VONALVEZETÉSE

BURKOLATSZÉLEK VONALVEZETÉSE BURKOLATSZÉLEK VONALVEZETÉSE A túlemelések és a kis sugarú ívekben szükséges pályaszélesítések kifuttatása Az út távlati képének formálása A forgalombiztonság fokozása megkívánja a burkolatszélek vonalvezetésének

Részletesebben

PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK

PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK Szerkesztette: Bókay Csongor 2012 tavaszi félév Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2012. június

Részletesebben

KULCS_GÉPELEMEKBŐL_III._FOKOZAT_2016.

KULCS_GÉPELEMEKBŐL_III._FOKOZAT_2016. KULCS_GÉPELEMEKBŐL_III._FOKOZAT_2016. 1.Tűréseknek nevezzük: 2 a) az anyagkiválasztás és a megmunkálási eljárások előírásait b) a gépelemek nagyságának és alakjának előírásai c) a megengedett eltéréseket

Részletesebben

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA B1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK MFI mérés HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON

Részletesebben

23. ISMERKEDÉS A MŰVELETI ERŐSÍTŐKKEL

23. ISMERKEDÉS A MŰVELETI ERŐSÍTŐKKEL 23. ISMEKEDÉS A MŰVELETI EŐSÍTŐKKEL Céltűzés: A műveleti erősítők legfontosabb tlajdonságainak megismerése. I. Elméleti áttentés A műveleti erősítők (továbbiakban: ME) nagy feszültségerősítésű tranzisztorokból

Részletesebben

15.KÚPKEREKEK MEGMUNKÁLÁSA ÉS SZERSZÁMAI

15.KÚPKEREKEK MEGMUNKÁLÁSA ÉS SZERSZÁMAI 15.KÚPKEREKEK MEGMUNKÁLÁSA ÉS SZERSZÁMAI Alapadatok Egymást szög alatt metsző tengelyeknél a hajtást kúpkerékpárral valósítjuk meg (15.1 ábra). A gördülő felületek kúpok, ezeken van kiképezve a kerék fogazata.

Részletesebben

I.- V. rendű vízszintes alapponthálózat I.- III. rendű magassági alapponthálózat Állandó- és ideiglenes pontjelölések Őrjelek Végleges pontjelölések

I.- V. rendű vízszintes alapponthálózat I.- III. rendű magassági alapponthálózat Állandó- és ideiglenes pontjelölések Őrjelek Végleges pontjelölések Ismétl tlés I.- V. rendű vízszintes alapponthálózat I.- III. rendű magassági alapponthálózat Állandó- és ideiglenes pontjelölések Őrjelek Végleges pontjelölések (mérőtorony) 2 Egyszerű eszközök Egyszerű

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V. Geometria V. DEFINÍCIÓ: (Középponti szög) Ha egy szög csúcsa egy adott kör középpontja, akkor a kör középponti szögének nevezzük. DEFINÍCIÓ: (Kerületi szög) Ha egy szög csúcsa egy adott körvonal pontja,

Részletesebben

III. rész: A VÁLLALATI MAGATARTÁS

III. rész: A VÁLLALATI MAGATARTÁS III. rész: A VÁAATI MAGATARTÁS Az árupiacon a kínálati oldalon a termelőegységek, a vállalatok állnak. A vállalatok különböznek tevékenységük, méretük, tulajdonformájuk szerint. Különböző vállalatok közös

Részletesebben

Feszített vasbeton gerendatartó tervezése költségoptimumra

Feszített vasbeton gerendatartó tervezése költségoptimumra newton Dr. Szalai Kálmán "Vasbetonelmélet" c. tárgya keretében elhangzott előadások alapján k 1000 km k m meter m Ft 1 1 1000 Feszített vasbeton gerendatartó tervezése költségoptimumra deg A következőkben

Részletesebben

, &!!! )! ),!% ), &! )..! ). 7!# &!!,!! 6 ) &! & 6! ) &!! #! 7! ( % ) ) 0!! ) & 6 # &! #! 7.!#! 9 : %!!0!

, &!!! )! ),!% ), &! )..! ). 7!# &!!,!! 6 ) &! & 6! ) &!! #! 7! ( % ) ) 0!! ) & 6 # &! #! 7.!#! 9 : %!!0! !!#!! % & (! )!!! ) +, &!!! )! ),!% ), &! )..! ). /% 0) / # ) ( ), 1!# 2 3 4 5 (!! ( 6 # 7!# &!!,!! 6 ) &! & 6! ) &!! #! 7! 8!!,!% #(( 1 6! 6 # &! #! # %& % ( % ) ) 0!! ) & 6 # &! #! 7.!#! 9 : %!!0!!!,

Részletesebben

GEOMETRIAI OPTIKA - ÓRAI JEGYZET

GEOMETRIAI OPTIKA - ÓRAI JEGYZET ε ε hullámegelet: Mérökizikus szak, Optika modul, III. évolam /. élév, Optika I. tárg GEOMETRIAI OPTIKA - ÓRAI JEGYZET (Erdei Gábor, Ph.D., 6. AJÁNLOTT SZAKIRODALOM: ELMÉLETI ALAPOK Maxwell egeletek E(

Részletesebben

Oktatási segédlet REZGÉSCSILLAPÍTÁS. Dr. Jármai Károly, Dr. Farkas József. Miskolci Egyetem

Oktatási segédlet REZGÉSCSILLAPÍTÁS. Dr. Jármai Károly, Dr. Farkas József. Miskolci Egyetem Oktatási segélet REZGÉSCSILLAPÍTÁS a Nemzetközi Hegesztett Szerkezettervező mérnök képzés hallgatóinak Dr. Jármai Károly, Dr. Farkas József Miskolci Egyetem 4 - - A szerkezeteket különböző inamikus hatások

Részletesebben

5. ALAKOS FELÜLETEK HATÁROZOTT ÉLŰ SZERSZÁMMAL TÖRTÉNŐ FORGÁCSOLÁSA

5. ALAKOS FELÜLETEK HATÁROZOTT ÉLŰ SZERSZÁMMAL TÖRTÉNŐ FORGÁCSOLÁSA 5. ALAKOS FELÜLETEK HATÁROZOTT ÉLŰ SZERSZÁMMAL TÖRTÉNŐ FORGÁCSOLÁSA A gépelemeken és szerszámokon forgácsolással megmunkálásra kerülő alakos felületek biztosítják: a gépek munkavégzéséhez szükséges teljesítmény

Részletesebben

DIFFERENCIAEGYENLETEK

DIFFERENCIAEGYENLETEK DIFFERENCIAEGYENLETEK A gazdaság változómennyiségeit (jövedelem, fogyasztás, beruházás,...) általában bizonyos időszakonként (naponta, hetente, havonta, évente) figyeljük meg. Ha ezeket a megfigyeléseket

Részletesebben

Dr. Hant Lá szló, Há romi Ferenc: Á brázoló geometria feladatok SZÉCHENYI ISTVÁ N EGYETEM

Dr. Hant Lá szló, Há romi Ferenc: Á brázoló geometria feladatok SZÉCHENYI ISTVÁ N EGYETEM Dr. Hant Lá szló, Há romi Ferenc: Á brázoló geometria feladatok SZÉCHENYI ISTVÁ N EGYETEM 1 Tá voktatá si tagozat 1994 Ö sszeállította: Dr. Hant Lá szló fő iskolai docens Há romi Ferenc fő iskolai adjunkus

Részletesebben

Vízműtani számítás. A vízműtani számítás készítése során az alábbi összefüggéseket használtuk fel: A csapadék intenzitása: i = a t [l/s ha]

Vízműtani számítás. A vízműtani számítás készítése során az alábbi összefüggéseket használtuk fel: A csapadék intenzitása: i = a t [l/s ha] Vízűtani száítás A vízűtani száítás készítése során az alábbi összefüggéseket használtuk fel: A csapadék intenzitása: i = a t [l/s ha] ahol ip a p visszatérési csapadék intenzitása, /h a a 10 perces időtartaú

Részletesebben

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I.

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I. Oktatási Hivatal A 8/9. tanévi FIZIKA Országos Közéiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády. Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51.

Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády. Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51. Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51. évfolyam Az BB kategória 01. fordulójának feladatai (Archimédiász) (A

Részletesebben

Készítette: Mike Gábor 1

Készítette: Mike Gábor 1 A VALÓSÁGOS FESZÜLTSÉGGENEÁTO A soros kapcsolás modellje és a vele kialakío valóságos eszülséggeneráor erhel üzemmódja lényegéen evezeője a émes vezeőjű ávielechnikai modellnek. A származaás a kövekező:

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. október 21. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. október 21. 8:00. Az írásbeli vizsga időtartama: 240 perc É RETTSÉGI VIZSGA 2008. október 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

11. Matematikai statisztika

11. Matematikai statisztika 11. Matematikai statisztika 11.1. Alapfogalmak A statisztikai minta valamely valószínűségi változóra vonatkozó véges számú független kisérlet eredménye. Ez véges sok, azonos eloszlású valószínűségi változó

Részletesebben

Ö Á Í Í ű ű ú ű ű ű ű ú ú ú ú ű ű ű ű ű ű ű ű ű ú ű ú ú ú ű ú Á ú ű ű Ó ú ű ű ű ú Ó ú ű ú É ú ú ú ű ű ú ű ú Ú Á ú É ú Ó ú ú ú ú ű ű ű ú É Á É É ű ű Í ú ú Ó Í ű Í ű ű ú ű ű ű É ű ú Á ű ű ú Í ű Á ű ú ú É

Részletesebben

ö ö ö ö ö ö ö ű ű ö ö ö ö ö Ő ö Ó Ú ö Ö ö ö ö ö Ö Ő ö ö Í Ó Ó Ő ö ö ö ö ö Ő Ő Ó Ő É ö Ú ö ö Ő ö ö ö ö ö ö ö Ő ö Ő É ö Ő ö ö Ő ö ö ö Ó ű ö ö ö Ő ö ö ö Í Ő Ó Í ö ö ö ö Ő Ő Ő Ő Í Ó Ő Ő Í Ő ö ö ö ö ö Ő Ő ö

Részletesebben

Ú ű ü ü Ü ű É É Ö Ö Á ü ü ü ű É ú Á Ö Ü ü ü ű É Á É Ű ű Ü Ü ű ü ű ü ű ü Ü ü ü Ű Á Á Á ű ú ű Á Ó Ó É Á Ó Á Ó ű ü ü ű ű ü ú ú ü ü ü ű ü ű Ü ű ü ü ú ü Ö ü ú ú ü ü ü ü ű ú ü Ó ü Ó Ó ü ü Ó ü ü Ó ű ű ú ű ű ü

Részletesebben

A.11. Nyomott rudak. A.11.1. Bevezetés

A.11. Nyomott rudak. A.11.1. Bevezetés A.. Nyomott rudak A... Bevezetés A nyomott szerkezeti elem fogalmat általában olyan szerkezeti elemek jelölésére használjuk, amelyekre csak tengelyirányú nyomóerő hat. Ez lehet speciális terhelésű oszlop,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0814 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar Geometriai Tanszék AZ EVOLUTÁK VILÁGA. BSc szakdolgozat. tanári szakirány. Budapest, 2013.

Eötvös Loránd Tudományegyetem Természettudományi Kar Geometriai Tanszék AZ EVOLUTÁK VILÁGA. BSc szakdolgozat. tanári szakirány. Budapest, 2013. Eötvös Loránd Tudományegyetem Természettudományi Kar Geometriai Tanszék AZ EVOLUTÁK VILÁGA BSc szakdolgozat Készítette: Somlói Zsófia matematika BSc tanári szakirány Témavezető: Dr. Moussong Gábor adjunktus

Részletesebben

3.3 Fogaskerékhajtások

3.3 Fogaskerékhajtások PTE, PMMK Stampfer M.: Gépelemek II / Mechaikus hajtások II / 7 / 3.3 Fogaskerékhajtások Jó tulajoságaikak köszöhetőe a fogaskerékhajtóművek a legelterjetebbek az összes mechaikus hajtóművek közül. A hajtás

Részletesebben

Három dimenziós barlangtérkép elkészítésének matematikai problémái

Három dimenziós barlangtérkép elkészítésének matematikai problémái Szegedi Tudományegyetem Természettudományi és Informatikai Kar Bolyai Intézet Geometria Tanszék Három dimenziós barlangtérkép elkészítésének matematikai problémái Szakdolgozat Írta: Pásztor Péter Matematika

Részletesebben

ű Ö ű ű Ú Ú ű

ű Ö ű ű Ú Ú ű ű Ö ű ű Ú Ú ű Á Á Ö Ö Ö Ö Ö Ö Á Ö Á Á Á Ú Á Á Á Á Ö ű ű Á ű ű ű Ö Ö Á Á Á Á Á ű Ú Ö ű Ú Ú ű Ú Á Á ű ű ű ű ű ű Á ű ű Á Á Ő Á Á Á Á Á Á Ö Á ű ű Ö Ö ű Ú Ö Ú ű Ú ű ű ű ű ű Ö Á Ú ű Á Ö Á Ú Á Á Á Á Á Á Ö Ö Á

Részletesebben

X. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata

X. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata X. Fénypolarizáció X.1. A polarizáció jelenségének magyarázata A polarizáció a fény hullámtermészetét bizonyító jelenség, amely csak a transzverzális rezgések esetén észlelhető. Köztudott, hogy csak a

Részletesebben

1. KÜLÖNLEGES MECHANIKUS HAJTÓMŰVEK, HULLÁMHAJTÓMŰVEK, CIKLOHAJTÓMŰVEK... 8

1. KÜLÖNLEGES MECHANIKUS HAJTÓMŰVEK, HULLÁMHAJTÓMŰVEK, CIKLOHAJTÓMŰVEK... 8 Tartalomjegyzék 1. KÜLÖNLEGES MECHANIKUS HAJTÓMŰVEK, HULLÁMHAJTÓMŰVEK, CIKLOHAJTÓMŰVEK... 8 1.1. Hullámhajtóművek... 8 1.. Ciklohajtóművek... 11 1.3. Elliptikus fogaskerekes hajtások... 13 1.4. Felhasznált

Részletesebben

V. Gyakorlat: Vasbeton gerendák nyírásvizsgálata Készítették: Friedman Noémi és Dr. Huszár Zsolt

V. Gyakorlat: Vasbeton gerendák nyírásvizsgálata Készítették: Friedman Noémi és Dr. Huszár Zsolt . Gyakorlat: asbeton gerenák nyírásvizsgálata Készítették: Frieman Noémi és Dr. Huszár Zsolt -- A nyírási teherbírás vizsgálata A nyírási teherbírás megfelelő, ha a következő követelmények minegyike egyiejűleg

Részletesebben

Csatlakozási lehetőségek 11. Méretek 12-13. A dilatációs tüske méretezésének a folyamata 14. Acél teherbírása 15

Csatlakozási lehetőségek 11. Méretek 12-13. A dilatációs tüske méretezésének a folyamata 14. Acél teherbírása 15 Schöck Dorn Schöck Dorn Tartalom Oldal Termékleírás 10 Csatlakozási lehetőségek 11 Méretek 12-13 A dilatációs tüske méretezésének a folyamata 14 Acél teherbírása 15 Minimális szerkezeti méretek és tüsketávolságok

Részletesebben

Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből)

Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből) Fénytan 1 Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből) Feladatok F. 1. Vízszintes asztallapra fektetünk egy negyedhenger alakú üvegtömböt, amelynek függőlegesen álló síklapját

Részletesebben

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje) lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,

Részletesebben

A csavarvonalról és a csavarmenetről

A csavarvonalról és a csavarmenetről A csavarvonalról és a csavarmenetről A témáoz kapcsolódó korábbi dolgozatunk: Ricard I. A Gépészeti alapismeretek tantárgyban a csavarok mint gépelemek tanulmányozását a csavarvonal ismertetésével kezdjük.

Részletesebben

VIZSGABIZTOS KÉPZÉS. 09_2. Kormányzás. Kádár Lehel. Budapest, 2012. - 1 -

VIZSGABIZTOS KÉPZÉS. 09_2. Kormányzás. Kádár Lehel. Budapest, 2012. - 1 - VIZSGABIZTOS KÉPZÉS 09_2. Kormányzás Kádár ehel Budapest, 2012. - 1 - 1.) A közúti járművek kormányzásával szembeni általános követelmények A közúti járművek kormányzásának az alábbi általános követelményeknek

Részletesebben

Csavarkötés mérése ), (5) μ m a menetes kapcsolat súrlódási tényezője, β a menet élszöge. 1. Elméleti alapok

Csavarkötés mérése ), (5) μ m a menetes kapcsolat súrlódási tényezője, β a menet élszöge. 1. Elméleti alapok GEGE-AGG labormérések Csavarkötés mérése. Elméleti alapok Csavarkötéseknél az összekapcsolt alkatrészek terhelés alatti elmozdulásának megakadályozása céljából előfeszítést kell alkalmazni, amelynek nagyságát

Részletesebben

= szinkronozó nyomatékkal egyenlő.

= szinkronozó nyomatékkal egyenlő. A 4.45. ábra jelöléseit használva, tételezzük fel, hogy gépünk túllendült és éppen a B pontban üzemel. Mivel a motor által szolgáltatott M 2 nyomaték nagyobb mint az M 1 terhelőnyomaték, a gép forgórészére

Részletesebben

FOGASKEREKEK GYÁRTÁSA ELŐADÁS

FOGASKEREKEK GYÁRTÁSA ELŐADÁS FOGASKEREKEK GYÁRTÁSA ELŐADÁS Felhasznált irodalom: Dr. Kodácsy János: Forgácsolás szerszámai, E-tananyag, Kecskemét, 2010. Dr. Mikó Balázs: Forgácsolási folyamatok számítógépes tervezése előadásanyag,

Részletesebben

Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével

Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével Demonstrációs optikai készlet lézer fényforrással Az optikai elemeken mágnesfólia található, így azok fémtáblára

Részletesebben

Elektronika I. Dr. Istók Róbert. II. előadás

Elektronika I. Dr. Istók Róbert. II. előadás Elektronika I Dr. Istók Róbert II. előadás Tranzisztor működése n-p-n tranzisztor feszültségmentes állapotban p-n átmeneteknél kiürített réteg jön létre Az emitter-bázis réteg között kialakult diódát emitterdiódának,

Részletesebben

Hraskó András, Surányi László: 11-12. spec.mat szakkör Tartotta: Surányi László. Feladatok

Hraskó András, Surányi László: 11-12. spec.mat szakkör Tartotta: Surányi László. Feladatok Feladatok 1. Színezzük meg a koordinátarendszer rácspontjait két színnel, kékkel és pirossal úgy, hogy minden vízszintes egyenesen csak véges sok kék rácspont legyen és minden függőleges egyenesen csak

Részletesebben

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója?

1. Prefix jelentések. 2. Mi alapján definiáljuk az 1 másodpercet? 3. Mi alapján definiáljuk az 1 métert? 4. Mi a tömegegység definíciója? 1. Prefix jelentések. 10 1 deka 10-1 deci 10 2 hektó 10-2 centi 10 3 kiló 10-3 milli 10 6 mega 10-6 mikró 10 9 giga 10-9 nano 10 12 tera 10-12 piko 10 15 peta 10-15 fento 10 18 exa 10-18 atto 2. Mi alapján

Részletesebben

Bányaipari technikus T 1/6

Bányaipari technikus T 1/6 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Összetett hálózat számítása_1

Összetett hálózat számítása_1 Összetett hálózat számítása_1 Határozzuk meg a hálózat alkatrészeinek feszültségeit, valamint a körben folyó áramot! A megoldás lépései: - számítsuk ki a kör eredő ellenállását, - az eredő ellenállás felhasználásával

Részletesebben

8. GYALULÁS, VÉSÉS, ÜREGELÉS. 8.1. Gyalulás

8. GYALULÁS, VÉSÉS, ÜREGELÉS. 8.1. Gyalulás 8. GYALULÁS, VÉSÉS, ÜREGELÉS 8.1. Gyalulás A gyalulás egyenes vonalú forgácsoló mozgással és a forgácsolás irányára merőleges, szakaszos előtoló mozgással végzett forgácsolás. Állandó keresztmetszetű forgács

Részletesebben

7. Fogazatok megmunkálása határozott élgeometriájú szerszámokkal

7. Fogazatok megmunkálása határozott élgeometriájú szerszámokkal 7. Fogazatok megmunkálása határozott élgeometriájú szerszámokkal A fogazatok kapcsolódása 7.1 Alapfogalmak Fogaskerék hajtások csoportosítása Egyenes külső Egyenes belső Külső kúpfogazat Fogasléc Fogasív

Részletesebben

1/1998. (I. 12.) IKIM rendelet. szekrények, fagyasztók és ezek kombinációja villamos energia hatékonyságának jelöléséről

1/1998. (I. 12.) IKIM rendelet. szekrények, fagyasztók és ezek kombinációja villamos energia hatékonyságának jelöléséről 1/1998. (I. 12.) IKIM rendelet a háztartási hűtő szekrények, fagyasztók és ezek kombinációja villamos energia hatékonyságának jelöléséről A villamos energia termelésérő l, szállításáról és szolgáltatásáról

Részletesebben