Hipotézis-ellenırzés (Statisztikai próbák)
|
|
- Elek Tóth
- 9 évvel ezelőtt
- Látták:
Átírás
1 Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat Egyeletes eloszlásra Normalitásra Kétmitás próbák: Átlagra, aráyra (szórásra) Többmitás próba: ANOVA (Variacia-aalízis) 1
2 Hipotézis-vizsgálat Bevezetı példa: Eldötedı kérdés (hipotézis): igaz-e, hogy az 5 g feliratú kávés zacskók átlagos tömege valóba 5 g? Mitavétel: 1, mitaátlag 48 g, a mita (korrigált) szórása 3 g. Megoldás az átlag-becslés módszerével: µ X x ± z s µ X 48 ± 1,96 Következtetés: A kapott itervallumba a hivatalos 5 g em esik bele. A hipotézist em fogadjuk el Megoldás a hipotézis-vizsgálat módszerével: 1) A hipotézisük az, hogy a zacskók átlagos tömege 5 g. ) Ha ez igaz, akkor a z s x kifejezés értéke (jó közelítéssel) stadard ormál eloszlású. X 5 3) Tehát a mita-átlag stadardizált értékéek 95 % valószíőséggel az [- 1,96; 1,96] itervallumba kellee esi. 4) A z függvéy értéke z Ez kívülesik a feti [- 1,96; 1,96] itervallumo, tehát agy valószíőséggel em igaz a hipozézis! s x 6,67 4
3 A hipotézis: A hipotézis-vizsgálat alapfogalmai a sokaság egy paraméterére vagy tulajdoságára voatkozó feltevés, (amelyek a feállását a mita alapjá elleırizzük.) Null-hipotézis H Elle-hipotézis (alteratív hipotézis) H 1 Egyoldali és kétoldali próba Próba-fv: Olya fv, amely a mitelemek értékéhez egy ismert eloszlású értéket (valószíőségi változót) redel. (Azaz: egy mitából számolható olya érték, amely mitáról mitára változik.) 5 Alapfogalmak (folyt.) Elfogadási tartomáy: ha a ullhipotézis helytálló, akkor (adott megbízhatósági szite) a próbafüggvéy értéke ebbe a tartomáyba esik. Ha a próbafv értéke ide esik, akkor H -t elfogadjuk. Elutasítási (kritikus tartomáy): ha a próbafüggvéy értéke ide esik, a ullhipotézist el kell vetük. Kritikus érték: az elfogadási és az elutasítási tartomáyt elválasztó érték (az elutasítási tartomáy részéek tekitjük). 6 3
4 Az egy- és kétoldali próba A ull-hipotézis (H ) midig egyelıség Ha az alteratív hipotézis (H1) em egyelı agyobb kisebb ( X X, P P σ σ ) ( X X, P P σ σ ), ( X > X, P > P, σ > σ ) ( X < X, P < P σ < σ ),, kétoldali próba jobboldali próba baloldali próba 7 A statisztikai próba lépései és általáos logikája a) A hipotézisek: H és H 1 felállítása b) Próba-fv megválasztása és kiszámítása c) A kritikus érték(ek) meghatározása, és ezzel az elfogadási és elutasítási tartomáy meghatározása adott α szigifikacia-szite d) Eek alapjá dötés a hipotézisekrıl. Logika: Ha a -hipotézis igaz, akkor 95 % valószíőséggel a próba-fv értékéek az elfogadási tartomáyba kell esie. - Ha odaesik, ics okuk kétségbe voi a -hipotézist. - Ha em esik bele, akkor viszot elutasítjuk a -hipotézist és az alteratíváját fogadjuk el. 8 4
5 Az átlagra voatkozó hipotézis-elleırzés próbafüggvéyei A sokaság NORM, A szórás ismert: z σ Stadard ormális eloszlás A sokaság Norm, A szórás em ismert: s t Nagy eseté a Studet eloszlás helyett z eloszlás. t-eloszlású: (Szabadságfok: -1 s z 9 A sokasági átlagra voatkozó próba a) Hiptozésisek H b) A próbafüggvéy: c) Kritikus érték (tábl.-ból): X X H1 : : X X z H : X > X 1 Vagy: H : X < X 1 Vagy: Vagy: σ s t d) Következtetés: 1 5
6 PÉLDA A korábbi példa: Eldötedı kérdés (hipotézis): igaz-e, hogy az 5 g feliratú kávés zacskók átlagos tömege valóba 5 g? Mitavétel: 1, mitaátlag 48 g, a mita (korrigált) szórása 3 g. 11 Megoldás: Hipotézisek: H : X 5 H 1 : X 5 (Kétoldali) Próba-fv: , z s x Kritikus érték: α,5 eseté z a - 1,96 és z f 1,96 Következtetés: z értéke az elutasítási tartomáyba esett, H 1 -et fogadjuk el, H -t elutasítjuk 5%-os szigifikacia szite 1 6
7 Elkövethetı hibák H hipotézist elfogadjuk elvetjük H hipotézis Igaz Helyes dötés Elsıfajú hiba Hamis Másodfajú hiba Helyes dötés Példa Egy TV képcsı típus átlagos élettartama a gyártó vállalat szerit ezer óra. Az élettartam közelítıleg ormáleloszlást követ. Egyszerő véletle mitavétellel kiválasztott 5 képcsı átlagos élettartama 19,4 ezer óra volt, az átlagtól való eltérés átlagosa 1, ezer óra. Állapítsa meg, va-e szigifikás külöbség a gyártó állítása és a megfigyelt élettartam között! (α,5) 14 7
8 16. Példa Egy személygépkocsifajta átlagos fogyasztása a gyártó vállalat szerit 7 liter/1 km EV mitavétellel kiválasztott 5 gépkocsi átlagos fogyasztása 7,5 volt, az átlagtól való eltérés átlagosa 1,8 liter / 1 km volt. A sokasági eloszlás közelítıleg ormálisak tekithetı. Állapítsa meg, va-e szigifikás külöbség a gyártó állítása és a téyleges fogyasztás között! (a,5) 15 Sokasági aráyra voatkozó próba Ha kismita, akkor : Biomiális eloszlás Ha elég agy a mita, és P és (1 P) em túl kicsi, akkor : z P p P ( 1 P ) Stad orm 16 8
9 A sokasági aráyra voatkozó próba a) Hiptozésisek b) A próbafüggvéy: H z c) Kritikus érték (tábl.-ból): P P H1 : : P P Vagy: P p P ( 1 P ) H : 1 P P H : 1 P P Vagy: d) Következtetés: Példa Egy új típusú TV készülékre voatkozóa a fejlesztık és techológusok elvárása, hogy a készülékek maximum 1%-a fog garaciális javításra szoruli. Az új típus 3 kisérleti darabjából 6 db-ot kellett garaciális idıszakba javítai. Elleırizze 5%-os szigifikacia szite azt a hipotézist, hogy az új típusál valóba 1% alatti a garaciális javítási aráy! 18 9
10 Egy mammut-cég dolgozóiból vett 4 fıs mitából 14 fı válaszolta, hogy doháyzik. Az országos átlag 31 %. 18. Példa Elleırizze 5%-os szigifikacia szite azt a hipotézist, hogy a) a cégál a doháyosok aráya megegyezik az országos átlaggal! b) a cégál a doháyosok aráya agyobb, mit az országos átlag! c) Nics-e elletmodásba a két eredméy? Példa Egy ember telepatikus képességét kell teszteli. Azt állítja, hogy megérzi, hogy a szomszéd szobába fehér vagy feketeruhás egyé va. A kísérletet 1-szor elvégezve 6-szor talált. a) Elfogadjuk-e %-os szigifikacia szite, hogy emberük redelkezik telepatikus képességgel? b) Elfogadjuk-e 5%-os szite? 1
11 . Példa Tesztelük egy pézérmét, szabályos-e -szor feldobtuk, 88-szor fej lett. Elfogadható-e az állítás, hogy szabályos az érme? 1 a) Hipotézisek: b) Próba-fv: A szóráségyzetre voatkozó próba meete A Khi-égyzet próba feltétele: a sokasági eloszlás ormális χ c) Kritikus érték (táblázatból): d) Következtetés: H : σ σ 1 H : H : 1 H : 1 ( 1) s σ χ krit Jobboldali α Baloldali: Kétoldali: Szabadságfok: -1 ( 1 α) ( 1 ) α és α valószíőséghez tartozó érték 11
12 Példa a szóráségyzet tesztelésére Igaz-e, hogy a testmagasság sokasági szórása 15 cm? Véletle mita, 1, s 14 cm. A testmagasság ormális eloszlású. a) Hipotézisek: b) Próba-fv: c) Kritikus érték (táblázatból): d) Következtetés: 3 Köszööm a figyelmüket! 4 1
7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés
7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció
Statisztikai programcsomagok
Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés
Hipotézisvizsgálat. A sokaság valamely paraméteréről állítunk valamit,
II. Hipotézisvizsgálat Lényege: A sokaság valamely paraméteréről állítunk valamit, majd az állításunk helyességét vizsgáljuk. A hipotézisvizsgálat eszköze: a statisztikai próba Menete: 1.Hipotézisek matematikai
18. Differenciálszámítás
8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke
1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója
Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle
A statisztika részei. Példa:
STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,
Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.
Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika
11. Matematikai statisztika
11. Matematikai statisztika 11.1. Alapfogalmak A statisztikai minta valamely valószínűségi változóra vonatkozó véges számú független kisérlet eredménye. Ez véges sok, azonos eloszlású valószínűségi változó
PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ. Írta Dr. Huzsvai László
PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ Írta Dr. Huzsvai László Debrece 2012 Tartalomjegyzék Bevezetés...1 Viszoyszámok...1 Középértékek (átlagok)...2 Szóródási mutatók...4 Idexek...7 Furfagos kérdések...8 Bevezetés
1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény
Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,
Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13
Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8
Kontingencia táblák. Khi-négyzet teszt. A nullhipotézis felállítása. Kapcsolatvizsgálat kategorikus változók között.
Kotigecia táblák. Khi-égyzet tet 1. Függetleségvizsgálat. Illekedésvizsgálat 3. Homogeitásvizsgálat Példa 1 em ő 8 75 13 Ismétlés: változók, mérési skálák típusai 48 49 97 76 14 jeles (5) jó (4) közepes
Hosszmérés finomtapintóval 2.
Mechatroika, Optika és Gépészeti Iformatika Taszék kiadva: 0.0.. Hosszmérés fiomtapitóval. A mérések helyszíe: D. épület 53-as terem. Az aktuális mérési segédletek a MOGI Taszék holapjá érhetők el, a www.mogi.bme.hu
Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
3.3 Fogaskerékhajtások
PTE, PMMK Stampfer M.: Gépelemek II / Mechaikus hajtások II / 7 / 3.3 Fogaskerékhajtások Jó tulajoságaikak köszöhetőe a fogaskerékhajtóművek a legelterjetebbek az összes mechaikus hajtóművek közül. A hajtás
TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorganizmusok számának meghatározása telepszámlálásos módszerrel
TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorgaizmusok számáak meghatározása telepszámlálásos módszerrel A telepszámlálásos módszerek esetébe a teyésztést szilárd táptalajo végezzük, így - szembe
Minőségirányítási rendszerek 8. előadás 2013.05.03.
Miőségiráyítási redszerek 8. előadás 2013.05.03. Miőségtartó szabályozás Elleőrző kártyák miősítéses jellemzőkre Két esete: A termékre voatkozó adat: - valamely jellemző alapjá megfelelő em megfelelő:
III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK
Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar
Statisztika, próbák Mérési hiba
Statisztika, próbák Mérési hiba ÁTLAG SZÓRÁS KICSI, NAGY MIN, MAX LIN.ILL LOG.ILL MEREDEKSÉG METSZ T.PROBA TREND NÖV Statisztikai függvények Statisztikailag fontos értékek Számtani átlag: ŷ= i y i /n Medián:
VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR
védőeryő az ismeretleek záporába VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR www.matektaitas.hu www.matektaitas.hu ifo@matektaitas.hu 1 védőeryő az ismeretleek záporába Kombiatorika Permutáció Ismétlés élküli permutáció
Variancia-analízis (folytatás)
Variancia-analízis (folytatás) 6. elıadás (11-12. lecke) Szórás-stabilizáló transzformációk (folyt.), t-próbák 11. lecke További variancia-stabilizáló transzformációk Egy-mintás t-próba Szórás-kiegyenlítı
Feladatok és megoldások a 6. heti eladshoz
Feladatok és megoldások a 6. heti eladshoz Építőkari Matematika A3 1. Ha E(X = 1 és D 2 (X = 5, határozzuk meg (a E[(2 + X 2 ], (b D 2 (4 + 3X értékét. 2. Legyenek X 1, X 2,... független azonos eloszlású
A matematikai statisztika elemei
A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................
Az új építőipari termelőiár-index részletes módszertani leírása
Az új építőipari termelőiár-idex részletes módszertai leírása. Előzméyek Az elmúlt évekbe az építőipari árstatisztikába egy új, a korábba haszálatos költségalapú áridextől eltérő termelői ár alapú idexmutató
A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke:
A PÉNZ IDİÉRTÉKE A péz értéke többek között az idı függvéye. Ha idıbe késıbb jutuk hozzá egy jövedelemhez, akkor elveszítjük aak lehetıségét, hogy az eltelt idıbe azt befektessük, azaz elesük aak hozamától,
STATISZTIKA. H 0 : Kefir zsírtartalma 3% hektolitertömege 80 kg. u = = = = Tesztelhetjük, hogy a valósz. konfidencia intervallum nagyságát t is.
Egymiá u-róba STATISZTIKA 0. Előad adá Köéérék-öehaolíó eek Teelhejük, hogy a való íűégi váloók éréke megegyeik-e e egy kokré érékkel. Megválahajuk a kofidecia iervallum agyágá i. H 0 : µ µ 0 Feléel: el:
I. FEJEZET BICIKLIHIÁNYBAN
I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük
ANALÓG-DIGITÁLIS ÉS DIGITÁLIS-ANALÓG ÁTALAKÍTÓK
F3 Bev. az elektroikába E, Kísérleti Fizika Taszék ANALÓG-IGITÁLIS ÉS IGITÁLIS-ANALÓG ÁTALAKÍTÓK Az A és A átalakítók feladata az aalóg és digitális áramkörök közötti kapcsolat megvalósítása. A folytoos
Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása
Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai
Illeszkedésvizsgálat χ 2 -próbával
Illeszkedésvizsgálat χ -próbával Szalay Krisztina 1. feladat (tiszta illeszkedésvizsgálat) Négy pénzérmét 0-szor feldobunk. A kapott gyakoriságok: fejek száma 0 1 3 4 Összes gyakoriság 5 35 67 41 1 0 Elfogadható-e
KVANTITATÍV MÓDSZEREK
KVANTITATÍV MÓDSZEREK Dr. Kövesi János Tóth Zsuzsanna Eszter 6 Tartalomjegyzék Kvantitatív módszerek. Valószínűségszámítási tételek. eltételes valószínűség. Események függetlensége.... 3.. eltételes valószínűség...
konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14.
Valószínűség, pontbecslés, konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14. Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra
Véletlenszám-generátorok
Véletlenszám-generátorok 1. Lineáris kongruencia generátor megvalósítása: (a) Készítsen lineáris kongruencia generátort az paraméterekkel, rnd_lcg néven. (b) Nyomtasson ki 20 értéket. legyen. (a, c, m,
Készségszint-mérés és - fejlesztés a matematika kompetencia területén
Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő
Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet
Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak
Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel
Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást
A logaritmus függvény bevezetése és alkalmazásai
Eötvös Loád Tudomáyegyetem Temészettudomáyi Ka A logaitmus függvéy bevezetése és alkalmazásai Szakdolgozat Készítette: Témavezető: Lebaov Dóa Mezei Istvá Adjuktus Matematika Bs Alkalmazott Aalízis és Matematikai
Kevei Péter. 2013. november 22.
Valószíűségelmélet feladatok Kevei Péter 2013. ovember 22. 1 Tartalomjegyzék 1. Mérhetőség 4 2. 0 1 törvéyek 12 3. Vektorváltozók 18 4. Véletle változók traszformáltjai 28 5. Várható érték 33 6. Karakterisztikus
Statisztika I. 6. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 6. előadás Előadó: Dr. Ertsey Imre GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE szorosan kapcsolódik a szóródás elemzéshez, elméleti
1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba?
Matematikai statisztika példák Matematikai statisztika példák Normális eloszlás 1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? 2. Majmok ébredését
Gyakorló feladatok Anyagmérnök hallgatók számára
Gyakorló feladatok Anyagmérnök hallgatók számára. feladat Egy külkereskedelmi vállalat 7 ezer üvegből álló gyümölcskonzerv szállítmányt exportál. A nettó töltősúly ellenőrzése céljából egy 9 elemű véletlen
A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html
Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter
Statisztikai módszerek alkalmazása az orvostudományban Szentesi Péter Az orvosi munkahipotézis ellenőrzése statisztikai módszerekkel munkahipotézis mérlegelés differenciáldiagnosztika mi lehet ez a más
Statisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
ő ő ő ő ű Ó ő ő ű ű ő ő Ó ő ő ő ő ő ő ű ő ő ű ű ő ő ű Ó ő ő ő Ó ő ű ő ő ő ű ű ű ő ő ő ő ő ő ő Ó ő ő ő ű ő ő ő ő ő ű ő ő Ó ő ő ű ő ő ő ő ő ő ő ű ű ő ő ő ű ű ő ű ő ő Ó Ó ő Ó Ó ő Ó ű ő ő ő ő ő ű ő ű ű ű ű
GAZDASÁGI MATEMATIKA 1. ANALÍZIS
SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY
1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x.
. Sugár Szarvas fgy., 86. o. S3. feladat Egy antikvárium könyvaukcióján árverésre került 9 könyv licitálási adatai alapján vizsgáljuk a könyvek kikiáltási és ún. leütési ára ezerft közötti sztochasztikus
7/2006. (V. 24.) TNM rendelet. az épületek energetikai jellemzıinek meghatározásáról
1. oldal 7/2006. (V. 24.) TNM rendelet az épületek energetikai jellemzıinek meghatározásáról Az épített környezet alakításáról és védelmérıl szóló 1997. évi LXXVIII. törvény 62. -a (2) bekezdésének h)
Matematikai és matematikai statisztikai alapismeretek
Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok
Ted, tudom, mondtad, hogy felrobban a fejed, ha még egy dologra kérlek, de.. Takarítás a hármason.
Ted, tudom, mondtad, hogy felrobban a fejed, ha még egy dologra kérlek, de.. Takarítás a hármason. Statisztika I. 4. előadás Kombinációs táblák elemzése http://bmf.hu/users/koczyl/statisztika1.htm Kóczy
1. Az absztrakt adattípus
. Az asztrakt adattípus Az iformatikáa az adat alapvető szerepet játszik. A számítógép, mit automata, adatokat gyűjt, tárol, dolgoz fel (alakít át) és továít. Mi adatak foguk tekitei mide olya iformációt,
Statisztika II. BSc. Gyakorló feladatok I. 2008. február
1) Egyik felsıoktatási intézmény oktatóitól megkérdezték, hogy milyen intézménytípust tartanának ideálisnak. A megkérdezettek megoszlása a két kérdésre (irányítás és az oktatók teljesítményének értékelése)
Konfidencia-intervallumok
Konfdenca-ntervallumok 1./ Egy 100 elemű mntából 9%-os bztonság nten kéített konfdenca ntervallum: 177,;179,18. Határozza meg a mnta átlagát és órását, feltételezve, hogy az egé sokaság normáls elolású
Elméleti összefoglalók dr. Kovács Péter
Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...
Statisztikai módszerek
Statisztikai módszerek A hibaelemzı módszereknél azt néztük, vannak-e kiugró, kritikus hibák, amelyek a szabályozás kivételei. Ezekkel foglalkozni kell; minıségavító szabályozásra van szükség. A statisztikai
II. A következtetési statisztika alapfogalmai
II. A következtetési statisztika alapfogalmai Tartalom Statisztikai következtetések A véletlen minta fogalma Pontbecslés és hibája Intervallumbecslés A hipotézisvizsgálat alapfogalmai A legegyszerűbb statisztikai
biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat
Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke
Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága
Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba
A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai
05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:
VII. Gyakorlat: Használhatósági határállapotok MSZ EN 1992 alapján Betonszerkezetek alakváltozása és repedéstágassága
VII. Gyakorlat: Használhatósági határállapotok MSZ EN 199 alapján Betonszerkezetek alakváltozása és repedéstágassága Készítették: Kovács Tamás és Völgyi István -1- Készítették: Kovács Tamás, Völgyi István
Villamos gépek tantárgy tételei
Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot
FELADATOK A KALKULUS C. TÁRGYHOZ
FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy
Matematikai statisztikai elemzések 5.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések. MSTE modul Kapcsolatvizsgálat: asszociáció vegyes kapcsolat korrelációszámítás. Varianciaanalízis
2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1
Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel
Mérések, hibák. 11. mérés. 1. Bevezető
11. méré Méréek, hibák 1. evezető laboratóriumi muka orá gyakra mérük külöböző fizikai meyiégeket. Ezeket a méréeket bármeyire ügyeek vagyuk i, bármeyire moder digitáli mérőezköz gombjait yomogatjuk i
A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,
l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f
Walltherm rendszer. Magyar termék. 5 év rendszergaranciával. Felületfûtés-hûtés Épületszerkezet-temperálás padlófûtés
Walltherm redszer 5 év redszergaraciával Felületfûtés-hûtés Épületszerkezet-temperálás padlófûtés Magyar termék WALLTHERM felületfûtés-hûtési redszer Egy fûtési- (hûtési) redszer kialakítása elôtt számtala
AJÁNLATKÉRÉSI DOKUMENTÁCIÓ
Kétegyháza Nagyközség Önkormányzata 5741-Kétegyháza, Fő tér 9. AJÁNLATKÉRÉSI DOKUMENTÁCIÓ Járdák felújítása Kétegyházán 2009. Tartalomjegyzék ajánlatkérési dokumentációhoz Útmutató Ajánlattevőknek... 3
PÁLYÁZATI FELHÍVÁS a. Társadalmi Megújulás Operatív Program keretében. Tudományos eredmények elismerése és disszeminációja támogatására
PÁLYÁZATI FELHÍVÁS a Társadalmi Megújulás Operatív Program keretében Tudományos eredmények elismerése és disszeminációja támogatására Kódszám: TÁMOP-4.2.3/08/1 A projektek az Európai Unió támogatásával,
Ingatlanfinanszírozás és befektetés
Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:
54 543 01 0000 00 00 Építőanyag-ipari technikus Építőanyag-ipari technikus
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Hajdúhadház Városi Önkormányzat Ügyrendi, Etikai és Közrendvédelmi Bizottsága Elnökétől
Hajdúhadház Városi Önkormányzat Ügyrendi, Etikai és Közrendvédelmi Bizottsága Elnökétől Előterjesztés Hajdúhadház Városi Önkormányzat Képviselő testületének 2012. április 26-án tartandó ülésére Tisztelt
GAZDASÁGI STATISZTIKA
GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT I. rész: Az alábbi 4 feladat megoldása kötelező volt! 1) Egy idegen nyelvekkel kapcsolatos online kérdőívet hetven SG-s töltött ki. Tudja, hogy minden
MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia
MINİSÉGSZABÁLYOZÁS A GÉPIPARBAN Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia ISO 9000:2008 A STATISZTIKAI MÓDSZEREK HASZNÁLATÁRÓL A statisztikai módszerek
VÉLETLENÍTETT ALGORITMUSOK. 1.ea.
VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.
Monte Carlo módszerek
25 KULLANCSLÁRVA vizsgálata: Erős hideg hatására nézzük a túlélést. Eredmény: 6 elpusztult, 9 élve maradt Hipotézis: a pajzs hosszának variabilitása egy általános genetikai variabilitást tükröz, míg az
dinamikus tömörségméréssel Útügyi Napok Eger 2006.09.13-15. Subert
Hatékony minőség-ellenőrzés dinamikus tömörségméréssel Útügyi Napok Eger 2006.09.13-15. Subert Hagyományos tömörség-ellenőrző módszerek MSZ 15320 ÚT 2-3.103 MSZ 14043-7 Földművek tömörségének meghatározása
2013.03.11. Az SPC alapjai. Az SPC alapjai SPC 5. 5. Az SPC (Statistic Process Control) módszer. Dr. Illés Balázs
SPC 5 5. Az SPC (Statistic Process Control) módszer Dr. Illés Balázs BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ELEKTRONIKAI TECHNOLÓGIA TANSZÉK Az SPC alapjai SPC (Statistical Process Controll) =
Ingatlanok értékelése hozamszámítással 1-2. 1
Piaci érték: Igatlaok értékelése hozamszámítással 1-2. 1 Elıadás Igatlavagyo-értékelı és közvetítı Szakképzés, Igatlakezelı Szakképzés A-. modul Az az ár, amelyért az igatla méltá- yosa,, magájogi szerzıdés
Példa: 5 = = negatív egész kitevő esete: x =, ha x 0
Ha mást em moduk, szám alatt az alábbiakba, midig alós számot értük. Műeletek összeadás: Példa: ++5 tagok: amiket összeaduk, az előző éldába a, az és az 5 szorzás: Példa: 5 téezők: amiket összeszorzuk,
A GYİRI TÖBBCÉLÚ KISTÉRSÉGI TÁRSULÁS
A GYİRI TÖBBCÉLÚ KISTÉRSÉGI TÁRSULÁS KÖZOKTATÁSI INTÉZKEDÉSI TERVÉNEK FELÜLVIZSGÁLATA KÉSZÍTETTE: Széles Imre, pedagógiai elıadó 2010 TARTALOMJEGYZÉK I. BEVEZETİ 3 II. A TÖBBCÉLÚ KISTÉRSÉGI TÁRSULÁS BEMUTATÁSA
Energetikai minőségtanúsítvány összesítő
Energetikai minőségtanúsítvány 1 Energetikai minőségtanúsítvány összesítő Épület Épületrész (lakás) Megrendelő Polgármesteri Hivatal 3350. Kál szent István tér 2 Teljes épület Kál Nagyközség Önkormányzata
Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz
MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.
Szerkezet típusok: Kétlakásos lakóépület. Megrendelő: Tóth István. parketta talajon Típusa: padló (talajra fektetett ISO 13370)
Épület: Megrendelő: Tervező: Dátum: Kétlakásos lakóépület Erdélyi Enikő Tóth István 2010. október Szerkezet típusok: µ parketta talajon Típusa: padló (talajra fektetett ISO 13370) y méret: 1.0 m tervi
A regionális fejlesztésért és felzárkóztatásért felelıs. tárca nélküli miniszter 7./2006. (V. 24.) TNM. r e n d e l e t e
A regionális fejlesztésért és felzárkóztatásért felelıs tárca nélküli miniszter 7./2006. (V. 24.) TNM r e n d e l e t e az épületek energetikai jellemzıinek meghatározásáról Az épített környezet alakításáról
Biztosítási ügynökök teljesítményének modellezése
Eötvös Loránd Tudományegyetem Természettudományi Kar Budapest Corvinus Egyetem Közgazdaságtudományi Kar Biztosítási ügynökök teljesítményének modellezése Szakdolgozat Írta: Balogh Teréz Biztosítási és
Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit
Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.
TANTÁRGYI ÚTMUTATÓ. Statisztika 2. normál kurzusok számára
II. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 2. normál kurzusok számára TÁVOKTATÁS Tanév 2014/2015 I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 2. Tanszék: Módszertani Tantárgyfelelős
MATEMATIKA 1-12. ÉVFOLYAM
MATEMATIKA 1-12. ÉVFOLYAM SZERZŐK: Veppert Károlyné, Ádám Imréné, Heibl Sándorné, Rimainé Sz. Julianna, Kelemen Ildikó, Antalfiné Kutyifa Zsuzsanna, Grószné Havasi Rózsa 1 1-2. ÉVFOLYAM Gondolkodási, megismerési
Statisztika 1. zárthelyi dolgozat március 18.
Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása
2.1 sz. melléklet. Általános Szerződési és Felhasználási feltételek
2.1 sz. melléklet Általános Szerződési és Felhasználási feltételek 1. Bevezetés 2. Termék információ 3. Árak 4. Rendelés 5. Elállás a megrendeléstől 6. Vételár megfizetése 7. Szállítás 8. Teljesítési késedelem
3.1.1. Rugalmas elektronszórás; Recoil- és Doppler-effektus megfigyelése
3.1.1. Rugalmas elektroszórás 45 3.1.1. Rugalmas elektroszórás; Recoil- és Doppler-effektus megfigyelése Aray, ikkel, szilícium és grafit mitákról rugalmasa visszaszórt elektrook eergiaeloszlását mértem
UJJLENYOMATOK FELISMERÉSE
Babeş Bolyai Tudomáyegyetem Matematia Iformatia ar Iformatia sza UJJLENYOMATOK FELISMERÉSE Uleyomatépe feldolgozása, osztályozás euroális hálóal, azoosítási célú összehasolítás Vezetőtaár: Dr. Soós Aa
SZAKDOLGOZAT. Takács László
SZAKDOLGOZAT Takács László 2012 SZEGEDI TUDOMÁNYEGYETEM Természettudományi és Informatikai Kar Geometria Tanszék Matematika Bsc_LAK SZAKDOLGOZAT Kísérlettervezés latin négyzetek felhasználásával Készítette:
Mikrohullámok vizsgálata. x o
Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia
Adatlap_energiafelhasználási_beszámoló_OSAP_1335a_2015 - Madách Színház Nonprofit Kft. (21974593) - 2015-01-01 Adatszolgáltatásra vonatkozó adatai
Adatszolgáltatásra vonatkozó adatai Adatszolgáltatás címe ENERGIAFELHASZNÁLÁSI BESZÁMOLÓ Adatszolgáltatás száma OSAP 1335/A Adatszolgáltatás időszaka 2015 (éves) Az adatszolgáltatás a statisztikáról szóló
Felhasználói útmutató
Felhasználói útmutató Az értéktári rendszercseréhez kapcsolódó tesztidőszak alatt használatos kapcsolattartó felülethez 2015. április 3. Tisztelt Ügyfeleink! Az indiai Tata Consultancy Services által fejlesztett
11. A talaj víz-, hő- és levegőgazdálkodása. Dr. Varga Csaba
11. A talaj víz-, hő- és levegőgazdálkodása Dr. Varga Csaba A talaj vízforgalmának jellemzői A vízháztartás típusát a talajszelvényre ható input és output elemek számszerű értéke, s egymáshoz viszonyított