Statisztika I. 6. előadás. Előadó: Dr. Ertsey Imre
|
|
- Boglárka Gáspár
- 8 évvel ezelőtt
- Látták:
Átírás
1 Statisztika I. 6. előadás Előadó: Dr. Ertsey Imre
2 GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE
3 GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE szorosan kapcsolódik a szóródás elemzéshez, elméleti eloszlások: valószínűségi változók eloszlása, tapasztalati eloszlások: gyakorisági sorok eloszlása. A gyakorisági sor alkalmas a sokaságelemek valamely tulajdonság értéknagyság szerinti eloszlásának érzékeltetésére. A mennyiségi ismérvek gyakorisági sorának értékbeli alakulása már alakja következtében is felhívja a figyelmet az adott ismérv változékonyságára.
4 Empírikus eloszlások Egymóduszú eloszlás Több móduszú eloszlás Szimmetrikus Aszimmetrikus U alakú eloszlás M alakú eloszlás Mérsékelten aszimmetrikus Erősen aszimmetrikus Balra ferdült Jobbra ferdült J alakú Fordított J alakú
5 SZIMMETRIKUS ELOSZLÁS (TÖKÉLETES SZIMMETRIA NINCS) Χ = Mo = Me 1. Asszimetria: A módusz valamelyik szélső értékhez esik közelebb, Attól függően, hogy a módusz melyik oldalon helyezkedik el, bal vagy jobb oldali asszimetriáról beszélünk. Bal oldali: Mo < Me < X Jobb oldali: X < Me < Mo
6 ASSZIMETRIA Az asszimetria a számtani átlag és a módusz egymáshoz viszonyított helyzetétől függ: értékük minél távolabb esik egymástól, annál nagyobb az asszimetria mértéke. Az asszimetria mutatószáma egy móduszú eloszlás esetén: A = X S Mo
7 ASSZIMETRIA Értéke: -1<A<1 (a gyakorlatban) Bal oldali asszimetria: Jobb oldali asszimetria: Ha A > 0,5 A pozitív A negatív erős asszimetria Szimmetrikus eloszlás: A = O
8 BIMODÁLIS ELOSZLÁS M alakú: A sokaságelemek a sokaság egészén belül minőségileg különböznek (munkások szakképzettség vagy nemek szerint). U alakú: Ritkábban fordul elő, a vizsgált jelenség szakmailag lényeges tulajdonságára utal (pl. a borult napok alakulása az év hónapjai szerint).
9 A KONCENTRÁCIÓ ELEMZÉSE A koncentráció elemzése: Közgazdasági értelemben, a gazdasági életben lévő tömörüléseket, összpontosulásokat jelenti (pl. a vállalatok különböző nagyságcsoportjai az árbevétel milyen arányát adják, illetve mennyi tőkét működtetnek.
10 A KONCENTRÁCIÓ ELEMZÉSE A koncentráció elemzése: A koncentráció statisztikai elemzésénél egy adott sokaság gyakorisági és értékösszeg eloszlását hasonlítjuk össze. Az értékösszegnek kevés számú egységre való összpontosulását koncentrációnak nevezzük. Megkülönböztetünk abszolút és relatív koncentrációt.
11 ABSZOLÚT KONCENTRÁCIÓ (AZ EGYSÉGEK NAGYSÁGA) A teljes értékösszeg kevés számú egységhez tartozik (energiaipar, gépkocsigyártás) Felső határ ha a sokaság egy egységből áll (n = 1) és a teljes értékösszeg ehhez az egy egységhez tartozik. Jellemezhetjük: A sokaság tagszámával: n (az értékösszeg hány egységhez tartozik), Számtani átlaggal: (mekkora az egységek átlagos nagysága).
12 Relatív koncentráció: az egységek nagyságának különbözőségét, szóródását jelenti. Speciális elemzés eszközei: koncentrációs táblázat, a kvantilis eloszlás, a Lorenz-görbe.
13 KONCENTRÁCIÓS TÁBLÁZAT A relatív gyakoriságok és a relatív értékösszegek összehasonlítását mutatja A vizsgált sokaságot mennyiségi ismérv (koncentrációs ismérv) szerint csoportosítjuk, és meghatározzuk az egyes csoportokba tartozó egységek részarányát, valamint ezen egységeknek az értékösszegből való részesedését
14 KONCENTRÁCIÓS TÁBLÁZAT Képet ad a koncentrációs ismérv eloszlásáról Összehasonlítja nagyság kategóriánként a sokaságból és az értékösszegből való részesedéseket Elkészítjük a kumulált relatív gyakorisági és értékösszegsort is
15 KONCENTRÁCIÓS TÁBLÁZAT Ezeket szembeállítva megállapíthatjuk, hogy az egységek adott sokaságbeli aránya - az értékösszeg - mekkora hányadával rendelkezik
16 Koncentrációs tábla Építési-szerelési tevékenységet végzők száma A szervezetek számának relatív gyakorisága A tevékenység relatív értékösszege fő % % x i g i z i ,2 14, ,0 20, ,5 15, ,8 8, ,7 17, ,5 15, ,3 8,0 Összesen: 100,0 100,0
17 KVANTILIS ELOSZLÁS Hosszú távú időbeli összehasonlításoknál Területi összehasonlításoknál Személyi jövedelem koncentrációjának elemzésénél használjuk
18 KVANTILIS ELOSZLÁS A kvantilis eloszlás az adott ismérv szerint sorba rendezett azonos hányadokhoz tartozó értékösszeg hányadokat fejezi ki (pl. a személyi jövedelmek decilis eloszlása azt fejezi ki, hogy a jövedelem nagysága szerint sorba rendezett népességtizedek az összes jövedelem hány százalékával rendelkeznek).
19 A személygépkocsi állomány jövedelmek szerinti decilis eloszlása Magyarországon Népesség tizedek Száz háztartásra jutó db s i % z i ,7 4, ,7 8, ,9 9, ,4 9, ,9 8, ,6 8, ,1 10, ,6 10, ,3 13, ,8 17,4 Összesen ,0 100,0
20 z = 100 = = s s 6,7% z s 31 = = 100 = 2 s 405 7,7%
21 A LORENZ-GÖRBE A Lorenz-görbe: egy egységoldalú négyzetben elhelyezett ábra, amely a kumulált relatív értékösszeget (z i ) a kumulált relatív gyakoriságok (g i ) függvényében ábrázolja. A kumulálás a legkisebb egyedtől a legnagyobbig terjed
22 A relatív koncentráció általános elemzési eszköze: minél nagyobb fokú a koncentráció a görbe annál távolabb kerül a négyzet átlójától, teljes koncentráció esetén a görbe egybeesik a koordináta tengelyekkel.
23 ÁTLAGPONT Az átlagpont az a pont, ahol az átlóval párhuzamos egyenes érinti a görbét (tg α = 1). Koordinátáiból leolvasható, hogy az egységek hány %-a kisebb illetve nagyobb az átlagnál, és ezen csoportokhoz az értékösszeg mekkora hányada tartozik.
24 A LORENZ-GÖRBE Felhasználása: szemléltetés, interpoláció, azonos sokaság esetén több ismérv koncentrációjának egybevetése, adott ismérv koncentrációjának időbeli, térbeli összehasonlítása. illetve
25 Az építőipari szervezetek megoszlása a tevékenységet végzők nagyságcsoportjai szerint 1994-ben Építési-szerelési tevékenységet végzők száma Szervezetek száma Építésiszerelési tevékenység Építési-szerelési tevékenységet végzők létszáma fő darab millió Ft fő x i f i s i s i Összesen:
26 A szervezetek számának relatív gyakorisága A tevékenység relatív értékösszege A létszám relatív értékösszege A szervezetek számának kumulált relatív gyakorisága A tevékenység kumulált relatív értékösszege A létszám kumulált relatív értékösszege % % % % % % g i z i z i g i z i z i 55,2 14,9 14,2 55,2 14,9 14,2 29,0 20,0 26,6 84,2 34,9 40,8 10,5 15,7 20,2 94,7 50,6 61,0 2,8 8,5 10,5 97,5 59,1 71,5 1,7 17,0 14,4 99,2 76,1 85,9 0,5 15,9 9,4 99,7 92,0 95,3 0,3 8,0 4,7 100,0 100,0 100,0 100,0 100,0 100,0
27 g f 1388 = = 100 = 1 n ,2% = 100 = z tev = s s 14,9% g g g = + = 55, = ,2% z z z tev = + = 14, = ,9%
28 Lorenz-görbe 100 kumulált relatív értékösszeg % tevékenység létszám kumulált relatív gyakoriság %
GAZDASÁGI STATISZTIKA
GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK
RészletesebbenBevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.
Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja
RészletesebbenTanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz
MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.
RészletesebbenFELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b.
FELADATOK A RELÁCIÓK, GRÁFOK TÉMAKÖRHÖZ 1. rész A feladatsorban használt jelölések: R = {r R r < 0}, R + = {r R r>0}, [a; b] = {r R a r b}, ahol a, b R és a b. 4.1. Feladat. Adja meg az α = {(x, y) x +
RészletesebbenStatisztika gyakorlat
Félévi követelményrendszer tatisztika gyakorlat. Gazdasági agrármérnök szak II. évolyam 007.0.. Heti óraszám: + Aláírás eltételei: az elıadásokon való részvétel nem kötelezı, de AJÁNLOTT! a gyakorlatokon
RészletesebbenMatematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József
Matematika III. 8. A szórás és a szóródás egyéb Prof. Dr. Závoti, József Matematika III. 8. : A szórás és a szóródás egyéb Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027
Részletesebben- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez
1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak
RészletesebbenMikrohullámok vizsgálata. x o
Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia
RészletesebbenGeometriai alapfogalmak
Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.
RészletesebbenElemi matematika szakkör
lemi matematika szakkör Kolozsvár, 2015. október 26. 1.1. eladat. z konvex négyszögben {} = és { } = (lásd a mellékelt ábrát). izonyítsd be, hogy a következő három kijelentés egyenértékű: 1. z négyszögbe
RészletesebbenE B D C C DD E E g e 112 D 0 e B A B B A e D B25 B B K H K Fejhallgató Antenna A B P C D E 123 456 789 *0# Kijelzés g B A P D C E 0 9* # # g B B 52 Y t ] [ N O S T \ T H H G ? > < p B E E D 0 e B D
RészletesebbenSZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR EUROCODE SEGÉDLETEK A MÉRETEZÉS ALAPJAI C. TÁRGYHOZ
SZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR EUROCODE SEGÉDLETEK A MÉRETEZÉS ALAPJAI C. TÁRGYHOZ A segédlet nem helyettesíti az építmények teherhordó szerkezeteinek erőtani tervezésére vonatkozó
RészletesebbenMiskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás
RészletesebbenX. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata
X. Fénypolarizáció X.1. A polarizáció jelenségének magyarázata A polarizáció a fény hullámtermészetét bizonyító jelenség, amely csak a transzverzális rezgések esetén észlelhető. Köztudott, hogy csak a
RészletesebbenForgácsolási paraméterek meghatározása Mikó Balázs, E ép. II. 7.
orgácsolási paraméterek meghatározása 1 orgácsolási paraméterek meghatározása Mikó Balázs, E ép. II. 7. a [mm] : ogásmélység [mm/ord] : elõtolás n [1/min] : ordulatszám v [m/min] : orgácsolási sebesség
Részletesebben19. Az elektron fajlagos töltése
19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................
Részletesebben23. ISMERKEDÉS A MŰVELETI ERŐSÍTŐKKEL
23. ISMEKEDÉS A MŰVELETI EŐSÍTŐKKEL Céltűzés: A műveleti erősítők legfontosabb tlajdonságainak megismerése. I. Elméleti áttentés A műveleti erősítők (továbbiakban: ME) nagy feszültségerősítésű tranzisztorokból
RészletesebbenMATEMATIKA 9. osztály Segédanyag 4 óra/hét
MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY
RészletesebbenKVANTITATÍV MÓDSZEREK
KVANTITATÍV MÓDSZEREK Dr. Kövesi János Tóth Zsuzsanna Eszter 6 Tartalomjegyzék Kvantitatív módszerek. Valószínűségszámítási tételek. eltételes valószínűség. Események függetlensége.... 3.. eltételes valószínűség...
RészletesebbenÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK
Építészeti és építési alapismeretek emelt szint 0812 ÉRETTSÉGI VIZSGA 2010. október 18. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS
RészletesebbenHáromfázisú hálózat.
Háromfázisú hálózat. U végpontok U V W U 1 t R S T T U 3 t 1 X Y Z kezdőpontok A tekercsek, kezdő és végpontjaik jelölése Ha egymással 10 -ot bezáró R-S-T tekercsek között két pólusú állandó mágnest, vagy
RészletesebbenAz ablakos problémához
1 Az ablakos problémához A Hajdu Endre által felvetett, egy ablak akadályoztatott kinyitásával kapcsolatos probléma a következő. Helyezzünk el egy d oldalhosszúságú, álló, négyzet alapú egyenes hasábot
RészletesebbenVIZSGABIZTOS KÉPZÉS. 09_2. Kormányzás. Kádár Lehel. Budapest, 2012. - 1 -
VIZSGABIZTOS KÉPZÉS 09_2. Kormányzás Kádár ehel Budapest, 2012. - 1 - 1.) A közúti járművek kormányzásával szembeni általános követelmények A közúti járművek kormányzásának az alábbi általános követelményeknek
RészletesebbenMatematikai statisztikai elemzések 2.
Matematikai statisztikai elemzések 2. Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás Prof. Dr. Závoti, József Matematikai statisztikai elemzések 2.: Helyzetmutatók, átlagok, Prof. Dr. Závoti,
RészletesebbenA statisztika részei. Példa:
STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,
Részletesebben7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés
7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 0814 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
RészletesebbenNyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 7. MA3-7 modul. Helyzetmutatók, átlagok, kvantilisek
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 7. MA3-7 modul Helyzetmutatók, átlagok, kvantilisek SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról
RészletesebbenCsődvalószínűségek becslése a biztosításban
Csődvalószínűségek becslése a biztosításban Diplomamunka Írta: Deák Barbara Matematikus szak Témavezető: Arató Miklós, egyetemi docens Valószínűségelméleti és Statisztika Tanszék Eötvös Loránd Tudományegyetem,
RészletesebbenGömbtükrök, leképezési hibák, OPTIKA. Dr. Seres István
Gömbtükrök, leképezési hibák, OPTIKA Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek
RészletesebbenOptika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből)
Fénytan 1 Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből) Feladatok F. 1. Vízszintes asztallapra fektetünk egy negyedhenger alakú üvegtömböt, amelynek függőlegesen álló síklapját
RészletesebbenII. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { }
II. Halmazok. Relációk II.1. Rövid halmazelmélet A halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. A halmaz alapfogalom. Ez azt jelenti, hogy csak példákon
RészletesebbenFejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek
Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges
RészletesebbenMéréstechnika 5. Galla Jánosné 2014
Méréstechnika 5. Galla Jánosné 014 A mérési hiba (error) a mérendő mennyiség értékének és a mérendő mennyiség referencia értékének különbsége: ahol: H i = x i x ref H i - a mérési hiba; x i - a mért érték;
RészletesebbenStatisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
RészletesebbenMatematikai modellalkotás
Konferencia A Korszerű Oktatásért Almássy Téri Szabadidőközpont, 2004. november 22. Matematikai modellalkotás (ötletek, javaslatok) Kosztolányi József I. Elméleti kitekintés oktatási koncepciók 1. Realisztikus
Részletesebbenkonfidencia-intervallum Logikai vektorok az R-ben 2012. március 14.
Valószínűség, pontbecslés, konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14. Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra
RészletesebbenA.11. Nyomott rudak. A.11.1. Bevezetés
A.. Nyomott rudak A... Bevezetés A nyomott szerkezeti elem fogalmat általában olyan szerkezeti elemek jelölésére használjuk, amelyekre csak tengelyirányú nyomóerő hat. Ez lehet speciális terhelésű oszlop,
RészletesebbenMATEMATIKA KOMPETENCIATERÜLET A
MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI MUNKAFÜZET 2. félév A kiadvány KHF/4002-17/2008 engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő
RészletesebbenAZ ÁRUPIACI KERESLET AZ EGYENSÚLYI JÖVEDELEM
AZ ÁRUPIACI KERESLET AZ EGYENSÚLYI JÖVEDELEM KIEGÉSZÍTENDŐ ÁLLÍTÁSOK A felsorolt alapfogalmadat illessze az állításokban kihagyott helyre! Egy fogalmat több helyen is felhasználhat. a) adott időszaki kiadások
RészletesebbenHasználati útmutató. 1.0 verzió 2002. október
Használati útmutató 1.0 verzió 2002. október TARTALOMJEGYZÉK 1. KEZELŐSZERVEK... 2 2. ALKALMAZÁSI PÉLDÁK... 4 2.1. BASSZUSGITÁR CSATLAKOZTATÁSA... 4 2.2. BILLENTYŰS HANGSZER, DJ-KEVERŐPULT STB. KIMENETI
RészletesebbenKőszegi Irén MATEMATIKA. 9. évfolyam
-- Kőszegi Irén MATEMATIKA 9. évfolyam (a b) 2 = a 2 2ab + b 2 2015 1 2 Tartalom 1. HALMAZOK... 5 2. SZÁMHALMAZOK... 8 3. HATVÁNYOK... 12 4. OSZTHATÓSÁG... 14 5. ALGEBRAI KIFEJEZÉSEK... 17 6. FÜGGVÉNYEK...
Részletesebben4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket!
) Alakítsd szorzattá a következő kifejezéseket! 4 c) d) e) f) 9k + 6k l + l = ay + 7ay + 54a = 4 k l = b 6bc + 9c 4 + 4y + y 4 4b 9a évfolyam javítóvizsgára ) Végezd el az alábbi műveleteket és hozd a
RészletesebbenA.15. Oldalirányban nem megtámasztott gerendák
A.15. Oldalirányban nem megtámasztott gerendák A.15.1. Bevezetés Amikor egy karcsú szerkezeti elemet a nagyobb merevségű síkjában terhelünk, mindig fennáll annak lehetősége, hogy egy hajlékonyabb síkban
RészletesebbenStatisztikai programcsomagok
Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés
Részletesebben2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával.
2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával. A MÉRÉS CÉLJA Az elterjedten alkalmazott hőmérséklet-érzékelők (ellenállás-hőmérő, termisztor, termoelem) megismerése,
RészletesebbenHipotézis-ellenırzés (Statisztikai próbák)
Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat
Részletesebben!HU000215001B_! SZABADALMI LEÍRÁS 215 001 B HU 215 001 B B 61 F 5/38. (11) Lajstromszám: (19) Országkód
(19) Országkód HU SZABADALMI LEÍRÁS (21) A bejelentés ügyszáma: P 93 02055 (22) A bejelentés napja: 1993. 07. 16. (30) Elsõbbségi adatok: 1521/92 1992. 07. 24. AT 1120/93 1993. 06. 09. AT!HU000215001B_!
RészletesebbenA 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
RészletesebbenTERMÉSZETES VILÁGÍTÁS
TERMÉSZETES VILÁGÍTÁS Szabó Gergely mérnöktanár BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szabo@egt.bme.hu Tartalomjegyzék: -1. A vizuális környezet és a világítás (röviden, ismétlés)
RészletesebbenMUNKAANYAG. Földi László. Szögmérések, külső- és belső kúpos felületek mérése. A követelménymodul megnevezése:
Földi László Szögmérések, külső- és belső kúpos felületek mérése A követelménymodul megnevezése: Általános anyagvizsgálatok és geometriai mérések A követelménymodul száma: 0225-06 A tartalomelem azonosító
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.
Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.
RészletesebbenElMe 6. labor. Helyettesítő karakterisztikák: Valódi karakterisztika 1 pontosabb számításoknál 2 közelítő számításoknál 3 ideális esetben
ElMe 6. labor 1. Rajzolja fel az ideális és a valódi dióda feszültség-áram jelleggörbéjét! 5. Hogyan szokás közelíteni a számítások során a dióda karakterisztikáját? 4. Rajzolja fel a dióda karakterisztikáját,
RészletesebbenStatisztika, próbák Mérési hiba
Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:
RészletesebbenIII. rész: A VÁLLALATI MAGATARTÁS
III. rész: A VÁAATI MAGATARTÁS Az árupiacon a kínálati oldalon a termelőegységek, a vállalatok állnak. A vállalatok különböznek tevékenységük, méretük, tulajdonformájuk szerint. Különböző vállalatok közös
RészletesebbenElsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek
Elsôfokú egyváltozós egyenletek 6 Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek. Elsôfokú egyváltozós egyenletek 000. Érdemes egyes tagokat, illetve tényezôket alkalmasan csoportosítani, valamint
Részletesebben8. GYALULÁS, VÉSÉS, ÜREGELÉS. 8.1. Gyalulás
8. GYALULÁS, VÉSÉS, ÜREGELÉS 8.1. Gyalulás A gyalulás egyenes vonalú forgácsoló mozgással és a forgácsolás irányára merőleges, szakaszos előtoló mozgással végzett forgácsolás. Állandó keresztmetszetű forgács
RészletesebbenÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK
Építészeti és építési alapismeretek középszint 0801 ÉRETTSÉGI VIZSGA 2009. május 22. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS
RészletesebbenKosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
Részletesebben3. mérés Sorozatmérés digitális kijelzésű mérőórával
Budaesti Műszaki és Gazdaságtudományi Egyetem Géészmérnöki Kar Mechatronika, Otika és Géészeti Informatika Tanszék 3. mérés Sorozatmérés digitális kijelzésű mérőórával Segédlet a Méréstechnika (BMEGEMIAMG1)
RészletesebbenFogaskerék hajtások I. alapfogalmak
Fogaskeék hajtások I. alapfogalmak A fogaskeekek csopotosítása A fogaskeékhajtást az embeiség évszázadok óta használja. A fogazatok geometiája má a 8-9. században kialakult, de a geometiai és sziládsági
RészletesebbenMATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 01. május 8. EMELT SZINT I. 1) Egy 011-ben készült statisztikai összehasonlításban az alábbiakat olvashatjuk: Ha New York-ban az átlagfizetést és az átlagos árszínvonalat egyaránt
RészletesebbenVONALVEZETÉS TERVEZÉSE
VONALVEZETÉS TERVEZÉSE A vonalvezetés tervezésének általános követelményei A tervezési sebesség Látótávolságok Vízszintes vonalvezetés Magassági vonalvezetés Burkolatszélek vonalvezetése Térbeli tervezés
RészletesebbenMéréssel kapcsolt 3. számpélda
Méréssel kapcsolt 3. számpélda Eredmények: m l m 1 m 3 m 2 l l ( 2 m1 m2 m l = 2 l2 ) l 2 m l 3 = m + m2 m1 Méréssel kapcsolt 4. számpélda Állítsuk össze az ábrán látható elrendezést. Használjuk a súlysorozat
Részletesebbenb) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást!
2006/I/I.1. * Ideális gázzal 31,4 J hőt közlünk. A gáz állandó, 1,4 10 4 Pa nyomáson tágul 0,3 liter térfogatról 0,8 liter térfogatúra. a) Mennyi munkát végzett a gáz? b) Mekkora a gáz belső energiájának
RészletesebbenElektronika 2. TFBE1302
Elektronika. TFBE3 Szűrők TFBE3 Elektronika. nalóg elektronika ismétlődő feladatai, szűrők Szűrő: Olyan elektronikus rendezés, amely a menetére kapcsolt jelből csak a szűrőre jellemző frekenciasába eső
RészletesebbenMATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz
RészletesebbenSZÖG- ÉS MENET- ELLENŐRZŐ ESZKÖZÖK
05. előadás 1. fólia SZÖG- ÉS MENET- ELLENŐRZŐ ESZKÖZÖK 05. előadás 2. fólia 1.1. Vízszint-mérő A vízszint-mérővel (6. ábra) a munkadarab, gép vízszintes vagy függőleges helyzete állítható be. A vízszint-mérőben
RészletesebbenMatematika tanári szeminárium a Fazekasban 2012-2013/4.
atematika tanári szeminárium a Fazekasban 2012-2013/4. 4. foglalkozás öal. 4474. feladatra 1 sok szép megoldást hoztak Gyenes Zoltán diákjai, a 9.c osztály tanulói. példához nagyon hasonló kérdéssel a
Részletesebben2007.5.30. Az Európai Unió Hivatalos Lapja L 137/1 RENDELETEK
2007.5.30. Az Európai Unió Hivatalos Lapja L 137/1 I (Az EK-Szerződés/Euratom-Szerződés alapján elfogadott jogi aktusok, amelyek közzététele kötelező) RENDELETEK Az Egyesült Nemzetek Szervezete Európai
RészletesebbenSzimmetriacsoportok a művészetben
Lámfalusi Mónika Rita Szimmetriacsoportok a művészetben Témavezető: Pálfy Péter Pál Eötvös Loránd Tudományegyetem Algebra és Számelmélet Tanszék Budapest, 2010. Tartalomjegyzék Bevezető... 3 Definíciók,
Részletesebben2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika
2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A
RészletesebbenStatisztikai módszerek
Statisztikai módszerek A hibaelemzı módszereknél azt néztük, vannak-e kiugró, kritikus hibák, amelyek a szabályozás kivételei. Ezekkel foglalkozni kell; minıségavító szabályozásra van szükség. A statisztikai
Részletesebben5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?
5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,
RészletesebbenBevezetés. Párhuzamos vetítés és tulajdonságai
Bevezetés Az ábrázoló geometria célja a háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelműen és egyértelműen visszaállítható (rekonstruálható) módon történő való
Részletesebben4. előadás. Vektorok
4. előadás Vektorok Vektorok bevezetése Ha adottak a térben az A és a B pontok, akkor pontosan egy olyan eltolás létezik, amely A-t B- be viszi. Ha φ egy tetszőleges eltolás, akkor ez a tér minden P pontjához
Részletesebben10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M
10. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós
Részletesebben33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
RészletesebbenSzámelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa
Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa 1. Mutasd meg, hogy a tízes számrendszerben felírt 111111111111 tizenhárom jegyű szám összetett szám, azaz
RészletesebbenO 1.1 A fény egyenes irányú terjedése
O 1.1 A fény egyenes irányú terjedése 1 blende 1 és 2 rés 2 összekötő vezeték Előkészület: A kísérleti lámpát teljes egészében egy ív papírlapra helyezzük. A négyzetes fénynyílást széttartó fényként használjuk
RészletesebbenEGYEZMÉNY. 52. Melléklet: 53. számú Elõírás. 2. Felülvizsgált változat
E/ECE/324 E/ECE/TRANS/505 } Rev.1/Add.52/Rev.1 2002. október 1. ENSZ-EGB 53. számú Elõírás EGYEZMÉNY A KÖZÚTI JÁRMÛVEKRE, A KÖZÚTI JÁRMÛVEKBE SZERELHETÕ ALKATRÉSZEKRE, illetve A KÖZÚTI JÁRMÛVEKNÉL HASZNÁLATOS
RészletesebbenFizikai olimpiász. 52. évfolyam. 2010/2011-es tanév. D kategória
Fizikai olimpiász 52. évfolyam 2010/2011-es tanév D kategória Az iskolai forduló feladatai (további információk a http://fpv.uniza.sk/fo vagy www.olympiady.sk honlapokon) A D kategória 52. évfolyamához
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenTevékenység: Gyűjtse ki és tanulja meg a kötőcsavarok szilárdsági tulajdonságainak jelölési módját!
Csavarkötés egy külső ( orsó ) és egy belső ( anya ) csavarmenet kapcsolódását jelenti. A következő képek a motor forgattyúsházában a főcsapágycsavarokat és a hajtókarcsavarokat mutatják. 1. Kötőcsavarok
RészletesebbenOktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet
RészletesebbenNemzeti alaptanterv 2012 MATEMATIKA
ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
Részletesebben1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
RészletesebbenMATEMATIKA C 12. évfolyam 3. modul A mi terünk
MTEMTIK C 1. évflyam. mdul mi terünk Készítette: Kvács Kárlyné Matematika C 1. évflyam. mdul: mi terünk Tanári útmutató mdul célja Időkeret jánltt krsztály Mdulkapcslódási pntk térfgat- és felszínszámítási
RészletesebbenKÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016.
KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016. 1.Tűréseknek nevezzük: 2 a) az anyagkiválasztás és a megmunkálási eljárások előírásait b) a gépelemek nagyságának és alakjának előírásai c) a megengedett eltéréseket az
RészletesebbenTV IV. sávi lemezantenna SZABÓ ZOLTÁN
TV IV. sávi lemezantenna SZABÓ ZOLTÁN BHG Bevezetés A TV IV. sávi átjátszóprogram kiépítése szükségessé tette egy az ebben a sávban működő antennapanel kifejlesztését, amely úgy adó-, mint vevőantennaként
RészletesebbenA DUNA VÍZJÁTÉKÁNAK ÉS A KÖRNYEZŐ TERÜLET TALAJVÍZSZINTJEINEK KAPCSOLATA. Mecsi József egyetemi tanár, Pannon Egyetem, Veszprém
A DUNA VÍZJÁTÉKÁNAK ÉS A KÖRNYEZŐ TERÜLET TALAJVÍZSZINTJEINEK KAPCSOLATA Mecsi József egyetemi tanár, Pannon Egyetem, Veszprém mecsij@almos.uni-pannon.hu, jmecsi@gmail.com ÖSSZEFOGLALÓ A Duna illetve a
RészletesebbenDefiníció. Definíció. 2. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása. 2-5. fejezet. A variabilitás mér számai 3.
. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása -1 Áttekintés - Gyakoriság eloszlások -3 Az adatok vizualizációja -4 A centrum mérıszámai -5 A szórás mérıszámai -6 A relatív elhelyezkedés
RészletesebbenMATEMATIKA PRÓBAFELVÉTELI a 8. évfolyamosok számára
MEGOLDÓKULCS MATEMATIKA PRÓBAFELVÉTELI a 8. évfolyamosok számára 2012. december 17. 10:00 óra NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tollal dolgozz! Zsebszámológépet nem asználatsz. A feladatokat tetszés szerinti
RészletesebbenElső sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
RészletesebbenMIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június
MIKROÖKONÓMIA I Készült a TÁMOP-412-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
RészletesebbenKULCS_GÉPELEMEKBŐL_III._FOKOZAT_2016.
KULCS_GÉPELEMEKBŐL_III._FOKOZAT_2016. 1.Tűréseknek nevezzük: 2 a) az anyagkiválasztás és a megmunkálási eljárások előírásait b) a gépelemek nagyságának és alakjának előírásai c) a megengedett eltéréseket
RészletesebbenTERMÉKEK MÉRETVÁLASZTÉKA ÉS KERESZTMETSZETI JELLEMZŐI
TERÉKEK ÉRETVÁLASZTÉKA ÉS KERESZTETSZETI JELLEZŐI Alkalmazott jelöléek r ajlítái ugár, mm zelvény falvatagága, mm A a kereztmetzet felülete, cm 2 a zelvény egyégnyi tömege, kg/m S a kereztmetzet úlypontja
RészletesebbenPRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok
RészletesebbenFa- és Acélszerkezetek I. 6. Előadás Stabilitás II. Dr. Szalai József Főiskolai adjunktus
Fa- és Acélszerkezetek I. 6. Előadás Stabilitás II. Dr. Szalai József Főiskolai adjunktus Tartalom Kifordulás jelensége Rugalmas hajlított gerenda kritikus nyomatéka Valódi hajlított gerendák viselkedése
Részletesebbenszemináriumi C csoport Név: NEPTUN-kód: Szabó-Bakos Eszter
3. szemináriumi ZH C csoport Név: NEPTUN-kód: A feladatlapra írja rá a nevét és a NEPTUN kódját! A dolgozat feladatainak megoldására maximálisan 90 perc áll rendelkezésre. A helyesnek vált válaszokat a
Részletesebben