konfidencia-intervallum Logikai vektorok az R-ben március 14.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14."

Átírás

1 Valószínűség, pontbecslés, konfidencia-intervallum Logikai vektorok az R-ben március 14.

2 Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra ferde 1/x Density Density Density

3 Transzformációk Unimodális, jobbra vagy balra ferde eloszlások gyakran átalakíthatóak normális eloszlásúvá. Szokásos eljárások: x = log(x) x = 1/x x = x...

4 Valószínűség a mindennapokban Köznyelvi jelentés: tapasztalat alapú becslés (n megfigyelt esetből hányszor történt meg egy adott esemény). Pl. valószínűleg mindjárt elered az eső (mert ha ilyen borús az ég, gyakran esik), valószínűleg idén sem lesz fizetésemelés (mert tíz éve nem volt). A valószínűség soha nem jelent biztos tudást! Néha mégsem esik, ha borús az ég, és néha mégis van fizetésemelés. Intuitív becslésnek kevés fokozata van: nem túl valószínű, elég valószínű, nagyon valószínű, több mint valószínű.

5 Valószínűség a szerencsejátékban Fej vagy írás egy érme feldobásakor? Megfigyelés: 10 dobás, 20, Fejek száma mindig jobban közeĺıti a 0,5-ös értéket. Empirikus valószínűség P definíciója: P = fej/összes dobás ahol a dobások száma a végtelenhez közeĺıt. valószínűség értéke mindig 0 (egyáltalán nem valószínű) és 1 (biztos) között mozog.

6 Példák adott szám dobása kockával (adott szám/összes szám = 1/6),

7 Példák adott szám dobása kockával (adott szám/összes szám = 1/6), ász húzása egy kártyapakliból (ászok száma/összes kártya = 4/32),

8 Példák adott szám dobása kockával (adott szám/összes szám = 1/6), ász húzása egy kártyapakliból (ászok száma/összes kártya = 4/32), egy véletlenszerűen kiválasztott magyar állampolgár felekezeti hovatartozása (ha összes megkérdezett közötti arány: katolikus 51 %, református 16 %, evangélikus 3%, nem vallásos 14,5% stb.),

9 Példák adott szám dobása kockával (adott szám/összes szám = 1/6), ász húzása egy kártyapakliból (ászok száma/összes kártya = 4/32), egy véletlenszerűen kiválasztott magyar állampolgár felekezeti hovatartozása (ha összes megkérdezett közötti arány: katolikus 51 %, református 16 %, evangélikus 3%, nem vallásos 14,5% stb.), kétszer egymás után fej dobása: fej+fej/(fej+fej)+(fej+írás)+(írás+fej)+(írás+írás) = 1/4),

10 Példák adott szám dobása kockával (adott szám/összes szám = 1/6), ász húzása egy kártyapakliból (ászok száma/összes kártya = 4/32), egy véletlenszerűen kiválasztott magyar állampolgár felekezeti hovatartozása (ha összes megkérdezett közötti arány: katolikus 51 %, református 16 %, evangélikus 3%, nem vallásos 14,5% stb.), kétszer egymás után fej dobása: fej+fej/(fej+fej)+(fej+írás)+(írás+fej)+(írás+írás) = 1/4), véletlenszerűen megkérdezett személy diplomás nő: diplomások aránya 22,4%, nők aránya 50%: 0,224*0,5.

11 Becslés Az empirikus kutatások során szinte mindig egy adott minta alapján következtetünk a populációra. DE: a minta alapján a populációra csak becsléseket tehetünk. Különböző minták különböző átlagokat eredményeznek, még véletlenszerű kiválasztás esetén is. Adott számú minta szórása a populáció µ átlaga körül: standard hiba, azaz se = s n.

12 Pontbecslés Véletlen minta átlaga függ a véletlentől, azaz egy becsült pont. Megmérjük egy véletlenszerűen kiválasztott, 300 fős, férfi egyetemistából álló csoport testmagasságát. s = 6,3 cm A minta részmintáiból számolt átlagok szórása függ az elemszámtól: a tíz fős minták szórása a minta átlaga körül se = 6, 3/ 10 = 1, 99, ötven fős mintáé se = 6, 3/ 50 = 0, 89, stb. minél nagyobb az elemszám, annál kisebb a szórás, azaz az egyes mintaátlagok annál jobban közeĺıtik a populáció átlagát.

13 Feladat Forrás: kiegészítő anyag > R kódok letöltése biostat-r.zip Testmagasság adatai minta.txt nevű fájlban. átlag: mean(minta) szórás: sd(minta) gyök: sqrt(x) Hogyan számoljuk ki az első tíz fő testmagasságának átlagát?

14 Feladat Forrás: kiegészítő anyag > R kódok letöltése biostat-r.zip Testmagasság adatai minta.txt nevű fájlban. átlag: mean(minta) szórás: sd(minta) gyök: sqrt(x) Hogyan számoljuk ki az első tíz fő testmagasságának átlagát? mean(minta$height[1:10]) Minta standard hibája?

15 Feladat Forrás: kiegészítő anyag > R kódok letöltése biostat-r.zip Testmagasság adatai minta.txt nevű fájlban. átlag: mean(minta) szórás: sd(minta) gyök: sqrt(x) Hogyan számoljuk ki az első tíz fő testmagasságának átlagát? mean(minta$height[1:10]) Minta standard hibája? sd(minta)/sqrt(300) 0,36

16 Konfidencia-intervallum Kérdés: igaz-e, hogy a véletlen minta átlaga beleesik az ismeretlen populáció-átlag körül szóródó mintaátlagokba? Nehézség: µ-t nem ismerjük, csak x-et. döntés nem lehetséges, csak egy adott valószínűségi határon, azaz konfidencia-intervallumon belüli valószínűség megállapítása. Kérdés: igaz-e, hogy x 95%-os valószínűséggel beleesik a µ körül standard hibával szóródó mintaátlagok tartományába? Konfidenciaszint ebben az esetben: p = 0, 95.

17 Kiindulás Véletlenszerű minták átlagai normális eloszlásúak. Átlagok 95%-a ± 1,96*szórás (s), itt s/ n, azaz 1,96*standard hiba (se). Keresett µ a populáció eloszlásának középpontja (szimmetria feltételezése miatt). tehát: p( 1, 96 se + µ < x < µ + 1, 96 se) = 0, 95 Cél: a 95%-os konfidencia-intervallumon belüli határértékek meghatározása negatív és pozitív irányban.

18 Konfidencia-intervallum x alapján p( 1, 96 se + µ < x < µ + 1, 96 se) = 0, 95 µ p( 1, 96 se < x µ < 1, 96 se) = 0, p(1, 96 se > µ x > 1, 96 se) = 0, 95 + x p(1, 96 se + x > µ > x 1, 96 se) = 0, 95 p( 1, 96 se + x < µ < x + 1, 96 se) = 0, 95

19 Konfidenciaszint Konfidencia-intervallum: értéktartomány, amely a becsülendő paramétert előre rögzített valószínűséggel tartalmazza. Konfidencia-intervallumon kívüli tartomány: α = 1 p. Ha x esik a 95%-os konfidencia-intervallumba, akkor is tartozhat az adott populációhoz! Tévedés valószínűsége 5%, ez az ún. alfa-hiba.

20 Kiindulási hipotézis tesztelése Hipotézis álĺıtása falszifikáción keresztül, azaz az álĺıtásunk ellenhipotézisét teszteljük. Az empirikus vizsgálatokban általában abban vagyunk érdekeltek, hogy vizsgált érték 1 p, azaz α tartományba essen. szignifikanciaszintet α értékével szokás megadni, azaz 0,05 vagy 5%. Ha azt akarjuk bizonyítani, hogy egy adott minta nem tartozik az adott p konfidencia-intervallumba, akkor a mintának negatív és pozitív irányban az α/2 tartományba kell tartoznia. Tehát egy szimmetrikus, azaz kétoldalas tesztnél az azonosság elutasítása 2,5%-ra teljesül.

21 Feladat Számoljuk ki a minta R-objektum első tíz testmagasságának átlagát. Beleesik a teljes minta 90, 95, ill, 99%-os konfidencia-intervallumába? Első tíz elem átlagának kiszámítása:

22 Feladat Számoljuk ki a minta R-objektum első tíz testmagasságának átlagát. Beleesik a teljes minta 90, 95, ill, 99%-os konfidencia-intervallumába? Első tíz elem átlagának kiszámítása: mean(minta$height[1:10]) %-os konfidencia-intervallum határai?

23 Feladat Számoljuk ki a minta R-objektum első tíz testmagasságának átlagát. Beleesik a teljes minta 90, 95, ill, 99%-os konfidencia-intervallumába? Első tíz elem átlagának kiszámítása: mean(minta$height[1:10]) %-os konfidencia-intervallum határai? A régi szép időkben megnéztük az adott α/2 tartományra megadott z-értéket.

24 Feladat Számoljuk ki a minta R-objektum első tíz testmagasságának átlagát. Beleesik a teljes minta 90, 95, ill, 99%-os konfidencia-intervallumába? Első tíz elem átlagának kiszámítása: mean(minta$height[1:10]) %-os konfidencia-intervallum határai? A régi szép időkben megnéztük az adott α/2 tartományra megadott z-értéket. Manapság letöltjük a gmodels nevű R-csomagot, és lekérdezzük a határokat a ci paranccsal. ci(minta$height) Estimate CI lower CI upper Std. Error

25 R

26 Házi feladat 1 ratings fájlban található adatok alapján tetszőleges pontdiagramm készítése és mentése. Például: plot(ratings$frequency,ratings$meanfamiliarity, main="frequency and familiarity",sub="r = 0.48") dev.print("r-images/ratings corr.pdf",device=pdf)

27 Házi feladat 2 ratings fájlban található adatok alapján tetszőleges boxplot készítése. boxplot(ratings$meanfamiliarity ratings$class, col=c(4,2),cex.axis=1.3)

28 Logikai vektorok Egy adatmátrixon egy adott változón belüli csoportok definiálása. operátorok: == azonos!= nem azonos %in% tartalmazza a vektor egy elemét <, > kisebb, nagyobb vagy & és

29 Logikai vektorok definíciója z = ratings$class == plant z = minta$height < 170 feltételt teljesítő sorok listázása: ratings[z,] összes elem feltételt teljesítő elemei vektorként: ratings$class[z] Melyik elemekre igaz: which(z) Összes előfordulás: sum(z)

30 Feladatok 1. A fenti pontdiagramm elkészítése az állatokra és a növényekre eltérő színnel. A tengelyhosszok legyenek azonosak (xlim=c(), ylim=c()), és az összes pont egy ábrában legyen, ezt az első ábra után külön paranccsal kell megadni: par(new=t). 2. Boxplot készítése adott csoportra (csak növények, csak egyszerű szavak stb.). 3. A minta adatbázisban hány személy magassága tér el az átlagtól 1 σ-nál nagyobb mértékben? És 2 σ-nál nagyobb mértékben?

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

Bemenet modellezése II.

Bemenet modellezése II. Bemenet modellezése II. Vidács Attila 2005. november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási

Részletesebben

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication

Részletesebben

Statisztikai programcsomagok

Statisztikai programcsomagok Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés

Részletesebben

Mikrohullámok vizsgálata. x o

Mikrohullámok vizsgálata. x o Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I. Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

Statisztika I. 6. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 6. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 6. előadás Előadó: Dr. Ertsey Imre GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE szorosan kapcsolódik a szóródás elemzéshez, elméleti

Részletesebben

Matematikai és matematikai statisztikai alapismeretek

Matematikai és matematikai statisztikai alapismeretek Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok

Részletesebben

ElMe 6. labor. Helyettesítő karakterisztikák: Valódi karakterisztika 1 pontosabb számításoknál 2 közelítő számításoknál 3 ideális esetben

ElMe 6. labor. Helyettesítő karakterisztikák: Valódi karakterisztika 1 pontosabb számításoknál 2 közelítő számításoknál 3 ideális esetben ElMe 6. labor 1. Rajzolja fel az ideális és a valódi dióda feszültség-áram jelleggörbéjét! 5. Hogyan szokás közelíteni a számítások során a dióda karakterisztikáját? 4. Rajzolja fel a dióda karakterisztikáját,

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

FELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b.

FELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b. FELADATOK A RELÁCIÓK, GRÁFOK TÉMAKÖRHÖZ 1. rész A feladatsorban használt jelölések: R = {r R r < 0}, R + = {r R r>0}, [a; b] = {r R a r b}, ahol a, b R és a b. 4.1. Feladat. Adja meg az α = {(x, y) x +

Részletesebben

MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia

MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia MINİSÉGSZABÁLYOZÁS A GÉPIPARBAN Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia ISO 9000:2008 A STATISZTIKAI MÓDSZEREK HASZNÁLATÁRÓL A statisztikai módszerek

Részletesebben

11. Matematikai statisztika

11. Matematikai statisztika 11. Matematikai statisztika 11.1. Alapfogalmak A statisztikai minta valamely valószínűségi változóra vonatkozó véges számú független kisérlet eredménye. Ez véges sok, azonos eloszlású valószínűségi változó

Részletesebben

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x.

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x. . Sugár Szarvas fgy., 86. o. S3. feladat Egy antikvárium könyvaukcióján árverésre került 9 könyv licitálási adatai alapján vizsgáljuk a könyvek kikiáltási és ún. leütési ára ezerft közötti sztochasztikus

Részletesebben

Slovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008

Slovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008 Slovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008 Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 49. évfolyam, 2007/2008-as tanév Az FO versenyzıinek

Részletesebben

Definíció. Definíció. 2. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása. 2-5. fejezet. A variabilitás mér számai 3.

Definíció. Definíció. 2. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása. 2-5. fejezet. A variabilitás mér számai 3. . El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása -1 Áttekintés - Gyakoriság eloszlások -3 Az adatok vizualizációja -4 A centrum mérıszámai -5 A szórás mérıszámai -6 A relatív elhelyezkedés

Részletesebben

1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba?

1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? Matematikai statisztika példák Matematikai statisztika példák Normális eloszlás 1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? 2. Majmok ébredését

Részletesebben

Feladatok és megoldások a 6. heti eladshoz

Feladatok és megoldások a 6. heti eladshoz Feladatok és megoldások a 6. heti eladshoz Építőkari Matematika A3 1. Ha E(X = 1 és D 2 (X = 5, határozzuk meg (a E[(2 + X 2 ], (b D 2 (4 + 3X értékét. 2. Legyenek X 1, X 2,... független azonos eloszlású

Részletesebben

ÖNJAVÍTÓ AGGREGÁLÁS SZENZORHÁLÓZATOKBAN ÉS AGGREGÁTOR NODE VÁLASZTÁS. Schaffer Péter. Tézisfüzet. Konzulens: Buttyán Levente, Ph.D.

ÖNJAVÍTÓ AGGREGÁLÁS SZENZORHÁLÓZATOKBAN ÉS AGGREGÁTOR NODE VÁLASZTÁS. Schaffer Péter. Tézisfüzet. Konzulens: Buttyán Levente, Ph.D. BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM HÍRADÁSTECHNIKAI TANSZÉK ÖNJAVÍTÓ AGGREGÁLÁS ÉS AGGREGÁTOR NODE VÁLASZTÁS SZENZORHÁLÓZATOKBAN Tézisfüzet Schaffer Péter Konzulens: Buttyán Levente, Ph.D.

Részletesebben

2. előadás: További gömbi fogalmak

2. előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással

Részletesebben

Elméleti összefoglalók dr. Kovács Péter

Elméleti összefoglalók dr. Kovács Péter Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...

Részletesebben

Sztochasztikus folyamatok 1. házi feladat

Sztochasztikus folyamatok 1. házi feladat Sztochasztikus folyamatok 1. házi feladat 1. Egy borfajta alkoholtartalmának meghatározására méréseket végzünk. Az egyes mérések eredményei egymástól független valószínûségi változók, melyek normális eloszlásúak,

Részletesebben

Alapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom

Alapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom Alapfogalmak áttekintése Pszichológiai statisztika, 1. alkalom Hipotézisek Milyen a jó null hipotézis?? H0: Léteznek kitőnı tanuló diszlexiások.? H1: Nem léteznek. Sokkal inkább: H0: Nincs diszlexiás kitőnı

Részletesebben

2013.03.11. Az SPC alapjai. Az SPC alapjai SPC 5. 5. Az SPC (Statistic Process Control) módszer. Dr. Illés Balázs

2013.03.11. Az SPC alapjai. Az SPC alapjai SPC 5. 5. Az SPC (Statistic Process Control) módszer. Dr. Illés Balázs SPC 5 5. Az SPC (Statistic Process Control) módszer Dr. Illés Balázs BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ELEKTRONIKAI TECHNOLÓGIA TANSZÉK Az SPC alapjai SPC (Statistical Process Controll) =

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó

Részletesebben

Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa

Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa 1. Mutasd meg, hogy a tízes számrendszerben felírt 111111111111 tizenhárom jegyű szám összetett szám, azaz

Részletesebben

19. Az elektron fajlagos töltése

19. Az elektron fajlagos töltése 19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................

Részletesebben

Mikroökonómia I. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét PREFERENCIÁK, HASZNOSSÁG 2. RÉSZ

Mikroökonómia I. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét PREFERENCIÁK, HASZNOSSÁG 2. RÉSZ MIKROÖKONÓMI I. ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia I. PREFERENCIÁK, HSZNOSSÁG 2. RÉSZ Készítette: K hegyi Gergely, Horn Dániel Szakmai felel s: K hegyi Gergely 2010. június tananyagot

Részletesebben

Méréstechnika 5. Galla Jánosné 2014

Méréstechnika 5. Galla Jánosné 2014 Méréstechnika 5. Galla Jánosné 014 A mérési hiba (error) a mérendő mennyiség értékének és a mérendő mennyiség referencia értékének különbsége: ahol: H i = x i x ref H i - a mérési hiba; x i - a mért érték;

Részletesebben

Adalékanyagok kőzetfizikai tulajdonságai

Adalékanyagok kőzetfizikai tulajdonságai Adalékanyagok kőzetfizikai tulajdonságai Út- és hídépítési műszaki előírások és alkalmazási tapasztalataik Magyar Közút Zrt. Dr. Kausay Tibor Dr. Kausay Tibor Budapest, 2011. november 23. 1 Útügyi műszaki

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ

ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ Szolnoki Főiskola Üzleti Fakultás, 5000 Szolnok, Tiszaligeti sétány ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ A 4/1996. (I. 18.) Korm. rendelet a közgazdasági felsőoktatás alapképzési szakjainak képesítési

Részletesebben

A készülék használata elõtt kérjük olvassa el figyelmesen a használati utasítást.

A készülék használata elõtt kérjük olvassa el figyelmesen a használati utasítást. 7LC048A 7LC048A E B D C C DD E E g e P 112 D 0 e B A B B A e D B26 B B E B D C C DD E E g e P 112 D 0 e B A B B A e D B26 B B K H K K H K A B P C D E 123 456 789 *0# g B A P D C E : 0 9* # # A B P C

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: mintavételi vonatkozások és modelljellemzés Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Harmadik

Részletesebben

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A

Részletesebben

Fókuszált fénynyalábok keresztpolarizációs jelenségei

Fókuszált fénynyalábok keresztpolarizációs jelenségei Fókuszált fénynyalábok keresztpolarizációs jelenségei K házi-kis Ambrus, Klebniczki József Kecskeméti F iskola GAMF Kar Matematika és Fizika Tanszék, 6000 Kecskemét, Izsáki út 10. Véges transzverzális

Részletesebben

Truma CP plus. Használati utasítás Beszerelési utasítás Kérjük a járműben tartani! 2. oldal 17. oldal

Truma CP plus. Használati utasítás Beszerelési utasítás Kérjük a járműben tartani! 2. oldal 17. oldal Truma CP plus Használati utasítás Beszerelési utasítás Kérjük a járműben tartani! 2. oldal 17. oldal Truma CP plus kezelőegység Tartalomjegyzék Használati utasítás Alkalmazott jelölések... 3 Rendeltetés...

Részletesebben

MATEMATIKA KOMPETENCIATERÜLET A

MATEMATIKA KOMPETENCIATERÜLET A MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI MUNKAFÜZET 2. félév A kiadvány KHF/4002-17/2008 engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

SZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR EUROCODE SEGÉDLETEK A MÉRETEZÉS ALAPJAI C. TÁRGYHOZ

SZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR EUROCODE SEGÉDLETEK A MÉRETEZÉS ALAPJAI C. TÁRGYHOZ SZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR EUROCODE SEGÉDLETEK A MÉRETEZÉS ALAPJAI C. TÁRGYHOZ A segédlet nem helyettesíti az építmények teherhordó szerkezeteinek erőtani tervezésére vonatkozó

Részletesebben

I. A légfékrendszer időszakos vizsgálatához alkalmazható mérő-adatgyűjtő berendezés műszaki

I. A légfékrendszer időszakos vizsgálatához alkalmazható mérő-adatgyűjtő berendezés műszaki A Közlekedési Főfelügyelet közleménye a nemzetközi forgalomban használt autóbuszok (M2 és M3 jármű-kategóriába tartozó gépkocsik) vizsgálatát (is) végző vizsgálóállomásokon alkalmazandó mérő-adatgyűjtő

Részletesebben

8. előadás EGYÉNI KERESLET

8. előadás EGYÉNI KERESLET 8. előadás EGYÉNI KERESLET Kertesi Gábor Varian 6. fejezete, enyhe változtatásokkal 8. Bevezető megjegyzések Az elmúlt héten az optimális egyéni döntést elemeztük grafikus és algebrai eszközökkel: a preferenciatérkép

Részletesebben

Reiczigel Jenő, 2006 1

Reiczigel Jenő, 2006 1 Reiczigel Jenő, 2006 1 Egytényezős (egyszempontos) varianciaelemzés k független minta (k kezelés vagy k csoport), a célváltozó minden csoportban normális eloszlású, a szórások azonosak, az átlagok vagy

Részletesebben

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást

Részletesebben

Valószín ségelmélet házi feladatok

Valószín ségelmélet házi feladatok Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott

Részletesebben

Illeszkedésvizsgálat χ 2 -próbával

Illeszkedésvizsgálat χ 2 -próbával Illeszkedésvizsgálat χ -próbával Szalay Krisztina 1. feladat (tiszta illeszkedésvizsgálat) Négy pénzérmét 0-szor feldobunk. A kapott gyakoriságok: fejek száma 0 1 3 4 Összes gyakoriság 5 35 67 41 1 0 Elfogadható-e

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

X. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata

X. Fénypolarizáció. X.1. A polarizáció jelenségének magyarázata X. Fénypolarizáció X.1. A polarizáció jelenségének magyarázata A polarizáció a fény hullámtermészetét bizonyító jelenség, amely csak a transzverzális rezgések esetén észlelhető. Köztudott, hogy csak a

Részletesebben

ÉS TESZTEK A DEFINITSÉG

ÉS TESZTEK A DEFINITSÉG MÁTRIX DEFINITSÉGÉNEK FOGALMA ÉS TESZTEK A DEFINITSÉG ELDÖNTÉSÉRE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-..1.B-10//KONV-010-0001

Részletesebben

Mikrobiológiai leletfogadás az OSZIR rendszerbe

Mikrobiológiai leletfogadás az OSZIR rendszerbe Mikrobiológiai leletfogadás az OSZIR rendszerbe 1 Általános ismertető Ahhoz, hogy a laboratóriumi rendszerek adatokat tudjanak cserélni az OSZIR rendszerrel az OTH Informatikától szükséges az authentikációhoz

Részletesebben

II. A következtetési statisztika alapfogalmai

II. A következtetési statisztika alapfogalmai II. A következtetési statisztika alapfogalmai Tartalom Statisztikai következtetések A véletlen minta fogalma Pontbecslés és hibája Intervallumbecslés A hipotézisvizsgálat alapfogalmai A legegyszerűbb statisztikai

Részletesebben

Véletlenszám-generátorok

Véletlenszám-generátorok Véletlenszám-generátorok 1. Lineáris kongruencia generátor megvalósítása: (a) Készítsen lineáris kongruencia generátort az paraméterekkel, rnd_lcg néven. (b) Nyomtasson ki 20 értéket. legyen. (a, c, m,

Részletesebben

Bevezetés a programozásba. 12. Előadás: 8 királynő

Bevezetés a programozásba. 12. Előadás: 8 királynő Bevezetés a programozásba 12. Előadás: 8 királynő A 8 királynő feladat Egy sakktáblára tennénk 8 királynőt, úgy, hogy ne álljon egyik sem ütésben Ez nem triviális feladat, a lehetséges 64*63*62*61*60*59*58*57/8!=4'426'165'368

Részletesebben

Csúszkák és magasság-szabályozó darabok

Csúszkák és magasság-szabályozó darabok Termékbemutató 6.0 Csúszó rögzítések tágulás-kiegyenlítéshez hőmérsékleti változásoknál 6.1 H3G csúszókészlet 6.2 A H3G és 2G csúszókészletek használatának példái 6.3 A H3G és 2G csúszókészletek használatának

Részletesebben

SZENT ISTVÁN EGYETEM

SZENT ISTVÁN EGYETEM SZENT ISTVÁN EGYETEM A magyar mezőgazdasági gépgyártók innovációs aktivitása Doktori (PhD) értekezés tézisei Bak Árpád Gödöllő 2013 A doktori iskola Megnevezése: Műszaki Tudományi Doktori Iskola Tudományága:

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Informatika középszint 1221 ÉRETTSÉGI VIZSGA 2013. május 21. INFORMATIKA KÖZÉPSZINTŰ GYAKORLATI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Bevezetés A feladatok értékelése

Részletesebben

E B D C C DD E E g e 112 D 0 e B A B B A e D B25 B B K H K Fejhallgató Antenna A B P C D E 123 456 789 *0# Kijelzés g B A P D C E 0 9* # # g B B 52 Y t ] [ N O S T \ T H H G ? > < p B E E D 0 e B D

Részletesebben

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )

Részletesebben

Közbeszerzési Értesítő száma: 2015/3 Építési beruházás Tervezés és kivitelezés

Közbeszerzési Értesítő száma: 2015/3 Építési beruházás Tervezés és kivitelezés Energetikai fejlesztések a Vámosgyörki Visontai Kovách László Katolikus Általános Iskolában (kódszám: KEOP-4.10.0/E/12-2014-0089) projekthez kapcsolódó kiviteli tervek elkészítésére és az építési beruházás

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 6. elıadás (11-12. lecke) Szórás-stabilizáló transzformációk (folyt.), t-próbák 11. lecke További variancia-stabilizáló transzformációk Egy-mintás t-próba Szórás-kiegyenlítı

Részletesebben

Csődvalószínűségek becslése a biztosításban

Csődvalószínűségek becslése a biztosításban Csődvalószínűségek becslése a biztosításban Diplomamunka Írta: Deák Barbara Matematikus szak Témavezető: Arató Miklós, egyetemi docens Valószínűségelméleti és Statisztika Tanszék Eötvös Loránd Tudományegyetem,

Részletesebben

A PERMETEZETT SZŐLŐ ÉS GYÜMÖLCS FOGYASZTÁSA

A PERMETEZETT SZŐLŐ ÉS GYÜMÖLCS FOGYASZTÁSA 1 3 _.... %^-OílL, E ' ÁQ>fó>Í. A PERMETEZETT SZŐLŐ ÉS GYÜMÖLCS FOGYASZTÁSA ÍRTA: DR. BODNÁR JÁNOS ÉS DR. SZÉP ÖDÖN BUDAPEST, 1940. KIR. MAGY. TERMÉSZETTUDOMÁNYI TÁRSULAT VIII., ESZTERHÁZY«U. 16. A PERMETEZETT

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása

Részletesebben

Elektronspinrezonancia (ESR) - spektroszkópia

Elektronspinrezonancia (ESR) - spektroszkópia E m S Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben = µ

Részletesebben

MATEMATIKA. 5 8. évfolyam

MATEMATIKA. 5 8. évfolyam MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni

Részletesebben

1. ÁLTALÁNOS TERVEZÉSI ELŐÍRÁSOK

1. ÁLTALÁNOS TERVEZÉSI ELŐÍRÁSOK 1. ÁLTALÁNOS TERVEZÉSI ELŐÍRÁSOK Az országos és a helyi közutak hálózatot alkotnak. A közúti fejlesztési javaslatok a különböző szintű, az ötévenként, valamint a területrendezési tervek felülvizsgálatakor

Részletesebben

Kondenzátorvédelmi funkció feszültségváltós kettős csillagkapcsolású telepre

Kondenzátorvédelmi funkció feszültségváltós kettős csillagkapcsolású telepre Kondenzátorvédelmi funkció feszültségváltós kettős csillagkapcsolású telepre Dokumentum ID: PP-13-20543 Budapest, 2014. július Verzió Dátum Módosítás Szerkesztette V1.0 2014.03.10. Első kiadás Póka Gyula

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

NYÍREGYHÁZI FŐISKOLA TANÍTÓKÉPZŐ INTÉZET. Útmutató a szakdolgozat készítéséhez tanító szakon

NYÍREGYHÁZI FŐISKOLA TANÍTÓKÉPZŐ INTÉZET. Útmutató a szakdolgozat készítéséhez tanító szakon NYÍREGYHÁZI FŐISKOLA TANÍTÓKÉPZŐ INTÉZET Útmutató a szakdolgozat készítéséhez tanító szakon Nyíregyháza 2014 Tartalomjegyzék 1. Általános rendelkezések... 3 2. A szakdolgozati témák meghirdetésének rendje

Részletesebben

Útmutató. a szakdolgozat elkészítéséhez. Szegedi Tudományegyetem Egészségtudományi és Szociális Képzési Kar. (ápoló szakirány számára)

Útmutató. a szakdolgozat elkészítéséhez. Szegedi Tudományegyetem Egészségtudományi és Szociális Képzési Kar. (ápoló szakirány számára) Szegedi Tudományegyetem Egészségtudományi és Szociális Képzési Kar Útmutató a szakdolgozat elkészítéséhez (ápoló szakirány számára) 2010/2011. tanév Tartalom: Tájékoztató a szakdolgozat elkészítésének

Részletesebben

EÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN

EÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN EÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN SZAKDOLGOZAT Készítette: Bényász Melinda Matematika Bsc Matematikai elemz szakirány Témavezet : Kósa Balázs Informatikai Kar Információs

Részletesebben

VI.11. TORONY-HÁZ-TETŐ. A feladatsor jellemzői

VI.11. TORONY-HÁZ-TETŐ. A feladatsor jellemzői VI.11. TORONY-HÁZ-TETŐ Tárgy, téma A feladatsor jellemzői Szögfüggvények derékszögű háromszögben, szinusztétel, koszinusztétel, Pitagorasz-tétel. Előzmények Pitagorasz-tétel, derékszögű háromszög trigonometriája,

Részletesebben

Adatok statisztikai feldolgozása

Adatok statisztikai feldolgozása Adatok statisztikai feldolgozása Kaszaki József Ph.D Szegedi Tudományegyetem Sebészeti Műtéttani Intézet Szeged A mérési adatok kiértékelése, statisztikai analízis A mért adatok konvertálása adatbázis

Részletesebben

EGYEZMÉNY. 52. Melléklet: 53. számú Elõírás. 2. Felülvizsgált változat

EGYEZMÉNY. 52. Melléklet: 53. számú Elõírás. 2. Felülvizsgált változat E/ECE/324 E/ECE/TRANS/505 } Rev.1/Add.52/Rev.1 2002. október 1. ENSZ-EGB 53. számú Elõírás EGYEZMÉNY A KÖZÚTI JÁRMÛVEKRE, A KÖZÚTI JÁRMÛVEKBE SZERELHETÕ ALKATRÉSZEKRE, illetve A KÖZÚTI JÁRMÛVEKNÉL HASZNÁLATOS

Részletesebben

CsAvArbiztosítási rendszer

CsAvArbiztosítási rendszer CsAvArbiztosítási rendszer A mûködési elv Az alátétek a lejtős fogazású belső felülettel, egymással szemben összeragasztva kerülnek értékesítésre, így megkönnyítve az első felszerelést és megakadályozva

Részletesebben

PARTNERI IGÉNYFELMÉRÉS SZABÁLYZAT

PARTNERI IGÉNYFELMÉRÉS SZABÁLYZAT PARTNERI IGÉNYFELMÉRÉS SZABÁLYZAT Partner megnevezése Pedagógusok Nem pedagógus munkaben dolgozók Szülők Tanulók Mintavétel érdekelt érdekelt szülő tanuló Az igényfelmérés módja Az igényfelmérés gyakorisága

Részletesebben

A felsőoktatásban dolgozók tudásértékesítési lehetőségei kutatók részvétele a tudásáramlás szektoraiban

A felsőoktatásban dolgozók tudásértékesítési lehetőségei kutatók részvétele a tudásáramlás szektoraiban A felsőoktatásban dolgozók tudásértékesítési lehetőségei kutatók részvétele a tudásáramlás szektoraiban Apró Melinda Hülber László SZTE-BTK Neveléstudományi Doktori Iskola Az LLL fogalom átalakulása lisszaboni

Részletesebben

Nagy Sándor: Magkémia

Nagy Sándor: Magkémia Nagy Sándor: Magkémia (kv1c1mg1) 03. Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások Nagy Sándor honlapja ismeretterjesztő anyagokkal: http://nagysandor.eu/ A Magkémia tantárgy weboldala:

Részletesebben

Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT

Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT NetworkShop 2004 2004.. április 7. Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT Bevezetés Ma használt algoritmusok matematikailag alaposan teszteltek

Részletesebben

2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával.

2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával. 2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával. A MÉRÉS CÉLJA Az elterjedten alkalmazott hőmérséklet-érzékelők (ellenállás-hőmérő, termisztor, termoelem) megismerése,

Részletesebben

KVANTITATÍV MÓDSZEREK

KVANTITATÍV MÓDSZEREK Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet Dr. Kövesi János, Erdei János, Dr. Tóth Zsuzsanna Eszter KVANTITATÍV MÓDSZEREK Példatár Budapest,

Részletesebben

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi

Részletesebben

Forgásfelületek származtatása és ábrázolása

Forgásfelületek származtatása és ábrázolása Forgásfelületek származtatása és ábrázolása Ha egy rögzített egyenes körül egy tetszőleges görbét forgatunk, akkor a görbe úgynevezett forgásfelületet ír le; a rögzített egyenes, amely körül a görbe forog,

Részletesebben

Darupályatartók. Dr. Németh György főiskolai docens. A daruteher. Keréknyomás (K) Fékezőerő (F)

Darupályatartók. Dr. Németh György főiskolai docens. A daruteher. Keréknyomás (K) Fékezőerő (F) Dr. émeth Görg főiskoli docens Drupáltrtók s f c 6vg e f sz c/ >,5 e s ~,.. A druteher Q 4 4 eréknomás () Fékezőerő (F) F Oldlerő () Biztonsági ténező dru fjtájától (híddru/függődru) és névleges teherírástól

Részletesebben

Konfokális mikroszkópia elméleti bevezetõ

Konfokális mikroszkópia elméleti bevezetõ Konfokális mikroszkópia elméleti bevezetõ A konfokális mikroszkóp fluoreszcensen jelölt minták vizsgálatára alkalmas. Jobb felbontású képeket ad, mint a hagyományos fluoreszcens mikroszkópok, és képes

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató FELADATOK

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató FELADATOK Oktatási Hivatal A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA Javítási-értékelési útmutató FELADATOK Hogyan fújják fel egymást a léggömbök A méréshez

Részletesebben

Az infravörös spektroszkópia analitikai alkalmazása

Az infravörös spektroszkópia analitikai alkalmazása Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai

Részletesebben

Magnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben

Magnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben Magnetorezisztív jelenségek vizsgálata mágneses nanoszerkezetekben Jól ismert, hogy az elektronok az elektromos töltés mellett spinnel is rendelkeznek, mely számos érdekes jelenséget, többek között bizonyos

Részletesebben

Rész. Egész. Alkatrész. Just. High. Parts. Lineáris megvezetések, elérhetô áron!

Rész. Egész. Alkatrész. Just. High. Parts. Lineáris megvezetések, elérhetô áron! 1 Rész. Egész. Alkatrész. Just. High. Parts. Lineáris megvezetések, elérhetô áron! 2 Üdvözlet a BEARING-tôl A HIWIN golyós perselyek kis súrlódású, halk futású, nagy pontosságú lineáris mozgást tesznek

Részletesebben

Statisztika, próbák Mérési hiba

Statisztika, próbák Mérési hiba Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:

Részletesebben

4.2. ELİREGYÁRTOTT VB. FÖDÉMEK

4.2. ELİREGYÁRTOTT VB. FÖDÉMEK 4.2. ELİREGYÁRTOTT VB. FÖDÉMEK 4.2.1. ALAPFOGALMAK: ELİREGYÁRTÁS, FESZÍTÉS A monolit vb. födémek rengeteg elınye (kisebb födémvastagság, egyszerő konzolképzés, többtámaszúsíthatóság, kétirányú teherhordás

Részletesebben

3. Konzultáció: Kondenzátorok, tekercsek, RC és RL tagok, bekapcsolási jelenségek (még nagyon Béta-verzió)

3. Konzultáció: Kondenzátorok, tekercsek, RC és RL tagok, bekapcsolási jelenségek (még nagyon Béta-verzió) 3. Konzultáció: Kondenzátorok, tekercsek, R és RL tagok, bekapcsolási jelenségek (még nagyon Béta-verzió Zoli 2009. október 28. 1 Tartalomjegyzék 1. Frekvenciafüggő elemek, kondenzátorok és tekercsek:

Részletesebben

- $! ""./0+1 &!2" 3& &# $!!4"&"#! 5""1 -&"#! $&"8&3"2

- $! ./0+1 &!2 3& &# $!!4&#! 51 -&#! $&8&32 "# "!! "$%%&'()*+!""!# $!!%&&'"(!)!*%'+, #&"! - $! ""./0+1 &!2" 3& &# $!!4"&"#! 5""1!!"&)" -)"!"&"#! '6-7"! 2"!"7&!&&"8! #79!"&!# : -&"#! $&"8&3"2 2&-&37&7!"#&" &3"" MAJERIK Viktor: Gyógyszeripari szétválasztások

Részletesebben

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013 Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési

Részletesebben

Funkcionálanalízis. Általánosított függvények Disztribúciók. 12-13. el adás. 2012. május 9.-16. Lineáris funkcionál

Funkcionálanalízis. Általánosított függvények Disztribúciók. 12-13. el adás. 2012. május 9.-16. Lineáris funkcionál Funkcionálanalízis 12-13. el adás 212. május 9.-16. Általánosított függvények Disztribúciók Lineáris funkcionál Legyen C () az függvénytér, amely a végtelen sokszor dierenciálható, kompakt tartójú függvényeket

Részletesebben

Újdonságok. Release 2

Újdonságok. Release 2 ARCHLine.XP 2009 Windows Újdonságok Release 2 A dokumentációban levı anyag változásának jogát a CadLine Kft fenntartja, ennek bejelentésére kötelezettséget nem vállal. A szoftver, ami tartalmazza az ebben

Részletesebben