Reiczigel Jenő,
|
|
- Márk Fekete
- 8 évvel ezelőtt
- Látták:
Átírás
1 Reiczigel Jenő, Egytényezős (egyszempontos) varianciaelemzés k független minta (k kezelés vagy k csoport), a célváltozó minden csoportban normális eloszlású, a szórások azonosak, az átlagok vagy különböznek, vagy nem (épp ezt akarjuk eldönteni). Nullhipotézis: nincs különbség az átlagok között, a kezelések/csoportok a célváltozó átlagára nézve mind azonosak: H 0 : µ 1 = µ 2 =... = µ k. Ellenhipotézis: nem minden átlag egyenlő, a kezelések/csoportok között különbség van (NB. ez sokféleképpen előfordulhat!), H 1 : nem minden µ i egyenlő egymással. Ha k = 2, akkor a varianciaelemzés ekvivalens a kétmintás t-próbával. Feltételek ellenőrzése: normalitásvizsgálat (khi-négyzet próba, Kolmogorov-Szmirnov-próba), szórások egyenlősége (Bartlett-próba, Levene-próba)
2 Variancia-tábla (szórásfelbontás) Reiczigel Jenő, A célváltozó variabilitását (amelyet az átlagától való eltérésnégyzetösszeggel mérünk) komponensekre bontjuk az alábbi módon: Teljes variabilitás = Kezelések közötti különbségnek tulajdonítható variabilitás + Véletlen variabilitás csoportok közötti csoporton belüli (reziduális, hiba) és ha a kezelések közötti különbségeknek tulajdonítható variabilitás szignifikánsan nagyobb, mint az ugyanazon kezelést kapottak közötti véletlen (nem a kezeléssel kapcsolatos de lehet más, zavaró hatásnak tulajdonítható!) variabilitás, akkor a nullhipotézist elvetjük. A tesztelés a varianciák hányadosát véve, F-próbával történik (a részleteket elhagyjuk).
3 Reiczigel Jenő, Csoportok páronkénti összehasonlítása Ha a varianciaelemzés szignifikáns különbségeket mutat ki a kezelések között, azaz a H 0 : µ 1 = µ 2 =... = µ k nullhipotézist elvetjük, akkor kíváncsiak lehetünk arra, hogy nevezetesen mely kezelések között van különbség (NB. a nullhipotézis elvetéséből nem következik, hogy mind különböznek egymástól!) Sok t-próba egyenként 5%-os szinten végezve nem korrekt megoldás, mert összességében nagyobb lesz az elsőfajú hiba valószínűsége. Több korrekt módszer létezik, különféle előnyökkel és hátrányokkal (Tukey, Scheffé, stb.). Ha a kezelések nem mind egyenértékűek, hanem van közöttük egy (általában a kontroll), amelyhez az összes többit hasonlítani akarjuk, akkor a Dunnett-tesztet kell használnunk. Ez is korrigált elsőfajú hibával dolgozik (α = 0.05 az összes összehasonlításra együtt).
4 Reiczigel Jenő, Többtényezős (többszempontos) varianciaelemzés Több tényező az egyszerűség kedvéért most legyen csak kettő: 1. tényező: k 1 kezelés (k 1 csoport), 2. tényező: k 2 kezelés (k 2 csoport). A kezeléskombinációk száma k 2 k 2. Tegyük fel, hogy r ismétléssel dolgozunk, azaz minden kezeléskombinációt r megfigyelési egységen alkalmazunk (ez összesen k 2 k 2 r megfigyelési egység). Feltétel itt is, hogy a célváltozó minden kezeléskombináció esetén normális eloszlású, a szórások pedig azonosak legyenek.
5 Reiczigel Jenő, Itt többféle nullhipotézist tesztelhetünk (ugyanúgy, mint az egytényezős esetben, a négyzetösszeg felbontása után F-próbával): - H0 (1) : az 1. tényező szerinti k 1 kezelési csoport a célváltozó átlagára nézve mind azonos, az átlagok között nincs különbség: H0 (1) : µ 1 (1) = µ 2 (1) =... = µ k1 (1) - H0 (2) : a 2. tényező szerinti k 2 kezelési csoport a célváltozó átlagára nézve mind azonos, az átlagok között nincs különbség: H0 (1) : µ 1 (2) = µ 2 (2) =... = µ k2 (2) - H0 (1 2) : az 1. és a 2. tényező hatása additív, együttes hatásuk a külön-külön vett hatások egyszerű összege, nincs közöttük kölcsönhatás, interakció (H0 (1 2) elvetése azt jelenti, hogy a két hatás nem additív, van közöttük interakció) Az interakció azt is jelenti, akkor az 1. tényező szerinti kezelések hatása a 2. tényező szerinti kezelési csoportokban nem azonos.
6 Reiczigel Jenő, Interakció megjelenése az átlagok grafikonján: x tengely: 1. faktor szintjei (pl. 4 tartás) y tengely: függő változó (pl. súlygyarapodás) vonalak: 2. faktor szintjei (pl. 3 takarmány) kb. párhuzamosak a vonalak a vonalak nem párhuzamosak a 2. faktor szintjei közötti különbség nem függ az 1. faktor szintjétől nincs interakció a 2. faktor szintjei közötti különbség az 1. faktor szintjétől függően változik van interakció
7 Reiczigel Jenő, Példa: seregélyek testtömege hogy függ az ivartól és az évszaktól? Évszak átlagos testtömeg Ősz Tavasz Hím Ivar Tojó x1 = 57g x 2 = 53g x3 = 55g x 51g 4 = hím hím hím nő nő nő ősz tavasz ősz tavasz ősz tavasz Melyik ábra tartozik a táblázathoz? Van-e interakció az ivar és az évszak között?
8 Fix és random faktorok/modellek Reiczigel Jenő, Egyes tényezőknek nem tudjuk, vagy nem akarjuk az összes lehetséges szintjét figyelembe venni, pl. a mérés időpontja (napszak, évszak), a mérést végző laboráns, többcentrumos vizsgálatban a vizsgálatot végző intézmény, stb. Ekkor nem az a fontos, hogy az éppen figyelembe vett szintek (időpontok, intézmények, személyek) között van-e és mekkora a különbség, hanem hogy ezek a különbségek összességében mennyivel járulnak hozzá a vizsgált változó varianciájához (hogy ezt a többlet-varianciát el tudjuk különíteni a véletlen hibától). Az ilyen tényezőt véletlen tényezőnek (random factor), az ilyen tényezőt tartalmazó modellt véletlen modellnek (random effect model) nevezzük, szemben a fix tényezővel (fix factor) és fix modellel (fixed effect model). A vegyes vagy kevert modellben (mixed model) mindkét fajta tényező szerepel.
9 Véletlen blokkos elrendezés Reiczigel Jenő, Cél: egy zavaró változó hatásának kiszűrése Elv: a zavaró változó szerinti rétegzés; a rétegeken belül mindegyik kezelésből ugyanannyi, randomizálva Példa: 3 kezelést hasonlítunk össze, a szükséges mintaelemszám kezelésenként 5 (összesen 15) egyed. Technikai okok miatt az összes mérést egy nap alatt kell elvégezni, ez reggeltől estig tart. Mivel a célváltozó értéke napszak szerint változik, blokkos elrendezést választunk 5 blokkal (reggeli, délelőtti, déli, délutáni, esti blokk), blokkonként 3 méréssel (minden kezelésből 1), a kezeléseket a blokkokon belül randomizálva.
10 Reiczigel Jenő, Teljes véletlen vs. blokkos elrendezés Teljes véletlen elrendezés (teljes randomizálás) K1 K2 K1 K2 K1 K3 K1 K2 K2 K3 K1 K3 K3 K3 K2 reggel este ha nincs tudomásunk inhomogeneitásról Véletlen blokkos elrendezés (blokkon belüli randomizálás) K1 K2 K3 K2 K3 K1 K1 K3 K2 K3 K2 K1 K2 K1 K3 reggel este ha tudomásunk van inhomogeneitásról
11 Reiczigel Jenő, Az elrendezés garantálja, hogy a kezelés hatása és a blokkhatás szétválasztható, az pedig, hogy a szórásfelbontásban a blokk-hatásnak tulajdonítható szórás el van különítve a véletlen hibától, erősebb tesztet eredményez. A kiértékeléshez használt statisztikai programot úgy kell paraméterezni, mintha 2 tényezős elrendezést használtunk volna, de a tényező hatása és a blokkhatás közötti interakciót kizárjuk és a blokkhatás szignifikanciáját nem vizsgáljuk. (Ha a program képes erre, a blokkot véletlen faktorként szokás definiálni.)
12 Reiczigel Jenő, Adatbevitel: kezelés sorszáma blokk sorszáma mért érték
13 Latin négyzet elrendezés Reiczigel Jenő, Cél: két zavaró változó hatásának kiszűrése Elv: mindkét zavaró változó szerinti rétegzés (!!!); a rétegeken belül mindegyik kezelésből ugyanannyi, randomizálva Ha k kezelést hasonlítunk össze, akkor mindkét zavaró változó szerint k réteget képezünk: kxk-as latin négyzet, benne összesen k 2 egyed Ha a megkívánt pontossághoz szükséges mintaelemszám ennél nagyobb, akkor több kxk-as latin négyzetet szerkesztünk, így a mintaelemszám 2k 2, 3k 2, stb. lehet.
14 Reiczigel Jenő, Példa: tegyük fel, hogy az előző példában a célváltozót a napszak mellett a páciens testsúlya is befolyásolja. Mivel 3 kezelést hasonlítunk össze, 3x3-as latin négyzettel dolgozunk. A 9 pácienst testsúly szerint 3 csoportba osztjuk (S1, S2, S3), majd a napszak szerinti blokkokba minden testsúly szerinti csoportból kisorsolunk egyet-egyet. Ezzel belesorsoltuk őket egy 3x3-as táblázat celláiba. Ezután a cellákhoz kisorsoljuk a kezeléseket (K1, K2, K3) úgy, hogy minden sorban és minden oszlopban minden kezelés pontosan egyszer forduljon elő (ettől latin négyzet). Például így: További latin négyzeteket kaphatunk a sorok (oszlopok) cserélgetésével. súly napsz. S1 S2 S K1 K3 K K2 K1 K K3 K2 K1
15 Reiczigel Jenő, Látható, hogy a latin négyzet elrendezés akkor kivitelezhető könnyen, ha a zavaró változók folytonosak, mert ekkor könnyen hozhatunk létre belőlük épp a kezelések számával megegyező számú kategóriát. A kiértékeléshez használt statisztikai programot úgy kell paraméterezni, mintha 3 tényezős elrendezést használtunk volna. Itt is kizárjuk az interakciókat, és itt sem vizsgáljuk a sor-, illetve oszlophatás szignifikanciáját.
16 Reiczigel Jenő, Adatbevitel: napszak blokk súly blokk kezelés sorsz. mért érték
17 Reiczigel Jenő, Több mérés ugyanazokon az egyedeken: repeated measures Az eddigi elrendezésekben minden megfigyelési egységen egyetlen mérést végeztünk. Többféle ok miatt (de leggyakrabban az egyedek közötti jelentős különbségek miatt) szükség lehet arra, hogy minden egyes egyeden több mérést végezzünk. Az ilyen kísérleteket ismételt méréses kísérletnek nevezzük.
18 Példák: Reiczigel Jenő, a) méréseket végzünk az állat több testrészén, szervén (pl. vérvétel több helyről) b) méréseket végzünk ugyanazon az állaton különféle körülmények között (pl. nyugalmi állapotban vagy terheléssel) c) a kísérletben a megfigyelési egység egy több egyedből álló egység (pl. egy alom) és minden egyeden méréseket végzünk d) méréseket végzünk ugyanazon az állaton sorban egymást követő időpontokban (az ilyen adatokat longitudinális adatoknak nevezik, fontos különbség az előzőkhöz képest, hogy itt az időpontoknak kötött sorrendje van)
19 Reiczigel Jenő, Általában az ilyen kísérletben is az egyedek két (esetleg több) csoportjával dolgozunk (pl. kezelt-kontroll) és az elsődleges cél ezek (between subject factors) összehasonlítása. Az a) és b) esetben emellett kíváncsiak lehetünk arra is, hogy az egyes testrészek, illetve állapotok között van-e különbség (within subject factors). A d)-nél általában a mért értékek időbeli lefutása érdekes, amit ún. válaszgörbék (response curves) formájában szoktak ábrázolni. Az a) b) c) esetekben a kiértékelésre vagy repeated measures ANOVA módszert vagy mixed modellt (random faktor az egyed!) szokás használni (egyenértékűek). A d) esetben ez ellenjavallt, ilyenkor ajánlatos inkább az egyedi adatsorokból különféle, a görbe lefutására jellemző, klinikailag releváns mutatókat (summary measures) számítani (a min/max ideje, értéke, a görbe alatti terület, stb.) majd ezekkel dolgozni tovább.
20 Reiczigel Jenő, Adatbevitel repeated measures ANOVA-hoz: kezelés 1. mért érték 2. mért érték 3. mért érték
21 Reiczigel Jenő, Adatbevitel mixed modellhez: kezelés egyed mérés sorsz. mért érték
22 Crossover elrendezés Reiczigel Jenő, Cél: a kimutatandó hatáshoz képest nagy egyedi variabilitás kiszűrése Elv: ugyanazt az alanyt valamennyi kezelésben részesítjük, és az így mért hatásokat hasonlítjuk össze (ismételt méréses vizsgálat!) Tipikus alkalmazási terület: krónikus betegségek (asztma, magas vérnyomás, cukorbetegség, reuma, stb.), amikor a kezeléstől gyógyulás nem várható, csak a tünetek enyhítése, az állapot javítása. Az első kezelés befejezése után az állapot lassan visszaáll a kezdetire, és a második kezelést is ki lehet próbálni. Alkalmazása nem előnyös, ha a kezelések túl hosszantartóak, mert ilyenkor a páciensek vizsgálat közbeni elmaradásának valószínűsége megnőhet.
23 Reiczigel Jenő, A legegyszerűbb elrendezésben két csoporttal dolgozunk, az egyik csoportban a kezeléseket AB, a másikban BA sorrendben alkalmazzuk ( AB/BA design ). Az egyes kezelési periódusok között kellő szünetet (wash-out period) kell hagyni. A kiértékeléskor figyelembe vett hatások a következők: - a kezelés hatása (ezt akarjuk vizsgálni) - csoport-hatás (zavaró hatás, ellene randomizáció) - periódus-hatás (zavaró hatás) - carry-over hatás (zavaró hatás) Az AB/BA elrendezésben a zavaró hatások nem választhatók szét (confounding), ezért sokan kritizálták. Léteznek jobb (de bonyolultabb) elrendezések, több periódussal (pl. ABA/ABB).
24 Reiczigel Jenő, Adatbevitel: egyed csoport periódus kezelés mért érték 1 AB 1 A 13 1 AB 2 B 19 2 AB 1 A 14 2 AB 2 B BA 2 A BA 1 B
25 Ekvivalencia-kísérletek Reiczigel Jenő, Két kezelés, A és B (pl. egy új és a standard kezelés) hatásának egyenértékűségét szeretnénk bizonyítani. Jelölje X a hatás mérésére szolgáló számszerű változót (pl. vérnyomás, fájdalom-szkór, stb). Ha a hatások egyenlőséget választanánk nullhipotézisnek, akkor még ha az eredmény a H 0 megtartása lenne is csak azok hinnének benne (továbbra is), akik már a kísérlet előtt sem kérdőjelezték meg. Az ekvivalenciát csak az bizonyíthatja a kétkedők számára is meggyőzően, ha az eredmények alapján mind a mind pedig a hipotézisek elvethetők. H 0 : B hatásosabb, mint A, H 0 : B kevésbé hatásos, mint A
26 Reiczigel Jenő, Itt persze a hatásosabb -at a klinikailag még releváns különbség figyelembe vételével szokták érteni. Például ha a hatások közötti 15%- nál kisebb különbség orvosi szempontból már irreleváns, azaz a kezelések orvosilag egyenértékűnek tekinthetők, ha 0.85 µ A < µ B < 1.15 µ A ahol µ A és µ B az X átlagértéke a két kezelés mellett, akkor a hipotézisek H 0 : 1.15µ A µ B, illetve H 0 : µ B 0.85µ A. Megjegyzés: bár az ekvivalencia-tartományt leggyakrabban valóban relatív különbség százalékos eltérés formájában szokás definiálni, használhatnánk abszolút különbséget is. Ha az eredmények mindkét nullhipotézis elvetéséhez vezetnek, akkor a kísérlet statisztikailag (empirikusan) bizonyította a kezelések ekvivalenciáját. (Másik ekvivalens módszer: konfidencia-intervallum µ A /µ B -re)
Elméleti összefoglalók dr. Kovács Péter
Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...
Részletesebbenstatisztikai menürendszere Dr. Vargha András 2007
A statisztikai menürendszere Dr. Vargha András 2007 2 tartalomjegyzék 1. Alapok (egymintás elemzések Alapstatisztikák Részletesebb statisztikák számítása Gyakorisági eloszlás, hisztogram készítése Középértékekre
Részletesebben6. AZ EREDMÉNYEK ÉRTELMEZÉSE
6. AZ EREDMÉNYEK ÉRTELMEZÉSE A kurzus anyagát felhasználva összeállíthatunk egy kitűnő feladatlapot, de még nem dőlhetünk nyugodtan hátra. Diákjaink teljesítményét még osztályzatokra kell átváltanunk,
RészletesebbenEGÉSZSÉGÜGYI DÖNTÉS ELŐKÉSZÍTŐ
EGÉSZSÉGÜGYI DÖNTÉS ELŐKÉSZÍTŐ MODELLEZÉS Brodszky Valentin, Jelics-Popa Nóra, Péntek Márta BCE Közszolgálati Tanszék A tananyag a TÁMOP-4.1.2/A/2-10/1-2010-0003 "Képzés- és tartalomfejlesztés a Budapesti
RészletesebbenStatisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter
Statisztikai módszerek alkalmazása az orvostudományban Szentesi Péter Az orvosi munkahipotézis ellenőrzése statisztikai módszerekkel munkahipotézis mérlegelés differenciáldiagnosztika mi lehet ez a más
RészletesebbenIttfoglalomösszea legfontosabbtudnivalókat, részleteka honlapon, illetvea gyakorlatvezetőtől is kaptok információkat.
1 Ittfoglalomösszea legfontosabbtudnivalókat, részleteka honlapon, illetvea gyakorlatvezetőtől is kaptok információkat. A statisztika tanulásához a legtöbb infomrációkat az előadásokon és számítógépes
RészletesebbenÁltalános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László
Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication
RészletesebbenCsődvalószínűségek becslése a biztosításban
Csődvalószínűségek becslése a biztosításban Diplomamunka Írta: Deák Barbara Matematikus szak Témavezető: Arató Miklós, egyetemi docens Valószínűségelméleti és Statisztika Tanszék Eötvös Loránd Tudományegyetem,
Részletesebben9. Jelzőlámpás csomópontok forgalomszabályozása
9. JELZŐLÁMPÁS CSOMÓPONTOK FORGALOMSZABÁLYOZÁSA...1 9.1. ALAPFOGALMAK...1 9.1.1. Elnevezések...1 9.1.2. A forgalomirányítással összefüggő alapfogalmak...2 9.1.3. Működtetési módok...3 9.2. JELZŐLÁMPÁS
RészletesebbenMesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.)
Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Bizonytalanságkezelés: Az eddig vizsgáltakhoz képest teljesen más világ. A korábbi problémák nagy része logikai,
RészletesebbenDoktori munka. Solymosi József: NUKLEÁRIS KÖRNYEZETELLENŐRZŐ MÉRŐRENDSZEREK. Alkotás leírása
Doktori munka Solymosi József: NUKLEÁRIS KÖRNYEZETELLENŐRZŐ MÉRŐRENDSZEREK Alkotás leírása Budapest, 1990. 2 KÖSZÖNETNYILVÁNÍTÁS A doktori munka célja az egyéni eredmény bemutatása. Feltétlenül hangsúlyoznom
RészletesebbenEsetelemzés az SPSS használatával
Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét
RészletesebbenFÜGGELÉK. értékelési módok
FÜGGELÉK Q C uali ont értékelési módok BEVEZETÉS A diagnosztikai bizonytalanságot alapvetően két összetevő, a mérési bizonytalanság (analitikai hiba), a véletlen + rendszeres hiba és az adott paraméter
RészletesebbenAdatok statisztikai feldolgozása
Adatok statisztikai feldolgozása Kaszaki József Ph.D Szegedi Tudományegyetem Sebészeti Műtéttani Intézet Szeged A mérési adatok kiértékelése, statisztikai analízis A mért adatok konvertálása adatbázis
Részletesebben4. Hazai kísérletek a lokális térségek versenyképességének elemzésére
90 Lukovics Miklós: Térségek versenyképességének mérése 4. Hazai kísérletek a lokális térségek versenyképességének elemzésére Magyarországon, szemben a nemzetközi szakirodalomban leírtakkal, még napjainkban
Részletesebben11. Matematikai statisztika
11. Matematikai statisztika 11.1. Alapfogalmak A statisztikai minta valamely valószínűségi változóra vonatkozó véges számú független kisérlet eredménye. Ez véges sok, azonos eloszlású valószínűségi változó
RészletesebbenBevezetés az ökonometriába
Bevezetés az ökonometriába Többváltozós lineáris regresszió: mintavételi vonatkozások és modelljellemzés Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Harmadik
RészletesebbenHosszú élettartamú fényforrások megbízhatóságának vizsgálata Tóth Zoltán. 1. Bevezetés
Tóth Zoltán A cikk bemutatja, hogy tipikusan milyen formában adják meg a gyártók az élettartamgörbéket, ezek különböző fajtáit, hogyan kell értelmezni őket. Kitér néhány felhasználási területetre, például
RészletesebbenStatisztikai módszerek
Statisztikai módszerek A hibaelemzı módszereknél azt néztük, vannak-e kiugró, kritikus hibák, amelyek a szabályozás kivételei. Ezekkel foglalkozni kell; minıségavító szabályozásra van szükség. A statisztikai
RészletesebbenA kontrollált kísérlet módszere és alkalmazása a diszkriminációkutatásban. Simonovits Bori Budapest, 2011
A kontrollált kísérlet módszere és alkalmazása a diszkriminációkutatásban Simonovits Bori Budapest, 2011 A KLASSZIKUS KÍSÉRLET definíciója és hozzávalói A kísérletek az oksági folyamatok kontrollált vizsgálatának
RészletesebbenKonfokális mikroszkópia elméleti bevezetõ
Konfokális mikroszkópia elméleti bevezetõ A konfokális mikroszkóp fluoreszcensen jelölt minták vizsgálatára alkalmas. Jobb felbontású képeket ad, mint a hagyományos fluoreszcens mikroszkópok, és képes
RészletesebbenAlapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom
Alapfogalmak áttekintése Pszichológiai statisztika, 1. alkalom Hipotézisek Milyen a jó null hipotézis?? H0: Léteznek kitőnı tanuló diszlexiások.? H1: Nem léteznek. Sokkal inkább: H0: Nincs diszlexiás kitőnı
RészletesebbenKvantumkriptográfia III.
LOGO Kvantumkriptográfia III. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Tantárgyi weboldal: http://www.hit.bme.hu/~gyongyosi/quantum/ Elérhetőség: gyongyosi@hit.bme.hu A kvantumkriptográfia
RészletesebbenTantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1.
Tantárgyi útmutató 1. A tantárgy helye a szaki hálóban Gazdálkodási és menedzsment szakirány áttekintő tanterv Nagyításhoz kattintson a képre! Turizmus - vendéglátás szakirány áttekintő tanterv Nagyításhoz
RészletesebbenNokia Autóval 3.0 - Felhasználói kézikönyv
Nokia Autóval 3.0 - Felhasználói kézikönyv 1.0. kiadás 2 Tartalom Tartalom A Nokia Autóval alkalmazás ismertetése 3 Egy adott célállomás elérése autóval 3 Hely mentése vagy megtekintése 4 A hangirányítás
Részletesebben2. MÉRÉSELMÉLETI ISMERETEK
2. MÉRÉSELMÉLETI ISMERETEK A fejezet célja azoknak a módszereknek a bemutatása, amelyekkel adatokat gyűjthetünk annak érdekében, hogy kérdéseinkre választ kapjunk. Megvizsgáljuk azokat a feltételeket is,
RészletesebbenStatisztika, próbák Mérési hiba
Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:
RészletesebbenAZ EGYSZÜLŐS CSALÁDDÁ VÁLÁS TÁRSADALMI MEGHATÁROZOTTSÁGA 2 BEVEZETÉS DOI: 10.18030/SOCIO.HU.2013.3.22
MONOSTORI JUDIT 1 AZ EGYSZÜLŐS CSALÁDDÁ VÁLÁS TÁRSADALMI MEGHATÁROZOTTSÁGA 2 DOI: 10.18030/SOCIO.HU.2013.3.22 BEVEZETÉS Az családokról való ismereteink bizonyos dimenziók vonatkozásában igen gazdagok.
Részletesebben2013.03.11. Az SPC alapjai. Az SPC alapjai SPC 5. 5. Az SPC (Statistic Process Control) módszer. Dr. Illés Balázs
SPC 5 5. Az SPC (Statistic Process Control) módszer Dr. Illés Balázs BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ELEKTRONIKAI TECHNOLÓGIA TANSZÉK Az SPC alapjai SPC (Statistical Process Controll) =
RészletesebbenAz alábbi áttekintés Délkelet-Európa (a volt Jugoszlávia országai
OKTATÁSIRÁNYÍTÁS ÉS OKTATÁSPOLITIKA A BALKÁNON Az alábbi áttekintés Délkelet-Európa (a volt Jugoszlávia országai Szlovénia kivételével, Bulgária, Románia és Albánia) oktatási rendszerei előtt álló kihívásokat
RészletesebbenErgonómia előadás. Színek
Ergonómia előadás Színek Készítette: Salamon Péter Szathmáry András VENK 2006 1 Ergonómia és a szín Az ergonómia azt mondja meg, hogyan nem lesz megfelelő és hogyan lesz megfelelő a teljesítmény és a vizuális
RészletesebbenLEHETÔSÉGEI: KOMPENZÁCIÓ ÉS BOCSÁNATKÉRÉS
KENESEI zsófia KOLOS Krisztina A HATÉKONY PANASZKEZELÉS LEHETÔSÉGEI: KOMPENZÁCIÓ ÉS BOCSÁNATKÉRÉS A szerzők cikkükben a panaszkezelés hatékonyságát vizsgálják, kutatási módszerük a szcenáriókon alapuló
RészletesebbenGAZDASÁGI STATISZTIKA
GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK
RészletesebbenElemzések a gazdasági és társadalompolitikai döntések elôkészítéséhez 17. 2000. szeptember. Budapest, 2000. november
Elemzések a gazdasági és társadalompolitikai döntések elôkészítéséhez 17. 2000. szeptember Budapest, 2000. november 1 Az elemzés a Miniszterelnöki Hivatal megrendelésére készült. Készítette: Gábos András
RészletesebbenMűködési kockázati önértékelések veszteségeloszlás-alapú modellezése
506 HITELINTÉZETI SZEMLE HAJNAL BÉLA KÁLLAI ZOLTÁN NAGY GÁBOR Működési kockázati önértékelések veszteségeloszlás-alapú modellezése Tanulmányunkban a működési kockázatok önértékelésen alapuló modellezését
RészletesebbenA TESZTÜZEMEK FŐBB ÁGAZATAINAK KÖLTSÉG- ÉS JÖVEDELEMHELYZETE 2002-BEN
Agrárgazdasági Kutató és Informatikai Intézet A TESZTÜZEMEK FŐBB ÁGAZATAINAK KÖLTSÉG- ÉS JÖVEDELEMHELYZETE 2002-BEN A K I I Budapest 2003 Agrárgazdasági Tanulmányok 2003. 6. szám Kiadja: az Agrárgazdasági
RészletesebbenTársas lény - Zh kérdések (első negyedév) Milyen hatással van ránk mások jelenléte? Mutass példákat!
Társas lény - Zh kérdések (első negyedév) 2011/2012-2. félév Kiskérdések: Milyen hatással van ránk mások jelenléte? Mutass példákat! Mások jelenléte javítja az egyén teljesítményét az egyszerű vagy jól
RészletesebbenA traktorvezetéssel töltött munkaórák hatása a hát alsó részén és a csípőben jelentkező megbetegedések kialakulására
MUNKABALESETEK ÉS FOGLALKOZÁSI MEGBETEGEDÉSEK 4.2 5.6 A traktorvezetéssel töltött munkaórák hatása a hát alsó részén és a csípőben jelentkező megbetegedések kialakulására Tárgyszavak: traktorvezetés; csípőfájdalom;
Részletesebben2. Interpolációs görbetervezés
2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,
RészletesebbenFELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE
FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE 1. Egy alkalmassági vizsgálat adatai szerint a vizsgált személyeken 0,05 valószínűséggel mozgásszervi és 0,03 valószínűséggel érzékszervi
RészletesebbenJobbak a nők esélyei a közszférában?
Közgazdasági Szemle, LX. évf., 2013. július augusztus (814 836. o.) Lovász Anna Jobbak a nők esélyei a közszférában? A nők és férfiak bérei közötti különbség és a foglalkozási szegregáció vizsgálata a
RészletesebbenA stresszteli életesemények és a gyermekkori depresszió kapcsolatának vizsgálata populációs és klinikai mintán
A stresszteli életesemények és a gyermekkori depresszió kapcsolatának vizsgálata populációs és klinikai mintán Doktori értekezés tézisei Dr. Mayer László Semmelweis Egyetem Mentális Egészségtudományok
RészletesebbenA MARKETING ÁLTALÁNOS KÉRDÉSEI. A márkahitelesség hatása a vásárlói árérzékenységre. A márkák hatása a vásárlók preferenciáira.
A MARKETING ÁLTALÁNOS KÉRDÉSEI A márkahitelesség hatása a vásárlói árérzékenységre A márkák hatással vannak a vásárlói döntési folyamatok különböző szakaszaira. A korábbi kutatások azzal foglalkoztak,
Részletesebben1. Az ábrán a pontok a szabályos háromszögrács 10 pontját jelentik (tehát az ABC háromszög egyenlőoldalú, a BDE háromszög egyenlőoldalú, a CEF
1. Az ábrán a pontok a szabályos háromszögrács 10 pontját jelentik (tehát az ABC háromszög egyenlőoldalú, a BDE háromszög egyenlőoldalú, a CEF háromszög egyenlőoldalú, stb ). A 10 pont közül ki kell választani
RészletesebbenA migrációs potenciál mértéke a Kárpátmedencei magyarság és cigányság körében
A migrációs potenciál mértéke a Kárpátmedencei magyarság és cigányság körében Budapest, 2002. május A kutatást a Gazdasági Minisztérium megbízásából a Balázs Ferenc Intézet (mintakészítés és adatfelvétel)
RészletesebbenTERMELÉSMENEDZSMENT. Gyakorlati segédlet a műszaki menedzser szak hallgatói számára. Összeállította: Dr. Vermes Pál főiskolai tanár 2006.
Szolnoki Főiskola Műszaki és Mezőgazdasági Fakultás Mezőtúr TERMELÉSMENEDZSMENT Gyakorlati segédlet a műszaki menedzser szak hallgatói számára Összeállította: Dr. Vermes Pál főiskolai tanár Mezőtúr 6.
RészletesebbenMegjelent: Magyar Földrajzi Konferencia tudományos közleményei (CD), Szeged, 2001
Megjelent: Magyar Földrajzi Konferencia tudományos közleményei (CD), Szeged, 2001 A területi lehatárolások statisztikai következményei A területi lehatárolások statisztikai következményeinek megközelítése
RészletesebbenOn-line értékelési módszerek II. Lengyelné Molnár Tünde
On-line értékelési módszerek II. Lengyelné Molnár Tünde MÉDIAINFORMATIKAI KIADVÁNYOK On-line értékelési módszerek II. Lengyelné Molnár Tünde Eger, 2013 Korszerű információtechnológiai szakok magyarországi
RészletesebbenAutoN cr. Automatikus Kihajlási Hossz számítás AxisVM-ben. elméleti háttér és szemléltető példák. 2016. február
AutoN cr Automatikus Kihajlási Hossz számítás AxisVM-ben elméleti háttér és szemléltető példák 2016. február Tartalomjegyzék 1 Bevezető... 3 2 Célkitűzések és alkalmazási korlátok... 4 3 Módszertan...
RészletesebbenFAUR KRISZTINA BEÁTA, SZAbÓ IMRE, GEOTECHNIkA
FAUR KRISZTINA BEÁTA, SZAbÓ IMRE, GEOTECHNIkA 7 VII. A földművek, lejtők ÁLLÉkONYSÁgA 1. Földművek, lejtők ÁLLÉkONYSÁgA Valamely földművet, feltöltést vagy bevágást építve, annak határoló felületei nem
RészletesebbenSZENT ISTVÁN EGYETEM GÖDÖLLŐ. DOKTORI (PhD) ÉRTEKEZÉS - TÉZISFÜZET
SZENT ISTVÁN EGYETEM GÖDÖLLŐ GAZDÁLKODÁS ÉS SZERVEZÉSTUDOMÁNYOK DOKTORI ISKOLA DOKTORI (PhD) ÉRTEKEZÉS - TÉZISFÜZET A MINŐSÉG- ÉS BIZTONSÁGMENEDZSMENT SZEREPÉNEK ÉS HATÉKONYSÁGÁNAK ÖKONÓMIAI VIZSGÁLATA
RészletesebbenKIFEJEZÉSE: A GAMMA KOEFFICIENS. Csapó Benő Szegedi Tudományegyetem, Neveléstudományi Tanszék MTA-SZTE Képességkutató Csoport
MAGYAR PEDAGÓGIA 102. évf. 3. szám 391 410. (2002) A KÉPESSÉGEK FEJLŐDÉSI ÜTEMÉNEK EGYSÉGES KIFEJEZÉSE: A GAMMA KOEFFICIENS Csapó Benő Szegedi Tudományegyetem, Neveléstudományi Tanszék MTA-SZTE Képességkutató
Részletesebben6. modul Egyenesen előre!
MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
RészletesebbenI. melléklet. Az Európai Gyógyszerügynökség által beterjesztett tudományos következtetések, valamint az elutasítás indokolása
I. melléklet Az Európai Gyógyszerügynökség által beterjesztett tudományos következtetések, valamint az elutasítás indokolása Az Európai Gyógyszerügynökség által beterjesztett tudományos következtetések,
RészletesebbenADATBÁZISKEZELÉS ADATBÁZIS
ADATBÁZISKEZELÉS 1 ADATBÁZIS Az adatbázis adott (meghatározott) témakörre vagy célra vonatkozó adatok gyűjteménye. - Pl. A megrendelések nyomon követése kereskedelemben. Könyvek nyilvántartása egy könyvtárban.
RészletesebbenAz életpálya-tanácsadási on-line és off-line szolgáltatások hatékonyság-mérési módszertana a Nemzeti Pályaorientációs Portálon keresztül
TÁMOP 2.2.2-12/1-2012-0001 pályázati azonosítószámú A pályaorientáció rendszerének tartalmi és módszertani fejlesztése című kiemelt projekt Az életpálya-tanácsadási on-line és off-line szolgáltatások hatékonyság-mérési
RészletesebbenVállalkozás alapítás és vállalkozóvá válás kutatás zárójelentés
TÁMOP-4.2.1-08/1-2008-0002 projekt Vállalkozás alapítás és vállalkozóvá válás kutatás zárójelentés Készítette: Dr. Imreh Szabolcs Dr. Lukovics Miklós A kutatásban részt vett: Dr. Kovács Péter, Prónay Szabolcs,
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
É RETTSÉGI VIZSGA 2015. október 22. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 22. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
RészletesebbenFIR és IIR szűrők tervezése digitális jelfeldolgozás területén
Dr. Szabó Anita FIR és IIR szűrők tervezése digitális jelfeldolgozás területén A Szabadkai Műszaki Szakfőiskola oktatójaként kutatásaimat a digitális jelfeldolgozás területén folytatom, ezen belül a fő
RészletesebbenJárási népesség-előreszámítás 2051-ig
Járási népesség-előreszámítás 2051-ig Tagai Gergely Bevezetés A társadalmi és gazdasági jelenségek gyakorlati kutatásában a vizsgálati fókusz általában egy adott problémakör vagy helyzetkép jelenlegi viszonyrendszereinek
RészletesebbenSZÁMOLÁSTECHNIKAI ISMERETEK
SZÁMOLÁSTECHNIKAI ISMERETEK Műveletek szögekkel Geodéziai számításaink során gyakran fogunk szögekkel dolgozni. Az egyszerűbb írásmód kedvéért ilyenkor a fok ( o ), perc (, ), másodperc (,, ) jelét el
RészletesebbenTúlélőkészlet a választásokhoz
Túlélőkészlet a választásokhoz A Túl az első X-en Tehetsz a jövődért, válassz! középiskolai vetélkedő háttéranyaga Budapest 2015. szeptember 30. TARTALOM I. VÁLASZTÁS, VÁLASZTÓJOG, VÁLASZTÁSI RENDSZEREK...
RészletesebbenSpike Trade napló_1.1 használati útmutató
1 Spike Trade napló_1.1 használati útmutató 1 ÁLTALÁNOS ÁTTEKINTŐ A táblázat célja, kereskedéseink naplózása, rögzítése, melyek alapján statisztikát készíthetünk, szűrhetünk vagy a már meglévő rendszerünket
Részletesebben9. Jelzőlámpás forgalomirányítás
SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR KÖZLEKEDÉSÉPÍTÉSI TANSZÉK KÖZÚTI FORGALOMTECHNIKA 1. Tantárgykód: NGB_ET009_1 9. Jelzőlámpás forgalomirányítás Dr. Kálmán László egyetemi adjunktus Győr,
RészletesebbenEsetelemzések az SPSS használatával
Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e
RészletesebbenMatematikai statisztikai elemzések 2.
Matematikai statisztikai elemzések 2. Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás Prof. Dr. Závoti, József Matematikai statisztikai elemzések 2.: Helyzetmutatók, átlagok, Prof. Dr. Závoti,
RészletesebbenAz anyagdefiníciók szerepe és használata az Architectural Desktop programban
Az anyagdefiníciók szerepe és használata az Architectural Desktop programban Az Architectural Desktop program 2004-es változatáig kellett várni arra, hogy az AutoCAD alapú építész programban is megjelenjenek
RészletesebbenA nemzetközi sportrendezvény-szervezési projektek sikertényezői és a siker megítélésének kritériumai
PANNON EGYETEM Gazdálkodás- és Szervezéstudományok Doktori Iskola Dancsecz Gabriella A nemzetközi sportrendezvény-szervezési projektek sikertényezői és a siker megítélésének kritériumai Doktori (Ph.D)
Részletesebbenkonfidencia-intervallum Logikai vektorok az R-ben 2012. március 14.
Valószínűség, pontbecslés, konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14. Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra
RészletesebbenVI. Magyar Földrajzi Konferencia 986-999
Vida Zsófia Viktória 1 KAPCSOLATHÁLÓZAT ELEMZÉS TÁRSADALOMFÖLDRAJZI NÉZŐPONTBÓL EGYÜTTMŰKÖDÉSEK ÉS GENERÁCIÓK KÖZÖTTI KAPCSOLATOK VIZSGÁLATA BEVEZETÉS A kapcsolathálózat elemzés a hálózattudományon belül
RészletesebbenMatematikai statisztikai elemzések 1.
Matematikai statisztikai elemzések 1. A statisztika alapfogalmai, feladatai, Prof. Dr. Závoti, József Matematikai statisztikai elemzések 1.: A statisztika alapfogalmai, feladatai, statisztika, osztályozás,
Részletesebben= szinkronozó nyomatékkal egyenlő.
A 4.45. ábra jelöléseit használva, tételezzük fel, hogy gépünk túllendült és éppen a B pontban üzemel. Mivel a motor által szolgáltatott M 2 nyomaték nagyobb mint az M 1 terhelőnyomaték, a gép forgórészére
Részletesebben6. RADIOAKTIVITÁS ÉS GEOTERMIKA
6. RADIOAKTIVITÁS ÉS GEOTERMIKA Radioaktivitás A tapasztalat szerint a természetben előforduló néhány elem bizonyos izotópjai nem stabilak, hanem minden külső beavatkozástól mentesen radioaktív sugárzás
Részletesebben10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS 2007 MATEMATIKA. Oktatási Hivatal Országos Közoktatási Értékelési és Vizsgaközpont É V F O L Y A M C Í M K E
10. C Í M K E É V F O L Y A M TANULÓI AZONOSÍTÓ: ORSZÁGOS KOMPETENCIAMÉRÉS 2007 JAVÍTÓKULCS MATEMATIKA Oktatási Hivatal Országos Közoktatási Értékelési és Vizsgaközpont ÁLTALÁNOS TUDNIVALÓK Ön a 2007-es
Részletesebben1. A kutatás célja, a munkatervben vállalt kutatási program ismertetése
1 1. A kutatás célja, a munkatervben vállalt kutatási program ismertetése A kutatás célja a természetgyógyászat néven összefoglalható, alternatív és komplementer gyógyító módszerek (röviden: alternatív
RészletesebbenHa egyetlen mondatban kellene összefoglalnunk A tekintélyelvű
todosijević & enyedi: kulturális elvárás... 567 KULTURÁLIS ELVÁRÁS VAGY/ÉS SZEMÉLYISÉG? romaellenes előítéletek magyarországon 1 Ha egyetlen mondatban kellene összefoglalnunk A tekintélyelvű személyiség
RészletesebbenMintapéldák és gyakorló feladatok
Mintapéldák és gyakorló feladatok Közgazdaságtan II. (Makroökonómia) címû tárgyból mérnök és jogász szakos hallgatók számára Az alábbi feladatok a diasorozatokon található mintapéldákon túl további gyakorlási
RészletesebbenMatematikai statisztikai elemzések 5.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések. MSTE modul Kapcsolatvizsgálat: asszociáció vegyes kapcsolat korrelációszámítás. Varianciaanalízis
RészletesebbenEnergiaszegénység Magyarországon
Mûhely Fülöp Orsolya, az Energiaklub Szakpolitikai Intézet és Módszertani Központ munkatársa, közgazdász E-mail: fulop@energiaklub.hu Energiaszegénység Magyarországon Lehoczki-Krsjak Adrienn, a KSH munkatársa,
RészletesebbenVariancia-analízis (folytatás)
Variancia-analízis (folytatás) 6. elıadás (11-12. lecke) Szórás-stabilizáló transzformációk (folyt.), t-próbák 11. lecke További variancia-stabilizáló transzformációk Egy-mintás t-próba Szórás-kiegyenlítı
RészletesebbenKaucsukok és hőre lágyuló műanyagok reológiai vizsgálata
A MÛANYAGOK TULAJDONSÁGAI 2.1 2.2 2.3 Kaucsukok és hőre lágyuló műanyagok reológiai vizsgálata Tárgyszavak: kaucsuk; hőre lágyuló műanyag; reológia; présreométer; Rheopress; kettős furatú kapillárreométer;
RészletesebbenMössbauer Spektroszkópia
Mössbauer Spektroszkópia Homa Gábor, Markó Gergely Mérés dátuma: 2008. 10. 15., 2008. 10. 22., 2008. 11. 05. Leadás dátuma: 2008. 11. 23. Figure 1: Rezonancia-abszorpció és szórás 1 Elméleti összefoglaló
RészletesebbenAZ EURÓPAI PARLAMENT ÉS A TANÁCS 2009/81/EK IRÁNYELVE
L 216/76 Az Európai Unió Hivatalos Lapja 2009.8.20. AZ EURÓPAI PARLAMENT ÉS A TANÁCS 2009/81/EK IRÁNYELVE (2009. július 13.) a honvédelem és biztonság területén egyes építési beruházásra, árubeszerzésre
RészletesebbenDiplomás pályakezdők várható foglalkoztatása és bérezése a versenyszektorban. 3000 magyarországi cég körében végzett felmérés elemzése gyorsjelentés
Diplomás pályakezdők várható foglalkoztatása és bérezése a versenyszektorban 3000 magyarországi cég körében végzett felmérés elemzése gyorsjelentés Az MKIK Gazdaság- és Vállalkozáselemző Intézet olyan
RészletesebbenLOGISZTIKAI KÖLTSÉGELEMZÉS. Mi a kontrolling? Mutatószámok
LOGISZTIKAI KÖLTSÉGELEMZÉS Mi a kontrolling? Mutatószámok Mi a kontrolling? A kontrolling, mint alkalmazott gazdaságtani módszer az Amerikai Egyesült Államokból ered. Az első gyakorlati alkalmazások termelési
RészletesebbenJelalakvizsgálat oszcilloszkóppal
12. fejezet Jelalakvizsgálat oszcilloszkóppal Fűrészjel és impulzusjel megjelenítése oszcilloszkóppal Az oszcilloszkópok feszültség vagy bármilyen feszültséggé átalakítható mennyiség időbeli változásának
RészletesebbenKVANTITATÍV MÓDSZEREK
KVANTITATÍV MÓDSZEREK Dr. Kövesi János Tóth Zsuzsanna Eszter 6 Tartalomjegyzék Kvantitatív módszerek. Valószínűségszámítási tételek. eltételes valószínűség. Események függetlensége.... 3.. eltételes valószínűség...
RészletesebbenFIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete
A Siófoki Perczel Mór Gimnázium tanulói segédlete FIZIKA munkafüzet Tanulói kísérletgyűjtemény-munkafüzet az általános iskola 8. osztálya számára 8. o s z t ály CSODÁLATOS TERMÉSZET TARTALOM 1. Elektrosztatika
RészletesebbenA közlekedés társadalmi költségei és azok általános és közlekedési módtól függő hazai sajátosságai
Dr. Tánczos Lászlóné - Dr. Bokor Zoltán A közlekedés társadalmi költségei és azok általános és közlekedési módtól függő hazai sajátosságai Az EU több kutatási programja foglalkozik a közlekedés társadalmi
Részletesebben2. modul 2. lecke: Oxidkerámiák
2. modul 2. lecke: Oxidkerámiák A lecke célja, az egyes oxidkerámia fajták szerkezetének, tulajdonságainak, alkalmazásainak a megismerése. Rendkívül érdekes általános és speciális alkalmazási területekkel
RészletesebbenStatisztika I. 6. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 6. előadás Előadó: Dr. Ertsey Imre GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE szorosan kapcsolódik a szóródás elemzéshez, elméleti
RészletesebbenSZENT ISTVÁN EGYETEM
SZENT ISTVÁN EGYETEM A magyar mezőgazdasági gépgyártók innovációs aktivitása Doktori (PhD) értekezés tézisei Bak Árpád Gödöllő 2013 A doktori iskola Megnevezése: Műszaki Tudományi Doktori Iskola Tudományága:
RészletesebbenA BŰNELKÖVETŐK REHABILITÁCIÓJÁNAK MEGHATÁROZÓ IRÁNYZATAI A NEMZETKÖZI SZAKIRODALOM TÜKRÉBEN
ALKALMAZOTT PSZICHOLÓGIA 2012/2, 73 88. 73 A BŰNELKÖVETŐK REHABILITÁCIÓJÁNAK MEGHATÁROZÓ IRÁNYZATAI A NEMZETKÖZI SZAKIRODALOM TÜKRÉBEN SZABÓ Judit Országos Kriminológiai Intézet judit.szabo@okri.hu ÖSSZEFOGLALÓ
RészletesebbenFogyatékossággal élő emberek életminősége és ellátási költségei különböző lakhatási formákban
Fogyatékossággal élő emberek életminősége és ellátási költségei különböző lakhatási formákban Zárótanulmány a VP/2013/013/0057 azonosítószámú New dimension in social protection towards community based
RészletesebbenFEHÉRVÁRI ANIKÓ KUDARCOK A SZAKISKOLÁKBAN TANULÓI ÖSSZETÉTEL
23 FEHÉRVÁRI ANIKÓ KUDARCOK A SZAKISKOLÁKBAN A tanulmány egy 2008-as vizsgálat eredményei 1 alapján mutatja be a szakiskolai tanulók szociális összetételét, iskolai kudarcait és az azokra adott iskolai
RészletesebbenMesterséges Intelligencia I. (I602, IB602)
Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos
RészletesebbenA HEVES-BORSODI-DOMBSÁG MORFOMETRIAI ELEMZÉSE TÉRINFORMATIKAI MÓDSZEREKKEL. Utasi Zoltán 1. A terület elhelyezkedése
Földrajz Konferencia, Szeged 2001. A HEVES-BORSODI-DOMBSÁG MORFOMETRIAI ELEMZÉSE TÉRINFORMATIKAI MÓDSZEREKKEL Utasi Zoltán 1 A terület elhelyezkedése A Heves-Borsodi-dombság a Mátra és a Bükk vonulatától
RészletesebbenMŰANYAGOK FELDOLGOZÁSA
MŰANYAGOK FELDOLGOZÁSA Fröccsöntés irányzatok és újdonságok Az európai műanyag-feldolgozók, gép- és vezérlésgyártók képviselői együtt vitatták meg a fröccsöntés fejlesztési lehetőségeit és az előrelépés
RészletesebbenTáblázatkezelés 1. előadás. Alapok
Táblázatkezelés 1. előadás Alapok Kallós Gábor kallos@sze.hu Pusztai Pál pusztai@sze.hu Táblázatkezelés 1. hét A táblázatkezelésről általában Elvárások/szolgáltatások, problémamegoldás Táblázatkezelés
RészletesebbenA 2011 2013. évi integritásfelmérések céljai, módszertana és eredményei
Szatmári János Kakatics Lili Szabó Zoltán Gyula A 2011 2013. évi integritásfelmérések céljai, módszertana és eredményei Összefoglaló: Az Állami Számvevőszék 2013-ban már harmadik alkalommal mérte fel a
Részletesebben