II. A következtetési statisztika alapfogalmai

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "II. A következtetési statisztika alapfogalmai"

Átírás

1 II. A következtetési statisztika alapfogalmai

2 Tartalom Statisztikai következtetések A véletlen minta fogalma Pontbecslés és hibája Intervallumbecslés A hipotézisvizsgálat alapfogalmai A legegyszerűbb statisztikai próbák Normalitásvizsgálat

3 Kockázás 10-szer dobunk 3 kockával. Partnerem 10-ből 8-szor csupa 6-ost dob. Milyen következtetést vonsz le ennek alapján?

4 Néhány szakmai kérdés Jobb-e a lányok verbális intelligenciája, mint a fiúké? Ha igen, mennyivel? Hatásos-e egy bizonyos kezelés az anorexia gyógyításában? Ha igen, milyen mértékben? Van-e kapcsolat a szülők jövedelme és a pszichológia szakra vonatkozó felvételi pontszám között? Ha igen, milyen szoros?

5 Kiknek jobb a verbális memóriája, a fiúknak, vagy a lányoknak?

6 A statisztikai következtetések Mindig a populációkra vonatkoznak, a belőlük kiválasztott véletlen minták alapján. Emiatt a hibázás lehetőségét sose lehet kizárni. De: jó módszerekkel a hiba nagyságát (esélyét) kontroll alatt tarthatjuk.

7 Mikor lesznek jók (érvényesek, megbízhatók) a statisztikai következtetések? Ha a minták jól képviselik populációjukat (reprezentativitás). Ha a következtetési technikák - becslési eljárások, statisztikai próbák jók (helyes módszerválasztás).

8 Mivel lehet a minta reprezentativitását biztosítani? Ha a kiválasztás véletlenszerű Ezzel kizárjuk a szubjektivitást. Ha a minta elég nagy Ezzel lehetővé tesszük, hogy a populáció sokszínűsége a mintában is megjelenjen.

9 Hogyan lehet valódi véletlen mintát venni a populációból? Némi véletlenszerűséget könnyű alkalmazni, de a szubjektivitást nehéz kizárni. Az önmagában nem elég, hogy a minta nagy: USA elnökválasztás, 1936: Roosevelt versus Landon. A Literary Digest folyóirat 2,4 millió kérdőív feldolgozása alapján Landon nagyarányú győzelmét jósolta. Ezzel szemben Roosevelt 62%-ot kapott és nyert. A Gallup kisebb, de jó minta alapján helyes becslést adott.

10 Néhány jó tanács a megfelelő minta kiválasztásához Minden olyan réteg arányosan képviselve legyen, amelyik a populációhoz tartozik. Hólabda módszer (ismerős ismerősének az ismerőse). A kényelmi és hozzáférhetőségi alapon összeállított minták (pl. egyetemisták) esetlegesek. Az ideálistól eltérő mintaválasztást hibafaktorként számítsuk be a döntés bizonytalanságába. Ha összeállt a minta, töprengjünk el azon, hogy az milyen populációt képvisel. (Pl. a jelen évfolyam?)

11 A valószínűségi döntés véletlen jellege Az egyik urnából véletlenszerűen kiveszek egy golyót. Látjuk, hogy piros. Melyik urnából vettem ki?

12 A valószínűségi döntés véletlen jellege Bárhogyan is döntök, nem lehetek teljesen biztos abban, hogy a döntésem helyes, vagyis hogy nem követek el hibát. Ha piros golyót húzva a bal oldali urnát valószínűsítem, 2/3 az esélye, hogy igazam van, de 1/3 az esélye, hogy tévedek. Sárga húzás esetén?

13 Példa: a depresszió két kezelési típusának összehasonlítása Melyik a jobb kezelés? 1. Placebo (napi 3x1, 3 hónapig) 2. Pszichoterápia (heti 3x1 óra, 3 hónapig) Gyógyulók %-a Placebo Pszichoterápia

14 Következtetés Melyik esetben jelenthetjük ki legalább 95%-os megbízhatósággal, hogy a pszichoterápia hatásosabb a placebónál? Gyógyulók %-a Placebo Pszichoterápia

15 A STATISZTIKA RENDSZERE STATISZTIKA LEÍRÓ STATISZTIKA KÖVETKEZTETÉSI STATISZTIKA BECSLÉS HIPOTÉZIS- VIZSGÁLAT PONT- BECSLÉS INTERVALLUM- BECSLÉS

16 Következtetési statisztika két fő típusa Becslés (Mekkora? Milyen nagy?) Pontbecslés (kb. 10,6 1,3) Intervallumbecslés (95%-os megbízhatósággal 7,8 és 12,5 között) Hipotézisvizsgálat (Igaz-e, hogy?)

17 Statisztikai hipotézisvizsgálat Van-e különbség az emlékezeti teljesítményátlag tekintetében a magyar pszichológus hallgató fiúk és lányok között? Nullhipotézis (H 0 ): nincs különbség Ellenhipotézis (H A ): van különbség a) A fiúk jobbak b) A lányok jobbak

18 Statisztikai becslés Mi a teljesítményátlaga a 10 szavas memóriajátékban az összes magyar pszichológus hallgatónak? Kb. mekkora egy egészséges felnőtt nő szisztolés vérnyomása? Átlagosan hány próbálkozással tanul meg egy ivarérett patkány egy adott útvesztőt?

19 Mit szoktak becsülni? Populációátlag (elméleti átlag: μ, E(X)) Populációmedián (elméleti medián: Med(X)) Populációszórás (elméleti szórás:, D(X)) Elméleti variancia ( 2, Var(X)) Két elméleti átlag különbsége (μ 1 μ 2 ) Általában a populációk különféle kvantitatív jellemzőit szokták becsülni

20 Az elméleti átlag pontbecslése konkrét példával illusztrálva Változó: félév végi statisztika vizsgajegy Populáció: I. éves pszichológus hallgatók Egy lehetséges véletlen minta (rendezve): {2, 3, 3, 4, 4, 5, 5, 5, 5, 5} Néhány szóba jöhető pontbecslés az elméleti átlagra: Módusz: Mo = 5 Medián: M = 4,5 Terjedelemközép: TK = (Min + Max)/2 = 3,5 Átlag: x = 41/10 = 4,1

21 Pontbecslés a μ elméleti átlagra Következtetés: mintából a populációra. Mi van olyan a mintában, aminek köze van (lehet) a populációátlaghoz? Becslés jelölése: a kalap (^) szimbólummal. Az elméleti átlag egy pontbecslése a mintaátlag: μ = x

22 A pontbecslésről Amit becsülünk (pl. μ, stb.), az egy konkrét szám. Amivel becsülünk (mintaátlag, TK stb.), egy véletlen minta statisztikai mutatója, véletlen változó, melynek értéke a minta kiválasztása után lesz csak ismert.

23 10 véletlen minta átlaga: μ =? véletlen minták

24 Hogyan mérhető a pontbecslés jósága (pontatlansága)? Standard hiba (SH): körülbelül ennyit tévedünk μ x SH Példa: ROPstat, részletesebb statisztikák

25 μ = 100, = 15, normális eloszlás

26 GYAK Demonstráció Excel segítségével vegyünk több véletlen mintát az előző eloszlásból! (Lásd IQ_9.xls Excel fájl) Számítsuk ki az átlagukat (pontbecslés)! Nézzük meg, hogy mennyire pontosak!

27 A pontbecslés standard hibája: SH Hibavariancia = átlagos négyzetes eltérés a valódi értéktől Standard hiba (SH) = Hibavariancia négyzetgyöke Egyfajta átlagos eltérés

28 Mit várunk el egy jó pontbecsléstől? Ne torzítson szisztematikusan se pozitív, se negatív irányban (torzítatlanság) SH-ja legyen kisebb, mint a többi becslésé (hatékonyság) SH-ja az elemszám növelésével csökkenjen és tartson 0-hoz (konzisztencia)

29 A mintaátlag standard hibájának meghatározása Elméleti SH = / Mintabeli SH = s/ n n Mi itt a és mi az s? Ha X = IQ, n = 25, SH =? Mekkora elemszámnál lesz SH 1-nél kisebb? GYAK

30 Miért jó becslése a mintaátlag a populációátlagnak? A véletlen minta átlaga a populációátlag körül ingadozik (torzítatlanság) A mintaátlag SH-ja az elemszám növelésével csökken (konzisztencia) A mintaátlag SH-ja sok esetben (pl. normális eloszlású változók esetén) kisebb, mint más pontbecsléseké (mediáné, TK-é stb.)

31 GYAK ROPstat illusztráció Minta 500 véletlenszerűen kiválasztott gyerek (antr500.msw) Változók: testsúly és testmagasság (testhossz) születéskor és 10 éves korban Statisztikai elemzés: ROPstatban részletesebb statisztikák

32 Intervallumbecslés Definíció: Olyan intervallum (szakasz, övezet), mely nagy megbízhatósággal tartalmazza a becsülni kívánt értéket.

33 Intervallumbecslés az elméleti átlagra Vegyünk alkalmas övezetet a mintaátlag körül! Milyen övezet lesz jó? Ha nagyon szűk, könnyen kívül maradhat. Ha nagyon tág (pl ): semmitmondó állítás. x X-skála

34 Szokásos kritérium Olyan övezetet vegyünk a mintaátlag körül, amelyik nagy (90 vagy 95%-os) eséllyel tartalmazza az elméleti átlagot (azaz -t). Ennek az övezetnek (intervallumnak) a neve: 90, illetve 95%-os konfidencia-intervallum. Jelölés: C 0,90, illetve C 0,95.

35 A konfidencia-intervallum meghatározása 95%-os konfidencia-intervallum nagy minták esetén: 2SH x 2SH X-skála C 0,95 x 2SH

36 Egy következmény Minél nagyobb az elemszám, annál keskenyebb lesz rögzített (pl. 90 vagy 95%-os) megbízhatósági szinten a konfidencia-intervallum, vagyis annál jobb lesz az intervallumbecslés. SH = / n

37 Egy példa Tegyük fel, hogy a MAWI-IQ az egyetemi hallgatók populációjában közel normális eloszlású, szórása 15, de a populációátlagot nem ismerjük. Egy véletlen 25 fős mintában az átlag 110. Mekkora lehet a populációátlag? C 0, ± SE 110 ± 2 n ± GYAK

38 Konklúziók C 0,95 95%-os megbízhatósággal állíthatjuk, hogy az elméleti átlag valahol 104 és 116 között van. Következmény: - Az elméleti átlag legalább 95%-os megbízhatósággal 104-nél nem kisebb. - Az elméleti átlag legalább 95%-os megbízhatósággal 116-nál nem nagyobb.

39 Statisztikai hipotézisvizsgálat

40 Igen-nem segítségével megválaszolható kérdések 1. Pszichológus egyetemi hallgatók IQ-ja nagyobb-e az átlagosnál? 2. Van-e különbség férfiak és nők verbális intelligenciaszintje között? 3. Van-e kapcsolat az emberek érzelmi intelligenciája és kreativitása között?

41 A hipotézisvizsgálat fő fogalmai az előző dia 1. kérdésével szemléltetve 1. Szakmai feltételezés: az egyetemi hallgatók IQja nagyobb az átlagosnál. 2. Szakmai hipotézis formulával: E(IQ) > Statisztikai nullhipotézis: E(IQ) = Indirekt gondolatmenet: a szakmai hipotézis igazolása a nullhipotézis elutasításával történik.

42 10 véletlenszerűen kiválasztott egyetemi hallgató IQ-ja 117, 137, 152, 149, 110, 135, 108, 120, 127, 127 E(IQ) = 100 esetén mi a valószínűsége, hogy 10 véletlenszerűen kiválasztott hallgató mindegyikének 100-nál nagyobb lesz az IQ-ja? p = 1/2 10 = 1/1024 0,001

43 Vagyis: Ha igaz az a nullhipotézis, hogy az egyetemi hallgatók átlagos IQ-júak, akkor igen kicsi (p < 0,001) annak a valószínűsége, hogy ilyen nagy (csupa 100-nál nagyobb) adatokat kapjunk 10 megfigyelésből.

44 A statisztikai hipotézisvizsgálat alapgondolata Ha a minta, illetve a mintából kiszámított valamely mutató értéke a nullhipotézis (H 0 ) fennállása esetén igen kis valószínűségű, akkor a nullhipotézist elutasítjuk.

45 A statisztikai próba p-értéke Mi a valószínűsége, hogy a nullhipotézis (H 0 ) fennállása esetén ilyen, vagy ennél szélsőségesebb legyen a minta, illetve a mintából kiszámított valamely mutató értéke?

46 A szélsőségesség kétirányú 100-nál nagyobb IQ 100-nál kisebb IQ Egyoldalú p Kétoldalú p Ellentmond H 0 -nak? ,001 0,002 IGEN 9 1 0,011 0,022 IGEN 8 2 0,055 0,110 NEM 7 3 0,172 0,344 NEM Mi is itt a nullhipotézis?

47 A próba neve: előjelpróba Nullhipotézis: H 0 : E(IQ) = 100 Az IQ elméleti átlaga 100-zal egyenlő Ekvivalens nullhipotézis normális eloszlású változók esetén: H 0 : P(IQ < 100) = P(IQ > 100) A populációban ugyanolyan gyakran fordul elő 100-nál kisebb, mint 100-nál nagyobb IQ-érték Ez az előjelpróba szokásos alakú nullhipotézise Döntés az elemszám alapján statisztika táblázat segítségével (lásd tankönyv)

48 A statisztikai döntés logikája Miért érezzük úgy, hogy 10-0 vagy 0-10 esetén elutasítható a nullhipotézis (H 0 )? Miért érezzük 10 egymás utáni fej dobás után azt, hogy a pénzérme szabályosságát állító H 0 elutasítható? Ha ilyen esetben H 0 -t elvetjük, mi az esélye annak, hogy hibásan döntünk? Ha elméletileg lehetséges ilyen sorozat, akkor miért lepődünk meg, ha bekövetkezik?

49 Eddig mit néztünk a mintában? Azt, hogy hány 100-nál nagyobb és hány 100-nál kisebb IQ-érték van. Van más mutató is, ami mond valamit a nullhipotézis (H 0 ) valószínűségéről?

50 Egy másik lehetséges mutató: t-statisztika t mintaátlag 100 SHtap (100: a feltételezett elméleti átlag)

51 Próbastatisztika A t-statisztikát és a statisztikai hipotézisvizsgálatokhoz használt hasonló mintából kiszámított mutatókat próbastatisztikáknak nevezzük.

52 Ha H 0 : μ = 100 igaz, akkor t eloszlása n = 10 esetén t -2,26 0 2,26

53 Hogyan döntsünk különböző t-értékekre n = 10 esetén? t t = -2,50 t = 0,41 t = 4,60-2,26 0 2,26

54 Széli p-értékek kétirányú döntésnél t-érték t-értékhez tartozó széli p-érték (2 old.) Ellentmond H 0 -nak? -2,50 0,034 IGEN -2,26 0,050 IGEN 0,41 0,691 NEM 2,26 0,050 IGEN 4,60 0,001 IGEN***

55 Döntés H 0 -ról n = 10 esetén t t = -2,50 t = 4,60 t = 0,41 Kritikus tartomány -2,26 2,26 Megtartási tartomány Kritikus tartomány

56 A H 0 -ról szóló döntés logikája Hova esik a t-érték? Megtartási tartomány Kritikus tartomány Széli p Nem kicsi (> 0,05) Kicsi ( 0,05) A t-érték megítélése Nem mond ellent eléggé H 0 -nak Nagyon ellentmond H 0 -nak Széli p = H 0 jogtalan elutasításának (I. fajta hiba) valószínűsége

57 Az előjelpróba és az egymintás t-próba nullhipotézise A : az X változó hipotetikus nagyságszintje Előjelpróba: H 0 : P(X < A) = P(X > A) Az X változó esetében ugyanolyan gyakran fordul elő A-nál kisebb, mint A-nál nagyobb érték Egymintás t-próba: H 0 : E(X) = A Az X változó elméleti átlaga A-val egyenlő

58 Az előjelpróba és az egymintás t-próba alkalmazási feltételei Előjelpróba: nincs, de kis minták esetén a próba kevéssé hatékony Egymintás t-próba: X változó normalitása Mennyire fontos ez? Ha a minta nagyon kicsi (n < 20): fontos Ha a minta elég nagy (n > 50): nem igazán fontos

59 Az egymintás t-próba robusztus változatai Mit tegyünk, ha erősen sérül az X változó normalitási feltétele? Léteznek olyan próbák, amelyek a normalitás megsértésére kevésbé érzékenyek: robusztus alternatívák Lásd ROPstat, illetve tankönyv

60 Szokásos statisztikai szóhasználat p < 0,05 (szignifikancia) H 0 -t 5%-os szignifikanciaszinten elutasítjuk a próba 5%-os szinten szignifikáns p < 0,01 (erős szignifikancia) H 0 -t 1%-os szignifikanciaszinten elutasítjuk a próba 1%-os szinten szignifikáns p < 0,10 (tendencia) H 0 -t 5%-os szinten nem utasíthatjuk el a próba 5%-os szinten nem szignifikáns csak egy tendencia van arra, hogy H 0 nem igaz

61 Normalitásvizsgálat (n = 500) Változó Szülsúly Szülhosz Átlag St.hiba Ferdeség Csúcsosság 3,21 0,0223-0,331** 0,858*** 50,15 0,113-0,352** 1,097*** Súly10 33,23 0,305 1,221*** 1,992*** Jelölés: *: p < 0,05 **: p < 0,01 ***: p < 0,001 Tmag10 138,7 0,288 0,198 0,278GYAK

Vargha András PSZICHOLÓGIAI STATISZTIKA DIÓHÉJBAN 1. X.1. táblázat: Egy iskolai bizonyítvány. Magyar irodalom. Biológia Földrajz

Vargha András PSZICHOLÓGIAI STATISZTIKA DIÓHÉJBAN 1. X.1. táblázat: Egy iskolai bizonyítvány. Magyar irodalom. Biológia Földrajz Megjelent: Vargha A. (7). Pszichológiai statisztika dióhéjban. In: Czigler I. és Oláh A. (szerk.), Találkozás a pszichológiával. Osiris Kiadó, Budapest, 7-46. Mi az, hogy statisztika? Vargha András PSZICHOLÓGIAI

Részletesebben

Statisztika, próbák Mérési hiba

Statisztika, próbák Mérési hiba Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:

Részletesebben

statisztikai menürendszere Dr. Vargha András 2007

statisztikai menürendszere Dr. Vargha András 2007 A statisztikai menürendszere Dr. Vargha András 2007 2 tartalomjegyzék 1. Alapok (egymintás elemzések Alapstatisztikák Részletesebb statisztikák számítása Gyakorisági eloszlás, hisztogram készítése Középértékekre

Részletesebben

11. Matematikai statisztika

11. Matematikai statisztika 11. Matematikai statisztika 11.1. Alapfogalmak A statisztikai minta valamely valószínűségi változóra vonatkozó véges számú független kisérlet eredménye. Ez véges sok, azonos eloszlású valószínűségi változó

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 6. elıadás (11-12. lecke) Szórás-stabilizáló transzformációk (folyt.), t-próbák 11. lecke További variancia-stabilizáló transzformációk Egy-mintás t-próba Szórás-kiegyenlítı

Részletesebben

Értelmezési szempontok

Értelmezési szempontok Értelmezési szempontok Értelmezési szempontok (Technikai és értelmező kézikönyv, 3. old.) Alapelv: a WSC-V fontos kvalitatív és kvantitatív információval szolgál a vsz. kognitív funkcióiról, ezek önmagukban

Részletesebben

KVANTITATÍV MÓDSZEREK

KVANTITATÍV MÓDSZEREK KVANTITATÍV MÓDSZEREK Dr. Kövesi János Tóth Zsuzsanna Eszter 6 Tartalomjegyzék Kvantitatív módszerek. Valószínűségszámítási tételek. eltételes valószínűség. Események függetlensége.... 3.. eltételes valószínűség...

Részletesebben

MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia

MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia MINİSÉGSZABÁLYOZÁS A GÉPIPARBAN Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia ISO 9000:2008 A STATISZTIKAI MÓDSZEREK HASZNÁLATÁRÓL A statisztikai módszerek

Részletesebben

GAZDASÁGI STATISZTIKA

GAZDASÁGI STATISZTIKA GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK

Részletesebben

S a t ti a s ti z s ti z k ti a k i a i soka k s a ág Megfigyelési egység Statisztikai ismérv

S a t ti a s ti z s ti z k ti a k i a i soka k s a ág Megfigyelési egység Statisztikai ismérv Üzleti gazdaságtan Ismétlés statisztika A statisztikai alapfogalmak A statisztikaa társadalom és a gazdasági élet jelenségeinek, folyamatainak számadatok segítségével történő megismerésével, leírásával,

Részletesebben

Statisztikai módszerek gyakorlat - paraméteres próbák

Statisztikai módszerek gyakorlat - paraméteres próbák Statisztikai módszerek gyakorlat - paraméteres próbák A tanult paraméteres próbák: PRÓBA NEVE Egymintás U próba Kétmintás U próba Egymintás T próba Welch próba (Kétmintás T próba) F próba Grubbs próba

Részletesebben

I. Általános információk az előadásokról, szemináriumokról, szak- vagy laborgyakorlatokról

I. Általános információk az előadásokról, szemináriumokról, szak- vagy laborgyakorlatokról BABEŞ BOLYAI TUDOMÁNYEGYETEM KOLOZSVÁR KÖZGAZDASÁG- ÉS GAZDÁLKODÁSTUDOMÁNYI KAR SZAKIRÁNY: KÖZÖS TÖRZS EGYETEMI ÉV: 2009/2010 FÉLÉV: IV I. Általános információk az előadásokról, szemináriumokról, szak-

Részletesebben

Valószínűségszámítás

Valószínűségszámítás Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Valószínűségszámítás programtervező informatikusok részére Eger, 010. szeptember 0. Tartalomjegyzék 1. Véletlen események...............................

Részletesebben

Elméleti összefoglalók dr. Kovács Péter

Elméleti összefoglalók dr. Kovács Péter Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...

Részletesebben

Valószínűség-számítás II.

Valószínűség-számítás II. Valószínűség-számítás II. Geometriai valószínűség: Ha egy valószínűségi kísérletben az események valamilyen geometriai alakzat részhalmazainak felelnek meg úgy, hogy az egyes események valószínűsége az

Részletesebben

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication

Részletesebben

Adatok statisztikai feldolgozása

Adatok statisztikai feldolgozása Adatok statisztikai feldolgozása Kaszaki József Ph.D Szegedi Tudományegyetem Sebészeti Műtéttani Intézet Szeged A mérési adatok kiértékelése, statisztikai analízis A mért adatok konvertálása adatbázis

Részletesebben

Statisztikai módszerek

Statisztikai módszerek Statisztikai módszerek A hibaelemzı módszereknél azt néztük, vannak-e kiugró, kritikus hibák, amelyek a szabályozás kivételei. Ezekkel foglalkozni kell; minıségavító szabályozásra van szükség. A statisztikai

Részletesebben

Matematikai statisztikai elemzések 5.

Matematikai statisztikai elemzések 5. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések. MSTE modul Kapcsolatvizsgálat: asszociáció vegyes kapcsolat korrelációszámítás. Varianciaanalízis

Részletesebben

1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba?

1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? Matematikai statisztika példák Matematikai statisztika példák Normális eloszlás 1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? 2. Majmok ébredését

Részletesebben

Feladatok és megoldások a 6. heti eladshoz

Feladatok és megoldások a 6. heti eladshoz Feladatok és megoldások a 6. heti eladshoz Építőkari Matematika A3 1. Ha E(X = 1 és D 2 (X = 5, határozzuk meg (a E[(2 + X 2 ], (b D 2 (4 + 3X értékét. 2. Legyenek X 1, X 2,... független azonos eloszlású

Részletesebben

Bevezetés. 1. Helyzetek (változók) egyszempontos összehasonlítása

Bevezetés. 1. Helyzetek (változók) egyszempontos összehasonlítása Vargha András Kísérleti helyzetek és csoportok összehasonlítása új statisztikai módszerekkel (A T047144 sz. OTKA-pályázat összefoglaló szakmai beszámolója) Bevezetés A jelen OTKA-pályázat keretében végzett

Részletesebben

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I. Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja

Részletesebben

Statisztikai alapismeretek (folytatás)

Statisztikai alapismeretek (folytatás) Statisztikai alapismeretek (folytatás) 3. elıadás (5-6. lecke) Az alapsokaság fıbb jellemzıi () 5. lecke Folytonos változó megoszlásának jellemzése A sokasági átlag és szórás Átlag és szórás tulajdonságai

Részletesebben

Matematika Tanszék MOE (PE MIK) MMAM143VB 1 / 34

Matematika Tanszék MOE (PE MIK) MMAM143VB 1 / 34 Valószín½uségszámítás és matematikai statisztika Mihálykóné Orbán Éva Matematika Tanszék MOE (PE MIK) MMAM143VB 1 / 34 Valószín½uségi változók számérték½u jellemz½oi 1 várható érték 2 szórásnégyzet/szórás

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: mintavételi vonatkozások és modelljellemzés Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Harmadik

Részletesebben

Matematikai statisztikai elemzések 2.

Matematikai statisztikai elemzések 2. Matematikai statisztikai elemzések 2. Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás Prof. Dr. Závoti, József Matematikai statisztikai elemzések 2.: Helyzetmutatók, átlagok, Prof. Dr. Závoti,

Részletesebben

Sztochasztikus folyamatok 1. házi feladat

Sztochasztikus folyamatok 1. házi feladat Sztochasztikus folyamatok 1. házi feladat 1. Egy borfajta alkoholtartalmának meghatározására méréseket végzünk. Az egyes mérések eredményei egymástól független valószínûségi változók, melyek normális eloszlásúak,

Részletesebben

Matematikai és matematikai statisztikai alapismeretek

Matematikai és matematikai statisztikai alapismeretek Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok

Részletesebben

Komputer statisztika gyakorlatok

Komputer statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes

Részletesebben

Populációbecslések és monitoring 2. előadás tananyaga

Populációbecslések és monitoring 2. előadás tananyaga Populációbecslések és monitoring 2. előadás tananyaga 1. A becslések szerepe az ökológiában. (Demeter és Kovács 1991) A szabadon élő állatok egyedszámának kérdése csak bizonyos esetekben merül fel. De

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.

Részletesebben

ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ

ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ Szolnoki Főiskola Üzleti Fakultás, 5000 Szolnok, Tiszaligeti sétány ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ A 4/1996. (I. 18.) Korm. rendelet a közgazdasági felsőoktatás alapképzési szakjainak képesítési

Részletesebben

Valószínűségszámítás és statisztika. István Fazekas

Valószínűségszámítás és statisztika. István Fazekas Valószínűségszámítás és statisztika István Fazekas Tartalomjegyzék 1. fejezet. A valószínűségszámítás alapfogalmai 5 1.1. A valószínűség 5 1.2. Halmazalgebrák és σ-algebrák 11 1.3. A feltételes valószínűség

Részletesebben

Statisztikai programcsomagok

Statisztikai programcsomagok Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

7. A Poisson folyamat

7. A Poisson folyamat 7. A Poisson folyamat 1. Egy boltba független exponenciális időközönként érkeznek vevők, óránként átlagosan tíz. Legyen N(t), t 0 a vevőket számláló folyamat. a. Igaz-e, hogy N(t) Poisson-folyamat? Mi

Részletesebben

6. előadás PREFERENCIÁK (2), HASZNOSSÁG

6. előadás PREFERENCIÁK (2), HASZNOSSÁG 6. előadás PREFERENCIÁK (), HASZNOSSÁG Kertesi Gábor Varian 3. fejezetének 50-55. oldalai és 4. fejezete alapján PREFERENCIÁK FEJEZET FOLYTATÁSA 6. A helyettesítési határarány Dolgozzunk mostantól fogva

Részletesebben

Hipotézisvizsgálat. A sokaság valamely paraméteréről állítunk valamit,

Hipotézisvizsgálat. A sokaság valamely paraméteréről állítunk valamit, II. Hipotézisvizsgálat Lényege: A sokaság valamely paraméteréről állítunk valamit, majd az állításunk helyességét vizsgáljuk. A hipotézisvizsgálat eszköze: a statisztikai próba Menete: 1.Hipotézisek matematikai

Részletesebben

Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek

Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek Elsôfokú egyváltozós egyenletek 6 Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek. Elsôfokú egyváltozós egyenletek 000. Érdemes egyes tagokat, illetve tényezôket alkalmasan csoportosítani, valamint

Részletesebben

Matematikai statisztikai elemzések 6.

Matematikai statisztikai elemzések 6. Matematikai statisztikai elemzések 6. Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós regresszió Prof. Dr. Závoti, József Matematikai statisztikai elemzések 6.: Regressziószámítás:

Részletesebben

konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14.

konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14. Valószínűség, pontbecslés, konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14. Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra

Részletesebben

Normál eloszlás. Gyakori statisztikák

Normál eloszlás. Gyakori statisztikák Normál eloszlás Átlag jól jellemzi az adott populációt folytonos eloszlás (pl. lottó minden szám egyszer fordul elő) kétkúpú eloszlás (IQ mindenki vagy zseni vagy félhülye, átlag viszont azt mutatja,

Részletesebben

Aprítás 2012.09.11. Ipari gyógyszertechnológiai laboratórium gyakorlatai I. félév. Az aprítást befolyásoló tényezők GYAKORLATOK

Aprítás 2012.09.11. Ipari gyógyszertechnológiai laboratórium gyakorlatai I. félév. Az aprítást befolyásoló tényezők GYAKORLATOK 0.09.. Ipari gyógyszertechnológiai laboratórium gyakorlatai I. félév KÖVETELMÉNYEK. A hallgató a gyakorlatra felkészülten érkezik. A művelet típusa. Eredményt befolyásoló paraméterek (általában idő, sebesség,

Részletesebben

PARTNERI IGÉNYFELMÉRÉS SZABÁLYZAT

PARTNERI IGÉNYFELMÉRÉS SZABÁLYZAT PARTNERI IGÉNYFELMÉRÉS SZABÁLYZAT Partner megnevezése Pedagógusok Nem pedagógus munkaben dolgozók Szülők Tanulók Mintavétel érdekelt érdekelt szülő tanuló Az igényfelmérés módja Az igényfelmérés gyakorisága

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 7. MA3-7 modul. Helyzetmutatók, átlagok, kvantilisek

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 7. MA3-7 modul. Helyzetmutatók, átlagok, kvantilisek Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 7. MA3-7 modul Helyzetmutatók, átlagok, kvantilisek SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Gyakorló feladatok Anyagmérnök hallgatók számára

Gyakorló feladatok Anyagmérnök hallgatók számára Gyakorló feladatok Anyagmérnök hallgatók számára. feladat Egy külkereskedelmi vállalat 7 ezer üvegből álló gyümölcskonzerv szállítmányt exportál. A nettó töltősúly ellenőrzése céljából egy 9 elemű véletlen

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

OM azonosító - Sorszám / Év

OM azonosító - Sorszám / Év LECKEKÖNYV a tanuló aláírása OM azonosító - Sorszám / Év / az intézmény neve a tanuló törzskönyvi száma: tanulói azonosítója: a leckekönyv tulajdonosa név aki községben/városban megyében, országban 19

Részletesebben

Tómács Tibor. Matematikai statisztika

Tómács Tibor. Matematikai statisztika Tómács Tibor Matematikai statisztika Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika Eger, 01 Szerző: Dr. Tómács Tibor főiskolai docens Eszterházy Károly

Részletesebben

(a) Számolja ki a vásárolt benzin átlagos mennyiségét! (b) Számítsa ki az átlagos abszolút eltérést! (a) Mekkora a napi átlagos csökkenés?

(a) Számolja ki a vásárolt benzin átlagos mennyiségét! (b) Számítsa ki az átlagos abszolút eltérést! (a) Mekkora a napi átlagos csökkenés? Statisztika 2015. október 09. A csoport Név Neptun kód 1. Egy benzikútnál egy id½oszakban a vásárolt benzin mennyisége az alábbiak szerint alakult: benzin(l) gépkocsi -15 27 15.1-25 39 25.1-35 45 35.1-45

Részletesebben

Alapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom

Alapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom Alapfogalmak áttekintése Pszichológiai statisztika, 1. alkalom Hipotézisek Milyen a jó null hipotézis?? H0: Léteznek kitőnı tanuló diszlexiások.? H1: Nem léteznek. Sokkal inkább: H0: Nincs diszlexiás kitőnı

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten ANALÍZIS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Nevezetes halmazok

Részletesebben

Szociológiai Szemle 2002/4. 95 120. Darvas Ágnes-Tausz Katalin A GYERMEKEK SZEGÉNYSÉGE. A gyermekszegénység vizsgálati módszerei

Szociológiai Szemle 2002/4. 95 120. Darvas Ágnes-Tausz Katalin A GYERMEKEK SZEGÉNYSÉGE. A gyermekszegénység vizsgálati módszerei Szociológiai Szemle 00/4. 95 0. Darvas Ágnes-Tausz Katalin A GYERMEKEK SZEGÉNYSÉGE A gyermekszegénység vizsgálati módszerei A társadalmi kirekesztõdéssel foglalkozó egyre burjánzóbb és divatossá is lett

Részletesebben

FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE

FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE 1. Egy alkalmassági vizsgálat adatai szerint a vizsgált személyeken 0,05 valószínűséggel mozgásszervi és 0,03 valószínűséggel érzékszervi

Részletesebben

Bevezetés a statisztikai hipotézisvizsgálatba

Bevezetés a statisztikai hipotézisvizsgálatba Bevezetés a statisztikai hipotézisvizsgálatba Szakdolgozat Készítette: Pupli Márton Matematika BSc tanári szakirány Témavezető: Vancsó Ödön adjunktus Matematikatanítási és Módszertani Központ Eötvös Loránd

Részletesebben

2009 szeptemberében megvizsgálták a magyarországi jogi személyiségű építőipari kft-ket. Töltse ki a táblázat hiányzó részeit!

2009 szeptemberében megvizsgálták a magyarországi jogi személyiségű építőipari kft-ket. Töltse ki a táblázat hiányzó részeit! 2. feladat 2009 szeptemberében megvizsgálták a magyarországi jogi személyiségű építőipari kft-ket. Töltse ki a táblázat hiányzó részeit! Megnevezés Közös Ismérv Megkülönböztető jogi személyiségű területi

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

5. Egyszerre feldobunk egy-egy szabályos hat-, nyolc-, és tizenkét oldalú dobókockát.

5. Egyszerre feldobunk egy-egy szabályos hat-, nyolc-, és tizenkét oldalú dobókockát. 1. feladatsor 1. (a) Igazolja, hogy tetszőleges A, B, C eseményekre fennáll, hogy (A B) (A C) = A (B + C)! (b) Sorolja fel a valószínűség-számítás axiómáit! (a) c=? (4) (b) D(ξ)=? (0.4714) { c x 5 (c)

Részletesebben

10. Valószínűségszámítás

10. Valószínűségszámítás . Valószínűségszámítás.. Események A valószínűségszámítás nagyon leegyszerűsítve események bekövetkezésének valószínűségével foglalkozik. Példák: Ha egy játékban egy dobókockával dobunk, akkor a kockadobás

Részletesebben

Talajok nedvességtartalmának megtartását célzó készítmény hatásvizsgálata

Talajok nedvességtartalmának megtartását célzó készítmény hatásvizsgálata Eötvös Loránd Tudományegyetem Természettudományi Kar Környezettudomány MSc. Talajok nedvességtartalmának megtartását célzó készítmény hatásvizsgálata Készítette: Husovszky Judit Témavezető: Dr. Varga Imre

Részletesebben

STATISZTIKA PRÓBAZH 2005

STATISZTIKA PRÓBAZH 2005 STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Matematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József

Matematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József Matematika III. 8. A szórás és a szóródás egyéb Prof. Dr. Závoti, József Matematika III. 8. : A szórás és a szóródás egyéb Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

A kontrollált kísérlet módszere és alkalmazása a diszkriminációkutatásban. Simonovits Bori Budapest, 2011

A kontrollált kísérlet módszere és alkalmazása a diszkriminációkutatásban. Simonovits Bori Budapest, 2011 A kontrollált kísérlet módszere és alkalmazása a diszkriminációkutatásban Simonovits Bori Budapest, 2011 A KLASSZIKUS KÍSÉRLET definíciója és hozzávalói A kísérletek az oksági folyamatok kontrollált vizsgálatának

Részletesebben

MATEMATIKA C 9. évfolyam

MATEMATIKA C 9. évfolyam MATEMATIKA C 9. évfolyam 6. modul GONDOLKODOM, TEHÁT VAGYOK Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 6. MODUL: GONDOLKODOM, TEHÁT VAGYOK TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret

Részletesebben

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.

Részletesebben

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:

Részletesebben

Reiczigel Jenő, 2006 1

Reiczigel Jenő, 2006 1 Reiczigel Jenő, 2006 1 Egytényezős (egyszempontos) varianciaelemzés k független minta (k kezelés vagy k csoport), a célváltozó minden csoportban normális eloszlású, a szórások azonosak, az átlagok vagy

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2143-06 Statisztikai feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése: A statisztikai elemzés

Részletesebben

KVANTITATÍV MÓDSZEREK

KVANTITATÍV MÓDSZEREK Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet Dr. Kövesi János, Erdei János, Dr. Tóth Zsuzsanna Eszter KVANTITATÍV MÓDSZEREK Példatár Budapest,

Részletesebben

Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése. Rezsabek Tamás GSZDI

Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése. Rezsabek Tamás GSZDI Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése Rezsabek Tamás GSZDI Anyag és módszer Központi Statisztikai Hivatalának adatai

Részletesebben

ELEMI VALÓSZÍNŰSÉGSZÁMÍTÁS és STATISZTIKAI MÓDSZEREK A FIZIKÁBAN

ELEMI VALÓSZÍNŰSÉGSZÁMÍTÁS és STATISZTIKAI MÓDSZEREK A FIZIKÁBAN ELEMI VALÓSZÍNŰSÉGSZÁMÍTÁS és STATISZTIKAI MÓDSZEREK A FIZIKÁBAN SINKOVICZ PÉTER (PhD hallgató) MTA WIGNER FIZIKAI KUTATÓKÖZPONT (2013) a TARTALOMJEGYZÉK A VALÓSÁG STATISZTIKAI LEKÉPEZÉSE 1. Alapfogalmak

Részletesebben

VIZSGADOLGOZAT. I. PÉLDÁK (60 pont)

VIZSGADOLGOZAT. I. PÉLDÁK (60 pont) VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket

Részletesebben

Óravázlatsor a tízesátlépés előkészítésére,majd az összeadásra tízesátlépéssel. 9-hez, 8-hoz adás..

Óravázlatsor a tízesátlépés előkészítésére,majd az összeadásra tízesátlépéssel. 9-hez, 8-hoz adás.. A kompetenciafejlesztési projekt megvalósítása Kondoroson Petőfi István Általános Iskola Diákotthon és Alapfokú Művészetoktatási Intézmény Óravázlatsor a tízesátlépés előkészítésére,majd az összeadásra

Részletesebben

Testképkivetítés: Teljes. - Testképkivetítés: Teljes - Óraanalógia: 9-3

Testképkivetítés: Teljes. - Testképkivetítés: Teljes - Óraanalógia: 9-3 02. 18. / 01 Adaptálódás 4. számú melléklet Testképkivetítés: Teljes 02. 23. / 02 Irány lokalizáció - Testképkivetítés Belépő 1 megszűnő hangárnyék lokalizáció Tömegárnyék: Tömör falfelület 0,5m Egyenes

Részletesebben

Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter

Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter Statisztikai módszerek alkalmazása az orvostudományban Szentesi Péter Az orvosi munkahipotézis ellenőrzése statisztikai módszerekkel munkahipotézis mérlegelés differenciáldiagnosztika mi lehet ez a más

Részletesebben

újra Az emberi viselkedés (heritabilitás) I: dok II. Testvérp Családvizsgálat Szülők Gének Nevelés gyerek CSAK közös környezet CSAK közös génállomány

újra Az emberi viselkedés (heritabilitás) I: dok II. Testvérp Családvizsgálat Szülők Gének Nevelés gyerek CSAK közös környezet CSAK közös génállomány Öröklődés környezet újra Családvizsgálat Szülők Az emberi viselkedés örökletessége Nevelés Gének (heritabilitás) 1 Szülő - gyermek hasonlósága tükrözi a gének + a környezet hatását 2 1. 2. Egyének és s

Részletesebben

Elemi matematika szakkör

Elemi matematika szakkör lemi matematika szakkör Kolozsvár, 2015. október 26. 1.1. eladat. z konvex négyszögben {} = és { } = (lásd a mellékelt ábrát). izonyítsd be, hogy a következő három kijelentés egyenértékű: 1. z négyszögbe

Részletesebben

A probléma alapú tanulás, mint új gyakorlati készségfejlesztő módszer, az egészségügyi felsőoktatásban

A probléma alapú tanulás, mint új gyakorlati készségfejlesztő módszer, az egészségügyi felsőoktatásban PÉCSI TUDOMÁNYEGYETEM EGÉSZSÉGTUDOMÁNYI DOKTORI ISKOLA Doktori Iskolavezető: Prof. Dr. Bódis József PhD, DSc 5. Program (P-5) Egészségtudomány határterületei Programvezető: Prof. Dr. Kovács L. Gábor PhD,

Részletesebben

A megújuló energiaforrások elfogadottsága a magyar felnőtt lakosság körében

A megújuló energiaforrások elfogadottsága a magyar felnőtt lakosság körében TÁMOP-4.2.2.A-11/1/KONV-2012-0058 Energiatermelési, energiafelhasználási és hulladékgazdálkodási technológiák vállalati versenyképességi, városi és regionális hatásainak komplex vizsgálata és modellezése

Részletesebben

Szeminárium-Rekurziók

Szeminárium-Rekurziók 1 Szeminárium-Rekurziók 1.1. A sorozat fogalma Számsorozatot kapunk, ha pozitív egész számok mindegyikéhez egyértelműen hozzárendelünk egy valós számot. Tehát a számsorozat olyan függvény, amelynek az

Részletesebben

Valószínőségszámítás és statisztika elıadások Mérnök informatikus BSc szak MANB030, MALB030

Valószínőségszámítás és statisztika elıadások Mérnök informatikus BSc szak MANB030, MALB030 Valószínőségszámítás és statisztika elıadások Mérnök informatikus BSc szak MANB030, MALB030 2. téma Feltételes valószínőség, függetlenség Példák feltételes valószínőségekre. Feltételes valószínőség definíciója.

Részletesebben

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-8/2/A/KMR-29-41pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

STATISZTIKA I. Tantárgykódok. Oktatók. Időbeosztás. Tematika. http://www.agr.unideb.hu/~huzsvai. 1. Előadás Bevezetés, a statisztika szerepe

STATISZTIKA I. Tantárgykódok. Oktatók. Időbeosztás. Tematika. http://www.agr.unideb.hu/~huzsvai. 1. Előadás Bevezetés, a statisztika szerepe Tantárgykódok STATISZTIKA I. GT_APSN018 GT_AKMN021 GT_ATVN020 1. Előadás Bevezetés, a statisztika szerepe Oktatók Előadó: Dr. habil. Huzsvai László tanszékvezető Gyakorlatvezetők: Dr. Balogh Péter Dr.

Részletesebben

Női pálya a karrierben tanulmány eredmények Hatodik rész. Dolgozó nők a magánéletben

Női pálya a karrierben tanulmány eredmények Hatodik rész. Dolgozó nők a magánéletben Női pálya a karrierben tanulmány eredmények Hatodik rész Dolgozó nők a magánéletben A válaszolók 52%-a gyermektelen, 19-19%-nak egy vagy két gyermeke van, legkevesebben (1%) a 3-nál több gyermekes családanyák

Részletesebben

A társadalmi kirekesztődés nemzetközi összehasonlítására szolgáló indikátorok, 2010*

A társadalmi kirekesztődés nemzetközi összehasonlítására szolgáló indikátorok, 2010* 2012/3 Összeállította: Központi Statisztikai Hivatal www.ksh.hu VI. évfolyam 3. szám 2012. január 18. A társadalmi kirekesztődés nemzetközi összehasonlítására szolgáló indikátorok, 2010* Tartalomból 1

Részletesebben

STATISZTIKAI ADATOK. Összeállította fazekas károly köllő jános lakatos judit lázár györgy

STATISZTIKAI ADATOK. Összeállította fazekas károly köllő jános lakatos judit lázár györgy STATISZTIKAI ADATOK Összeállította fazekas károly köllő jános lakatos judit lázár györgy statisztikai adatok 1. Alapvető gazdasági adatok 2. Népesség 3. Gazdasági aktivitás 4. Foglalkoztatottak 5. Munkanélküliek

Részletesebben

Felnőtt háziorvosi praxisok indikátorainak továbbfejlesztése meglevő adatvagyon intenzívebb hasznosítása révén

Felnőtt háziorvosi praxisok indikátorainak továbbfejlesztése meglevő adatvagyon intenzívebb hasznosítása révén Felnőtt háziorvosi praxisok indikátorainak továbbfejlesztése meglevő adatvagyon intenzívebb hasznosítása révén Sándor János Kőrösi László, Falusi Zsófia, Pál László, Balázs Alexandra, Pálinkás Anita, Vincze

Részletesebben

MATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I. MATEMATIKA ÉRETTSÉGI 01. május 8. EMELT SZINT I. 1) Egy 011-ben készült statisztikai összehasonlításban az alábbiakat olvashatjuk: Ha New York-ban az átlagfizetést és az átlagos árszínvonalat egyaránt

Részletesebben

Nyitott mondatok Bennfoglalás maradékkal

Nyitott mondatok Bennfoglalás maradékkal Matematika A 2. évfolyam Nyitott mondatok Bennfoglalás maradékkal 35. modul Készítette: Szitányi Judit 2 modulleírás A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés

Részletesebben

Matematika C 3. évfolyam. Melyikhez tartozom? 4. modul. Készítette: Abonyi Tünde

Matematika C 3. évfolyam. Melyikhez tartozom? 4. modul. Készítette: Abonyi Tünde Matematika C 3. évfolyam Melyikhez tartozom? 4. modul Készítette: Abonyi Tünde Matematika C 3. évfolyam 4. modul Melyikhez tartozom? MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket!

4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket! ) Alakítsd szorzattá a következő kifejezéseket! 4 c) d) e) f) 9k + 6k l + l = ay + 7ay + 54a = 4 k l = b 6bc + 9c 4 + 4y + y 4 4b 9a évfolyam javítóvizsgára ) Végezd el az alábbi műveleteket és hozd a

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Szakdolgozat GYIK. Mi az a vázlat?

Szakdolgozat GYIK. Mi az a vázlat? Szakdolgozat GYIK szerző: Pusztai Csaba, adjunktus, Közgazdaságtan és Jog Tanszék, EKF, Eger Mi az a vázlat? Elvárásként szerepel a GTI szempontrendszerében az, hogy az őszi félévben a szakdolgozó elkészítsen

Részletesebben

Mikroökonómia II. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 2. rész

Mikroökonómia II. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 2. rész MIKROÖKONÓMIA II. ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 2. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack

Részletesebben