konfidencia-intervallum Logikai vektorok az R-ben március 14.
|
|
- Ábel Bognár
- 8 évvel ezelőtt
- Látták:
Átírás
1 Valószínűség, pontbecslés, konfidencia-intervallum Logikai vektorok az R-ben március 14.
2 Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra ferde 1/x Density Density Density
3 Transzformációk Unimodális, jobbra vagy balra ferde eloszlások gyakran átalakíthatóak normális eloszlásúvá. Szokásos eljárások: x = log(x) x = 1/x x = x...
4 Valószínűség a mindennapokban Köznyelvi jelentés: tapasztalat alapú becslés (n megfigyelt esetből hányszor történt meg egy adott esemény). Pl. valószínűleg mindjárt elered az eső (mert ha ilyen borús az ég, gyakran esik), valószínűleg idén sem lesz fizetésemelés (mert tíz éve nem volt). A valószínűség soha nem jelent biztos tudást! Néha mégsem esik, ha borús az ég, és néha mégis van fizetésemelés. Intuitív becslésnek kevés fokozata van: nem túl valószínű, elég valószínű, nagyon valószínű, több mint valószínű.
5 Valószínűség a szerencsejátékban Fej vagy írás egy érme feldobásakor? Megfigyelés: 10 dobás, 20, Fejek száma mindig jobban közeĺıti a 0,5-ös értéket. Empirikus valószínűség P definíciója: P = fej/összes dobás ahol a dobások száma a végtelenhez közeĺıt. valószínűség értéke mindig 0 (egyáltalán nem valószínű) és 1 (biztos) között mozog.
6 Példák adott szám dobása kockával (adott szám/összes szám = 1/6),
7 Példák adott szám dobása kockával (adott szám/összes szám = 1/6), ász húzása egy kártyapakliból (ászok száma/összes kártya = 4/32),
8 Példák adott szám dobása kockával (adott szám/összes szám = 1/6), ász húzása egy kártyapakliból (ászok száma/összes kártya = 4/32), egy véletlenszerűen kiválasztott magyar állampolgár felekezeti hovatartozása (ha összes megkérdezett közötti arány: katolikus 51 %, református 16 %, evangélikus 3%, nem vallásos 14,5% stb.),
9 Példák adott szám dobása kockával (adott szám/összes szám = 1/6), ász húzása egy kártyapakliból (ászok száma/összes kártya = 4/32), egy véletlenszerűen kiválasztott magyar állampolgár felekezeti hovatartozása (ha összes megkérdezett közötti arány: katolikus 51 %, református 16 %, evangélikus 3%, nem vallásos 14,5% stb.), kétszer egymás után fej dobása: fej+fej/(fej+fej)+(fej+írás)+(írás+fej)+(írás+írás) = 1/4),
10 Példák adott szám dobása kockával (adott szám/összes szám = 1/6), ász húzása egy kártyapakliból (ászok száma/összes kártya = 4/32), egy véletlenszerűen kiválasztott magyar állampolgár felekezeti hovatartozása (ha összes megkérdezett közötti arány: katolikus 51 %, református 16 %, evangélikus 3%, nem vallásos 14,5% stb.), kétszer egymás után fej dobása: fej+fej/(fej+fej)+(fej+írás)+(írás+fej)+(írás+írás) = 1/4), véletlenszerűen megkérdezett személy diplomás nő: diplomások aránya 22,4%, nők aránya 50%: 0,224*0,5.
11 Becslés Az empirikus kutatások során szinte mindig egy adott minta alapján következtetünk a populációra. DE: a minta alapján a populációra csak becsléseket tehetünk. Különböző minták különböző átlagokat eredményeznek, még véletlenszerű kiválasztás esetén is. Adott számú minta szórása a populáció µ átlaga körül: standard hiba, azaz se = s n.
12 Pontbecslés Véletlen minta átlaga függ a véletlentől, azaz egy becsült pont. Megmérjük egy véletlenszerűen kiválasztott, 300 fős, férfi egyetemistából álló csoport testmagasságát. s = 6,3 cm A minta részmintáiból számolt átlagok szórása függ az elemszámtól: a tíz fős minták szórása a minta átlaga körül se = 6, 3/ 10 = 1, 99, ötven fős mintáé se = 6, 3/ 50 = 0, 89, stb. minél nagyobb az elemszám, annál kisebb a szórás, azaz az egyes mintaátlagok annál jobban közeĺıtik a populáció átlagát.
13 Feladat Forrás: kiegészítő anyag > R kódok letöltése biostat-r.zip Testmagasság adatai minta.txt nevű fájlban. átlag: mean(minta) szórás: sd(minta) gyök: sqrt(x) Hogyan számoljuk ki az első tíz fő testmagasságának átlagát?
14 Feladat Forrás: kiegészítő anyag > R kódok letöltése biostat-r.zip Testmagasság adatai minta.txt nevű fájlban. átlag: mean(minta) szórás: sd(minta) gyök: sqrt(x) Hogyan számoljuk ki az első tíz fő testmagasságának átlagát? mean(minta$height[1:10]) Minta standard hibája?
15 Feladat Forrás: kiegészítő anyag > R kódok letöltése biostat-r.zip Testmagasság adatai minta.txt nevű fájlban. átlag: mean(minta) szórás: sd(minta) gyök: sqrt(x) Hogyan számoljuk ki az első tíz fő testmagasságának átlagát? mean(minta$height[1:10]) Minta standard hibája? sd(minta)/sqrt(300) 0,36
16 Konfidencia-intervallum Kérdés: igaz-e, hogy a véletlen minta átlaga beleesik az ismeretlen populáció-átlag körül szóródó mintaátlagokba? Nehézség: µ-t nem ismerjük, csak x-et. döntés nem lehetséges, csak egy adott valószínűségi határon, azaz konfidencia-intervallumon belüli valószínűség megállapítása. Kérdés: igaz-e, hogy x 95%-os valószínűséggel beleesik a µ körül standard hibával szóródó mintaátlagok tartományába? Konfidenciaszint ebben az esetben: p = 0, 95.
17 Kiindulás Véletlenszerű minták átlagai normális eloszlásúak. Átlagok 95%-a ± 1,96*szórás (s), itt s/ n, azaz 1,96*standard hiba (se). Keresett µ a populáció eloszlásának középpontja (szimmetria feltételezése miatt). tehát: p( 1, 96 se + µ < x < µ + 1, 96 se) = 0, 95 Cél: a 95%-os konfidencia-intervallumon belüli határértékek meghatározása negatív és pozitív irányban.
18 Konfidencia-intervallum x alapján p( 1, 96 se + µ < x < µ + 1, 96 se) = 0, 95 µ p( 1, 96 se < x µ < 1, 96 se) = 0, p(1, 96 se > µ x > 1, 96 se) = 0, 95 + x p(1, 96 se + x > µ > x 1, 96 se) = 0, 95 p( 1, 96 se + x < µ < x + 1, 96 se) = 0, 95
19 Konfidenciaszint Konfidencia-intervallum: értéktartomány, amely a becsülendő paramétert előre rögzített valószínűséggel tartalmazza. Konfidencia-intervallumon kívüli tartomány: α = 1 p. Ha x esik a 95%-os konfidencia-intervallumba, akkor is tartozhat az adott populációhoz! Tévedés valószínűsége 5%, ez az ún. alfa-hiba.
20 Kiindulási hipotézis tesztelése Hipotézis álĺıtása falszifikáción keresztül, azaz az álĺıtásunk ellenhipotézisét teszteljük. Az empirikus vizsgálatokban általában abban vagyunk érdekeltek, hogy vizsgált érték 1 p, azaz α tartományba essen. szignifikanciaszintet α értékével szokás megadni, azaz 0,05 vagy 5%. Ha azt akarjuk bizonyítani, hogy egy adott minta nem tartozik az adott p konfidencia-intervallumba, akkor a mintának negatív és pozitív irányban az α/2 tartományba kell tartoznia. Tehát egy szimmetrikus, azaz kétoldalas tesztnél az azonosság elutasítása 2,5%-ra teljesül.
21 Feladat Számoljuk ki a minta R-objektum első tíz testmagasságának átlagát. Beleesik a teljes minta 90, 95, ill, 99%-os konfidencia-intervallumába? Első tíz elem átlagának kiszámítása:
22 Feladat Számoljuk ki a minta R-objektum első tíz testmagasságának átlagát. Beleesik a teljes minta 90, 95, ill, 99%-os konfidencia-intervallumába? Első tíz elem átlagának kiszámítása: mean(minta$height[1:10]) %-os konfidencia-intervallum határai?
23 Feladat Számoljuk ki a minta R-objektum első tíz testmagasságának átlagát. Beleesik a teljes minta 90, 95, ill, 99%-os konfidencia-intervallumába? Első tíz elem átlagának kiszámítása: mean(minta$height[1:10]) %-os konfidencia-intervallum határai? A régi szép időkben megnéztük az adott α/2 tartományra megadott z-értéket.
24 Feladat Számoljuk ki a minta R-objektum első tíz testmagasságának átlagát. Beleesik a teljes minta 90, 95, ill, 99%-os konfidencia-intervallumába? Első tíz elem átlagának kiszámítása: mean(minta$height[1:10]) %-os konfidencia-intervallum határai? A régi szép időkben megnéztük az adott α/2 tartományra megadott z-értéket. Manapság letöltjük a gmodels nevű R-csomagot, és lekérdezzük a határokat a ci paranccsal. ci(minta$height) Estimate CI lower CI upper Std. Error
25 R
26 Házi feladat 1 ratings fájlban található adatok alapján tetszőleges pontdiagramm készítése és mentése. Például: plot(ratings$frequency,ratings$meanfamiliarity, main="frequency and familiarity",sub="r = 0.48") dev.print("r-images/ratings corr.pdf",device=pdf)
27 Házi feladat 2 ratings fájlban található adatok alapján tetszőleges boxplot készítése. boxplot(ratings$meanfamiliarity ratings$class, col=c(4,2),cex.axis=1.3)
28 Logikai vektorok Egy adatmátrixon egy adott változón belüli csoportok definiálása. operátorok: == azonos!= nem azonos %in% tartalmazza a vektor egy elemét <, > kisebb, nagyobb vagy & és
29 Logikai vektorok definíciója z = ratings$class == plant z = minta$height < 170 feltételt teljesítő sorok listázása: ratings[z,] összes elem feltételt teljesítő elemei vektorként: ratings$class[z] Melyik elemekre igaz: which(z) Összes előfordulás: sum(z)
30 Feladatok 1. A fenti pontdiagramm elkészítése az állatokra és a növényekre eltérő színnel. A tengelyhosszok legyenek azonosak (xlim=c(), ylim=c()), és az összes pont egy ábrában legyen, ezt az első ábra után külön paranccsal kell megadni: par(new=t). 2. Boxplot készítése adott csoportra (csak növények, csak egyszerű szavak stb.). 3. A minta adatbázisban hány személy magassága tér el az átlagtól 1 σ-nál nagyobb mértékben? És 2 σ-nál nagyobb mértékben?
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
RészletesebbenBemenet modellezése II.
Bemenet modellezése II. Vidács Attila 2005. november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási
RészletesebbenÁltalános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László
Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication
RészletesebbenStatisztikai programcsomagok
Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés
RészletesebbenMikrohullámok vizsgálata. x o
Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia
RészletesebbenHipotézis-ellenırzés (Statisztikai próbák)
Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat
RészletesebbenA 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
RészletesebbenStatisztika I. 6. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 6. előadás Előadó: Dr. Ertsey Imre GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE szorosan kapcsolódik a szóródás elemzéshez, elméleti
RészletesebbenMatematikai és matematikai statisztikai alapismeretek
Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok
RészletesebbenElMe 6. labor. Helyettesítő karakterisztikák: Valódi karakterisztika 1 pontosabb számításoknál 2 közelítő számításoknál 3 ideális esetben
ElMe 6. labor 1. Rajzolja fel az ideális és a valódi dióda feszültség-áram jelleggörbéjét! 5. Hogyan szokás közelíteni a számítások során a dióda karakterisztikáját? 4. Rajzolja fel a dióda karakterisztikáját,
RészletesebbenA statisztika részei. Példa:
STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,
RészletesebbenFELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b.
FELADATOK A RELÁCIÓK, GRÁFOK TÉMAKÖRHÖZ 1. rész A feladatsorban használt jelölések: R = {r R r < 0}, R + = {r R r>0}, [a; b] = {r R a r b}, ahol a, b R és a b. 4.1. Feladat. Adja meg az α = {(x, y) x +
RészletesebbenMINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia
MINİSÉGSZABÁLYOZÁS A GÉPIPARBAN Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia ISO 9000:2008 A STATISZTIKAI MÓDSZEREK HASZNÁLATÁRÓL A statisztikai módszerek
Részletesebben11. Matematikai statisztika
11. Matematikai statisztika 11.1. Alapfogalmak A statisztikai minta valamely valószínűségi változóra vonatkozó véges számú független kisérlet eredménye. Ez véges sok, azonos eloszlású valószínűségi változó
Részletesebben1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x.
. Sugár Szarvas fgy., 86. o. S3. feladat Egy antikvárium könyvaukcióján árverésre került 9 könyv licitálási adatai alapján vizsgáljuk a könyvek kikiáltási és ún. leütési ára ezerft közötti sztochasztikus
RészletesebbenSlovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008
Slovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008 Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 49. évfolyam, 2007/2008-as tanév Az FO versenyzıinek
RészletesebbenDefiníció. Definíció. 2. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása. 2-5. fejezet. A variabilitás mér számai 3.
. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása -1 Áttekintés - Gyakoriság eloszlások -3 Az adatok vizualizációja -4 A centrum mérıszámai -5 A szórás mérıszámai -6 A relatív elhelyezkedés
Részletesebben1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba?
Matematikai statisztika példák Matematikai statisztika példák Normális eloszlás 1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? 2. Majmok ébredését
RészletesebbenFeladatok és megoldások a 6. heti eladshoz
Feladatok és megoldások a 6. heti eladshoz Építőkari Matematika A3 1. Ha E(X = 1 és D 2 (X = 5, határozzuk meg (a E[(2 + X 2 ], (b D 2 (4 + 3X értékét. 2. Legyenek X 1, X 2,... független azonos eloszlású
RészletesebbenÖNJAVÍTÓ AGGREGÁLÁS SZENZORHÁLÓZATOKBAN ÉS AGGREGÁTOR NODE VÁLASZTÁS. Schaffer Péter. Tézisfüzet. Konzulens: Buttyán Levente, Ph.D.
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM HÍRADÁSTECHNIKAI TANSZÉK ÖNJAVÍTÓ AGGREGÁLÁS ÉS AGGREGÁTOR NODE VÁLASZTÁS SZENZORHÁLÓZATOKBAN Tézisfüzet Schaffer Péter Konzulens: Buttyán Levente, Ph.D.
Részletesebben2. előadás: További gömbi fogalmak
2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással
RészletesebbenElméleti összefoglalók dr. Kovács Péter
Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...
RészletesebbenSztochasztikus folyamatok 1. házi feladat
Sztochasztikus folyamatok 1. házi feladat 1. Egy borfajta alkoholtartalmának meghatározására méréseket végzünk. Az egyes mérések eredményei egymástól független valószínûségi változók, melyek normális eloszlásúak,
RészletesebbenAlapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom
Alapfogalmak áttekintése Pszichológiai statisztika, 1. alkalom Hipotézisek Milyen a jó null hipotézis?? H0: Léteznek kitőnı tanuló diszlexiások.? H1: Nem léteznek. Sokkal inkább: H0: Nincs diszlexiás kitőnı
Részletesebben2013.03.11. Az SPC alapjai. Az SPC alapjai SPC 5. 5. Az SPC (Statistic Process Control) módszer. Dr. Illés Balázs
SPC 5 5. Az SPC (Statistic Process Control) módszer Dr. Illés Balázs BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ELEKTRONIKAI TECHNOLÓGIA TANSZÉK Az SPC alapjai SPC (Statistical Process Controll) =
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó
RészletesebbenSzámelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa
Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa 1. Mutasd meg, hogy a tízes számrendszerben felírt 111111111111 tizenhárom jegyű szám összetett szám, azaz
Részletesebben19. Az elektron fajlagos töltése
19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................
RészletesebbenMikroökonómia I. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét PREFERENCIÁK, HASZNOSSÁG 2. RÉSZ
MIKROÖKONÓMI I. ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia I. PREFERENCIÁK, HSZNOSSÁG 2. RÉSZ Készítette: K hegyi Gergely, Horn Dániel Szakmai felel s: K hegyi Gergely 2010. június tananyagot
RészletesebbenMéréstechnika 5. Galla Jánosné 2014
Méréstechnika 5. Galla Jánosné 014 A mérési hiba (error) a mérendő mennyiség értékének és a mérendő mennyiség referencia értékének különbsége: ahol: H i = x i x ref H i - a mérési hiba; x i - a mért érték;
RészletesebbenAdalékanyagok kőzetfizikai tulajdonságai
Adalékanyagok kőzetfizikai tulajdonságai Út- és hídépítési műszaki előírások és alkalmazási tapasztalataik Magyar Közút Zrt. Dr. Kausay Tibor Dr. Kausay Tibor Budapest, 2011. november 23. 1 Útügyi műszaki
Részletesebben7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés
7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció
RészletesebbenÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ
Szolnoki Főiskola Üzleti Fakultás, 5000 Szolnok, Tiszaligeti sétány ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ A 4/1996. (I. 18.) Korm. rendelet a közgazdasági felsőoktatás alapképzési szakjainak képesítési
RészletesebbenA készülék használata elõtt kérjük olvassa el figyelmesen a használati utasítást.
7LC048A 7LC048A E B D C C DD E E g e P 112 D 0 e B A B B A e D B26 B B E B D C C DD E E g e P 112 D 0 e B A B B A e D B26 B B K H K K H K A B P C D E 123 456 789 *0# g B A P D C E : 0 9* # # A B P C
RészletesebbenBevezetés az ökonometriába
Bevezetés az ökonometriába Többváltozós lineáris regresszió: mintavételi vonatkozások és modelljellemzés Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Harmadik
RészletesebbenSZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)
SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A
RészletesebbenFókuszált fénynyalábok keresztpolarizációs jelenségei
Fókuszált fénynyalábok keresztpolarizációs jelenségei K házi-kis Ambrus, Klebniczki József Kecskeméti F iskola GAMF Kar Matematika és Fizika Tanszék, 6000 Kecskemét, Izsáki út 10. Véges transzverzális
RészletesebbenTruma CP plus. Használati utasítás Beszerelési utasítás Kérjük a járműben tartani! 2. oldal 17. oldal
Truma CP plus Használati utasítás Beszerelési utasítás Kérjük a járműben tartani! 2. oldal 17. oldal Truma CP plus kezelőegység Tartalomjegyzék Használati utasítás Alkalmazott jelölések... 3 Rendeltetés...
RészletesebbenMATEMATIKA KOMPETENCIATERÜLET A
MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI MUNKAFÜZET 2. félév A kiadvány KHF/4002-17/2008 engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő
RészletesebbenSZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR EUROCODE SEGÉDLETEK A MÉRETEZÉS ALAPJAI C. TÁRGYHOZ
SZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR EUROCODE SEGÉDLETEK A MÉRETEZÉS ALAPJAI C. TÁRGYHOZ A segédlet nem helyettesíti az építmények teherhordó szerkezeteinek erőtani tervezésére vonatkozó
RészletesebbenI. A légfékrendszer időszakos vizsgálatához alkalmazható mérő-adatgyűjtő berendezés műszaki
A Közlekedési Főfelügyelet közleménye a nemzetközi forgalomban használt autóbuszok (M2 és M3 jármű-kategóriába tartozó gépkocsik) vizsgálatát (is) végző vizsgálóállomásokon alkalmazandó mérő-adatgyűjtő
Részletesebben8. előadás EGYÉNI KERESLET
8. előadás EGYÉNI KERESLET Kertesi Gábor Varian 6. fejezete, enyhe változtatásokkal 8. Bevezető megjegyzések Az elmúlt héten az optimális egyéni döntést elemeztük grafikus és algebrai eszközökkel: a preferenciatérkép
RészletesebbenReiczigel Jenő, 2006 1
Reiczigel Jenő, 2006 1 Egytényezős (egyszempontos) varianciaelemzés k független minta (k kezelés vagy k csoport), a célváltozó minden csoportban normális eloszlású, a szórások azonosak, az átlagok vagy
RészletesebbenEgy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged
Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást
RészletesebbenValószín ségelmélet házi feladatok
Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott
RészletesebbenIlleszkedésvizsgálat χ 2 -próbával
Illeszkedésvizsgálat χ -próbával Szalay Krisztina 1. feladat (tiszta illeszkedésvizsgálat) Négy pénzérmét 0-szor feldobunk. A kapott gyakoriságok: fejek száma 0 1 3 4 Összes gyakoriság 5 35 67 41 1 0 Elfogadható-e
RészletesebbenMiskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás
RészletesebbenX. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata
X. Fénypolarizáció X.1. A polarizáció jelenségének magyarázata A polarizáció a fény hullámtermészetét bizonyító jelenség, amely csak a transzverzális rezgések esetén észlelhető. Köztudott, hogy csak a
RészletesebbenÉS TESZTEK A DEFINITSÉG
MÁTRIX DEFINITSÉGÉNEK FOGALMA ÉS TESZTEK A DEFINITSÉG ELDÖNTÉSÉRE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-..1.B-10//KONV-010-0001
RészletesebbenMikrobiológiai leletfogadás az OSZIR rendszerbe
Mikrobiológiai leletfogadás az OSZIR rendszerbe 1 Általános ismertető Ahhoz, hogy a laboratóriumi rendszerek adatokat tudjanak cserélni az OSZIR rendszerrel az OTH Informatikától szükséges az authentikációhoz
RészletesebbenII. A következtetési statisztika alapfogalmai
II. A következtetési statisztika alapfogalmai Tartalom Statisztikai következtetések A véletlen minta fogalma Pontbecslés és hibája Intervallumbecslés A hipotézisvizsgálat alapfogalmai A legegyszerűbb statisztikai
RészletesebbenVéletlenszám-generátorok
Véletlenszám-generátorok 1. Lineáris kongruencia generátor megvalósítása: (a) Készítsen lineáris kongruencia generátort az paraméterekkel, rnd_lcg néven. (b) Nyomtasson ki 20 értéket. legyen. (a, c, m,
RészletesebbenBevezetés a programozásba. 12. Előadás: 8 királynő
Bevezetés a programozásba 12. Előadás: 8 királynő A 8 királynő feladat Egy sakktáblára tennénk 8 királynőt, úgy, hogy ne álljon egyik sem ütésben Ez nem triviális feladat, a lehetséges 64*63*62*61*60*59*58*57/8!=4'426'165'368
RészletesebbenCsúszkák és magasság-szabályozó darabok
Termékbemutató 6.0 Csúszó rögzítések tágulás-kiegyenlítéshez hőmérsékleti változásoknál 6.1 H3G csúszókészlet 6.2 A H3G és 2G csúszókészletek használatának példái 6.3 A H3G és 2G csúszókészletek használatának
RészletesebbenSZENT ISTVÁN EGYETEM
SZENT ISTVÁN EGYETEM A magyar mezőgazdasági gépgyártók innovációs aktivitása Doktori (PhD) értekezés tézisei Bak Árpád Gödöllő 2013 A doktori iskola Megnevezése: Műszaki Tudományi Doktori Iskola Tudományága:
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Informatika középszint 1221 ÉRETTSÉGI VIZSGA 2013. május 21. INFORMATIKA KÖZÉPSZINTŰ GYAKORLATI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Bevezetés A feladatok értékelése
RészletesebbenE B D C C DD E E g e 112 D 0 e B A B B A e D B25 B B K H K Fejhallgató Antenna A B P C D E 123 456 789 *0# Kijelzés g B A P D C E 0 9* # # g B B 52 Y t ] [ N O S T \ T H H G ? > < p B E E D 0 e B D
Részletesebben1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.
1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )
RészletesebbenKözbeszerzési Értesítő száma: 2015/3 Építési beruházás Tervezés és kivitelezés
Energetikai fejlesztések a Vámosgyörki Visontai Kovách László Katolikus Általános Iskolában (kódszám: KEOP-4.10.0/E/12-2014-0089) projekthez kapcsolódó kiviteli tervek elkészítésére és az építési beruházás
RészletesebbenVariancia-analízis (folytatás)
Variancia-analízis (folytatás) 6. elıadás (11-12. lecke) Szórás-stabilizáló transzformációk (folyt.), t-próbák 11. lecke További variancia-stabilizáló transzformációk Egy-mintás t-próba Szórás-kiegyenlítı
RészletesebbenCsődvalószínűségek becslése a biztosításban
Csődvalószínűségek becslése a biztosításban Diplomamunka Írta: Deák Barbara Matematikus szak Témavezető: Arató Miklós, egyetemi docens Valószínűségelméleti és Statisztika Tanszék Eötvös Loránd Tudományegyetem,
RészletesebbenA PERMETEZETT SZŐLŐ ÉS GYÜMÖLCS FOGYASZTÁSA
1 3 _.... %^-OílL, E ' ÁQ>fó>Í. A PERMETEZETT SZŐLŐ ÉS GYÜMÖLCS FOGYASZTÁSA ÍRTA: DR. BODNÁR JÁNOS ÉS DR. SZÉP ÖDÖN BUDAPEST, 1940. KIR. MAGY. TERMÉSZETTUDOMÁNYI TÁRSULAT VIII., ESZTERHÁZY«U. 16. A PERMETEZETT
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása
RészletesebbenElektronspinrezonancia (ESR) - spektroszkópia
E m S Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben = µ
RészletesebbenMATEMATIKA. 5 8. évfolyam
MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni
Részletesebben1. ÁLTALÁNOS TERVEZÉSI ELŐÍRÁSOK
1. ÁLTALÁNOS TERVEZÉSI ELŐÍRÁSOK Az országos és a helyi közutak hálózatot alkotnak. A közúti fejlesztési javaslatok a különböző szintű, az ötévenként, valamint a területrendezési tervek felülvizsgálatakor
RészletesebbenKondenzátorvédelmi funkció feszültségváltós kettős csillagkapcsolású telepre
Kondenzátorvédelmi funkció feszültségváltós kettős csillagkapcsolású telepre Dokumentum ID: PP-13-20543 Budapest, 2014. július Verzió Dátum Módosítás Szerkesztette V1.0 2014.03.10. Első kiadás Póka Gyula
Részletesebben1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény
Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,
RészletesebbenNYÍREGYHÁZI FŐISKOLA TANÍTÓKÉPZŐ INTÉZET. Útmutató a szakdolgozat készítéséhez tanító szakon
NYÍREGYHÁZI FŐISKOLA TANÍTÓKÉPZŐ INTÉZET Útmutató a szakdolgozat készítéséhez tanító szakon Nyíregyháza 2014 Tartalomjegyzék 1. Általános rendelkezések... 3 2. A szakdolgozati témák meghirdetésének rendje
RészletesebbenÚtmutató. a szakdolgozat elkészítéséhez. Szegedi Tudományegyetem Egészségtudományi és Szociális Képzési Kar. (ápoló szakirány számára)
Szegedi Tudományegyetem Egészségtudományi és Szociális Képzési Kar Útmutató a szakdolgozat elkészítéséhez (ápoló szakirány számára) 2010/2011. tanév Tartalom: Tájékoztató a szakdolgozat elkészítésének
RészletesebbenEÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN
EÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN SZAKDOLGOZAT Készítette: Bényász Melinda Matematika Bsc Matematikai elemz szakirány Témavezet : Kósa Balázs Informatikai Kar Információs
RészletesebbenVI.11. TORONY-HÁZ-TETŐ. A feladatsor jellemzői
VI.11. TORONY-HÁZ-TETŐ Tárgy, téma A feladatsor jellemzői Szögfüggvények derékszögű háromszögben, szinusztétel, koszinusztétel, Pitagorasz-tétel. Előzmények Pitagorasz-tétel, derékszögű háromszög trigonometriája,
RészletesebbenAdatok statisztikai feldolgozása
Adatok statisztikai feldolgozása Kaszaki József Ph.D Szegedi Tudományegyetem Sebészeti Műtéttani Intézet Szeged A mérési adatok kiértékelése, statisztikai analízis A mért adatok konvertálása adatbázis
RészletesebbenEGYEZMÉNY. 52. Melléklet: 53. számú Elõírás. 2. Felülvizsgált változat
E/ECE/324 E/ECE/TRANS/505 } Rev.1/Add.52/Rev.1 2002. október 1. ENSZ-EGB 53. számú Elõírás EGYEZMÉNY A KÖZÚTI JÁRMÛVEKRE, A KÖZÚTI JÁRMÛVEKBE SZERELHETÕ ALKATRÉSZEKRE, illetve A KÖZÚTI JÁRMÛVEKNÉL HASZNÁLATOS
RészletesebbenCsAvArbiztosítási rendszer
CsAvArbiztosítási rendszer A mûködési elv Az alátétek a lejtős fogazású belső felülettel, egymással szemben összeragasztva kerülnek értékesítésre, így megkönnyítve az első felszerelést és megakadályozva
RészletesebbenPARTNERI IGÉNYFELMÉRÉS SZABÁLYZAT
PARTNERI IGÉNYFELMÉRÉS SZABÁLYZAT Partner megnevezése Pedagógusok Nem pedagógus munkaben dolgozók Szülők Tanulók Mintavétel érdekelt érdekelt szülő tanuló Az igényfelmérés módja Az igényfelmérés gyakorisága
RészletesebbenA felsőoktatásban dolgozók tudásértékesítési lehetőségei kutatók részvétele a tudásáramlás szektoraiban
A felsőoktatásban dolgozók tudásértékesítési lehetőségei kutatók részvétele a tudásáramlás szektoraiban Apró Melinda Hülber László SZTE-BTK Neveléstudományi Doktori Iskola Az LLL fogalom átalakulása lisszaboni
RészletesebbenNagy Sándor: Magkémia
Nagy Sándor: Magkémia (kv1c1mg1) 03. Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások Nagy Sándor honlapja ismeretterjesztő anyagokkal: http://nagysandor.eu/ A Magkémia tantárgy weboldala:
RészletesebbenKriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT
NetworkShop 2004 2004.. április 7. Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT Bevezetés Ma használt algoritmusok matematikailag alaposan teszteltek
Részletesebben2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával.
2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával. A MÉRÉS CÉLJA Az elterjedten alkalmazott hőmérséklet-érzékelők (ellenállás-hőmérő, termisztor, termoelem) megismerése,
RészletesebbenKVANTITATÍV MÓDSZEREK
Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet Dr. Kövesi János, Erdei János, Dr. Tóth Zsuzsanna Eszter KVANTITATÍV MÓDSZEREK Példatár Budapest,
RészletesebbenBináris keres fák kiegyensúlyozásai. Egyed Boglárka
Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi
RészletesebbenForgásfelületek származtatása és ábrázolása
Forgásfelületek származtatása és ábrázolása Ha egy rögzített egyenes körül egy tetszőleges görbét forgatunk, akkor a görbe úgynevezett forgásfelületet ír le; a rögzített egyenes, amely körül a görbe forog,
RészletesebbenDarupályatartók. Dr. Németh György főiskolai docens. A daruteher. Keréknyomás (K) Fékezőerő (F)
Dr. émeth Görg főiskoli docens Drupáltrtók s f c 6vg e f sz c/ >,5 e s ~,.. A druteher Q 4 4 eréknomás () Fékezőerő (F) F Oldlerő () Biztonsági ténező dru fjtájától (híddru/függődru) és névleges teherírástól
RészletesebbenKonfokális mikroszkópia elméleti bevezetõ
Konfokális mikroszkópia elméleti bevezetõ A konfokális mikroszkóp fluoreszcensen jelölt minták vizsgálatára alkalmas. Jobb felbontású képeket ad, mint a hagyományos fluoreszcens mikroszkópok, és képes
RészletesebbenA 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató FELADATOK
Oktatási Hivatal A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA Javítási-értékelési útmutató FELADATOK Hogyan fújják fel egymást a léggömbök A méréshez
RészletesebbenAz infravörös spektroszkópia analitikai alkalmazása
Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai
RészletesebbenMagnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben
Magnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben Jól ismert, hogy az elektronok az elektromos töltés mellett spinnel is rendelkeznek, mely számos érdekes jelenséget, többek között bizonyos
RészletesebbenRész. Egész. Alkatrész. Just. High. Parts. Lineáris megvezetések, elérhetô áron!
1 Rész. Egész. Alkatrész. Just. High. Parts. Lineáris megvezetések, elérhetô áron! 2 Üdvözlet a BEARING-tôl A HIWIN golyós perselyek kis súrlódású, halk futású, nagy pontosságú lineáris mozgást tesznek
RészletesebbenStatisztika, próbák Mérési hiba
Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:
Részletesebben4.2. ELİREGYÁRTOTT VB. FÖDÉMEK
4.2. ELİREGYÁRTOTT VB. FÖDÉMEK 4.2.1. ALAPFOGALMAK: ELİREGYÁRTÁS, FESZÍTÉS A monolit vb. födémek rengeteg elınye (kisebb födémvastagság, egyszerő konzolképzés, többtámaszúsíthatóság, kétirányú teherhordás
Részletesebben3. Konzultáció: Kondenzátorok, tekercsek, RC és RL tagok, bekapcsolási jelenségek (még nagyon Béta-verzió)
3. Konzultáció: Kondenzátorok, tekercsek, R és RL tagok, bekapcsolási jelenségek (még nagyon Béta-verzió Zoli 2009. október 28. 1 Tartalomjegyzék 1. Frekvenciafüggő elemek, kondenzátorok és tekercsek:
Részletesebben- $! ""./0+1 &!2" 3& &# $!!4"&"#! 5""1 -&"#! $&"8&3"2
"# "!! "$%%&'()*+!""!# $!!%&&'"(!)!*%'+, #&"! - $! ""./0+1 &!2" 3& &# $!!4"&"#! 5""1!!"&)" -)"!"&"#! '6-7"! 2"!"7&!&&"8! #79!"&!# : -&"#! $&"8&3"2 2&-&37&7!"#&" &3"" MAJERIK Viktor: Gyógyszeripari szétválasztások
RészletesebbenKosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
RészletesebbenFunkcionálanalízis. Általánosított függvények Disztribúciók. 12-13. el adás. 2012. május 9.-16. Lineáris funkcionál
Funkcionálanalízis 12-13. el adás 212. május 9.-16. Általánosított függvények Disztribúciók Lineáris funkcionál Legyen C () az függvénytér, amely a végtelen sokszor dierenciálható, kompakt tartójú függvényeket
RészletesebbenÚjdonságok. Release 2
ARCHLine.XP 2009 Windows Újdonságok Release 2 A dokumentációban levı anyag változásának jogát a CadLine Kft fenntartja, ennek bejelentésére kötelezettséget nem vállal. A szoftver, ami tartalmazza az ebben
Részletesebben