Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel"

Átírás

1 Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást is adu; így lehetőségü yíli eze szamai-módszertai összehasolítására. A övetező játéoba ette játszaa egymás elle. A ezdő játéost jelöljü A-val, a másodiat B-vel feladat: Egy urába darab é és darab iros golyó va ( + = ). Kette felváltva húza véletleszerűe egy-egy golyót úgy, hogy miutá megézté a golyó szíét, visszateszi az urába. Az a játéos győz, ai először húz iros golyót. Meora eséllyel yer A, illetve B? Első megoldás (mértai sor): Jeletse P(i) az i eseméy valószíűségét. Eor P(A yer) és P(B yer) a érdés. P(A yer) = P(A yer vagy az első, vagy a harmadi, vagy az ötödi stb. léésbe (és özbe B em yer)). Alalmazhatju az összeadási és szorzási szabályt, ee segítségével 2 4 formailag a P ( A yer) = egyeletet aju. A végtele mértai sor összege P( A yer) =, tehát az A játéos valószíűséggel yer. + + Másodi megoldás (Marov-láco): Az előző fejezet alajá megadhatju a robléma folyamatábráját: / / A A yer / / B B yer = Hogya atu ezt az ábrát? jeleti a startállaotot, amior A húz. Az A játéos vagy iros golyót húz valószíűséggel, amior is eljutu az ábrá A-val jelölt állaotba (eor A győzött), vagy é golyót húz valószíűséggel, eor jutu a állaotba. Ie folytatva megit ét 7/55

2 Orosz Gyula: Marov-láco eset lehetséges: vagy iros golyót húz B (eor a B állaotba jutu, amior is B győz), vagy é golyót ( állaotba jutu - a játé folytatódi). Ezzel a godolatmeettel a gráf végtele hosszú lee. Észrevehetjü azoba, hogy a játé szemotjából az és a állaot em ülöbözi léyegese egymástól: midettőbe a ezdő A játéos övetezi húzásra -be úgy, mitha eddig em törtét vola semmi a játéba. Alalmazhatju tehát a egyszerűsítést (összevoást), amellyel a lác végessé tehető. Az ábrá feltütettü az egyes ágahoz redelt átmeeti valószíűségeet. Eze segítségével az előző fejezetbe leírt módo meghatározhatju a fagráf egyes útjaihoz tartozó valószíűségeet. egye s aa a valószíűsége, hogy A yer az állaotból, hasolóa legye P(A yer -ből) = c. Eor az ábra alajá felírható egyeletredszer: s = 1+ c, c = 0 + s. Az egyelete az összeadási és szorzási szabály egyszerű alalmazásai. azt jeleti, hogy A az állaotból - vagy valószíűséggel iros golyót húz, tehát rögtö (1 valószíűséggel) yer, - vagy valószíűséggel é golyót húz, és a továbbiaba c valószíűséggel yer, a állaotból folytatva a játéot. Hasolóa matematiai tartalma: a B játéos a állaotból - vagy valószíűséggel iros golyót húz, tehát rögtö veszít A; - vagy valószíűséggel é golyót húz, amior is eljutu a állaotba, és a továbbiaba s valószíűséggel yer A a állaotból. Az egyeletredszer megoldása s =. + (Melléeredméy: c = +. ) Megjegyzése: 1. A aott ifejezés em szimmetrius, < miatt s midig agyobb, mit 0,5; vagyis a ezdő játéosa midig előyös ez a sorsolás. 2. A játéba a dötetle valószíűsége, ami ullához tart, ha N tart végtelehez (ez egyébét a cibe tárgyalt legtöbb játéra igaz lesz). Így a ezdőállaotba B győzelmée a valószíűsége 1 P(A yer) = (1 s) =. Ez az érté természetese + megegyezi az egyeletredszer megoldásaor aott P() = c értéel, hisze az állaotba A, valamit a állaotba B szeree szimmetrius. Ez utóbbi észrevétel segítségével egy harmadi tíusmegoldást is adhatu. N 8/55

3 Orosz Gyula: Marov-láco 3. Harmadi megoldás ( logiai reurzió ): Mivel a dötetle valószíűsége 0, ha az A játéos s valószíűséggel yer a iidulási állaotból, aor ie a B játéos yerési esélye (1 s). Eor vagy valószíűséggel A yer, vagy valószíűséggel olya állaotba erül a játé, amelyet úgy teithetü, mitha B lee a ezdő egy most iduló játéba. Tehát ie már B yer s valószíűséggel, A yerési esélye edig eor (1 s). Az ez alajá felírható egyelet s = + ( 1 s), ee megoldása s =. + Ezt a módszert amelyet házi haszálatra logiai reurzióa eveztü el a ésőbbiebe is alalmazi fogju. éyege, hogy valamely változóra ömagával hivatozu. A feti egyeletbe a hivatozás özvetleül törtét; ésőbb esetleg előfordulhat, hogy a hivatozás több léés mélységű lesz. 4. Például a = = 1 ( = 2) választással az érmedobálási modellt aju. Vagyis ha ét játéos felváltva egy szabályos ézérmét dobál, s az győz, aie először sierül fejet 2 1 dobia, aor az első játéos =, a másodi játéos edig valószíűséggel yer feladat: Két játéos felváltva dob fel egy dobóocát. Az a játéos győz, ai először tud hatost dobi. Meora valószíűséggel yere az egyes játéoso? Megoldás: A = 1, = 5 ( = 6) választással a 2.1. feladat seciális esetét aju, tehát s = 11 6 valószíűséggel győz A, 11 5 valószíűséggel edig B feladat: A 2.1. játéot ayiba módosítju, hogy az A játéos győzelméhez a iros golyót étszer ell ihúzia, míg B-e továbbra is elég egy iros húzás a győzelemhez. Meora eséllyel yer most A, illetve B? Megoldás: Készítsü el a játé folyamatábráját! / / / / / / B yer 1 B yer Most is sierül egyszerűsítéseet végezü, fel tudju haszáli a 2.1. feladat eredméyét. 9/55

4 Orosz Gyula: Marov-láco A startállaotból valószíűséggel a állaotba jutu (eor A már húzott egy iros golyót). Ie vagy győz B valószíűséggel, vagy valószíűséggel az 1 állaotba jut a játé, ami megegyezi a 2.1. játé ezdőállaotával; ugyais eor A vagy B özül az a játéos győz, ai előbb húz iros golyót. Ha a startállaotból valószíűséggel é golyót húz A, aor a állaotba jutu. Ie vagy győz B, vagy - é golyó húzása eseté - mide ezdődi elölről, az ezdőállaotba erül a játé. Jelöljü s-sel az A játéos győzelmée a valószíűségét. A 2.1. feladat jelöléseit és eredméyét felhaszálva a felírható egyeletredszer: s = c + d, c = s, 1 (3) d = s, (4) s1 =. + játéos. Az egyeletredszer megoldása s = eora valószíűséggel győz a ezdő ( ), 2 + A övetező feladatba a folyamato egy mási jellemzőjét, az átlagos hosszuat határozzu meg feladat: Átlagosa háy húzásig tart a 2.1. játé? Első megoldási lehetőség: A húzáso számáa várható értée a érdés. A játé valószíűséggel 1 léésbe véget ér a iros golyó húzásával. 2 léés hosszú aor lehet a játé, ha előbb egy é, majd egy iros golyót húzu; ee a valószíűsége. 3 léés hosszú a játé, ha 2 é és 1 iros golyó húzása törtéi, ee a valószíűsége 2. Általába a játé N léésbe ér véget, ha (N 1) é és 1 iros golyó húzása törtéi, s 1 N ee a valószíűsége. A várható érté iszámolása eze utá úgy törtéhet, hogy az egyes valószíűségeet szorozzu a hozzáju tartozó húzásszámoal, s az így aott 10/55

5 Orosz Gyula: Marov-láco tagoat összegezzü. A defiíciót alalmazva az átlagos húzásszám iszámításához tehát 2 az = sor összegét ellee meghatározi. Másodi megoldás: A Marov-láco segítségével elerüljü a várható érté fogalmát. A játé folyamatábrája alajá egyeletredszert írhatu fel a játé befejezésig szüséges húzáso átlagos számára. / / A A yer / / B B yer = Jeletse i a befejezésig szüséges húzáso átlagos számát, ha a játé az i állaotba va. Eor felírható az alábbi egyeletredszer: () 1 = 1+ ) ( 2) = 1+ )., Az egyelet úgy értelmezhető, hogy a ezdőállaotból iidulva a befejezésig szüséges húzáso átlagos számát a övetező módo ahatju meg: vagy valószíűséggel húzu összese egy golyót, vagy valószíűséggel a állaotba erülü; vagyis egyet húzu, lusz még ayi húzás törtéi, ameyit a állaotból átlagosa végzü a továbbiaba a játé folyamá (ezt jelöltü c -vel). A egyelet értelmezése: a állaotból iidulva a befejezésig szüséges húzáso átlagos száma vagy valószíűséggel összese egy golyó; vagy valószíűséggel egyet húzu, lusz még ayi húzás törtéi, ameyit a továbbiaba az állaotból átlagosa végzü (ezt jelöltü -sel). Az egyelet átalaítás utá formailag az = 1 + alaba is írható, jeletése eor hasolóa értelmezhető: a ezdőállaotból midig húzu 1-et, valamit 11/55

6 Orosz Gyula: Marov-láco valószíűséggel még ayi további húzás törtéi, ameyi átlagosa a állaotból szüséges a játé végéig. (Hasolóa alaítható át is.) Az egyeletredszer megoldása =, átlagosa eyi húzást végzü egy játé alatt. Megjegyzése: 1. Érdemes tudatosítai, hogy megatu az első megoldás végtele soráa összegét. 2. Az érmedobálási modellbe ( = = 1, = 2) az átlagos dobásszám 2; a dobóocamodellbe ( = 5, = 1, = 6) az átlagos dobásszám Határozzu meg -t: az = 1 + egyeletből =, vagyis =. Hát ersze: a állaot az átlagos léésszám teitetébe egyeértéű -sel, hisze a játé em tudja, hogy az A vagy a B játéos övetezi soro. 4. Harmadi megoldás ( logiai reurzió ): Ha a megoldás első lééseét felismerjü az = acsolatot, özvetle összefüggést írhatu fel az átlagos léésszámra: = 1+. áthatju, hogy emcsa a valószíűségere ( megjegyzés), haem a léésszámora is felírhatu olya egyeletet, amelybe a változóra ömagával hivatozu. 5. Ha a diáo em találozta még a várható érté fogalmával, roblémát jelethet számura, hogy az összeadási és szorzási szabályt valószíűségere modtu i, ezebe az egyeletebe edig a léésszámo (tehát más dimeziójú meyisége) szereele. Itt tulajdoée a véletle számo azo tulajdoságát haszálju fel, hogy összegü várható értée megegyezi a várható értéei összegével. Taasztalatai szerit ez a ehéz godolat szemléletese világos a diáo számára; a mély tétel bizoyítása megtalálható éldául a [6] taöyvbe. 6. A további feladato megoldása sorá igyeszü elerüli a várható érté fogalmát, illetve a várható érté defiíció szeriti iszámolását; s erre hatéoya alalmazhatju a feti trüöt, az egyeletredszer módszerét. Mivel tehát ezt a módszert a ésőbbiebe is gyara haszálju, fotos, hogy a diáo valóba megértsé, s e csa automatiusa alalmazzá feladat: Átlagosa háy húzásig tart a 2.3. játé? Megoldás: Az előző feladat megoldásához hasolóa a folyamatábra alajá felírju a léésszámora (a húzáso számára) voatozó egyeletredszert. 12/55

7 Orosz Gyula: Marov-láco / / / / / / B yer 1 B yer Jeletse i a befejezésig szüséges húzáso átlagos számát, ha a játé az i állaotba va (továbbá 1 jeleti az 1 állaotból szüséges húzáso számát). Eor: = (1 + ) + ), = 1+ 1 ), (3) = 1+ ). Az egyelete redezett alaja: = 1+ +, = 1+ 1, (3) = 1+. Felhaszálhatju az előző feladat megoldása alajá, hogy 1 =. -ből = ( = 1 ) adódi. Így va: ha már törtét egy iros húzás ( állaot), aor a továbbiaba az a játéos yer, ai először húz iros golyót; s ehhez átlagosa 1 húzásra va szüség ből és (3)-ból = = Ie látható, hogy a léésszám + + agyobb, mit A orét = 1, = 1 ( = 2) értéeel (érmedobálás) = 3,33; a dobóocáa megfelelő = 1, = 5 ( = 6) értéeel = 9, /55

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

A teveszabály és alkalmazásai

A teveszabály és alkalmazásai A teveszabály és alalmazásai Tuzso Zoltá, Széelyudvarhely Godolá-e valai, hogy a matematiáa lehete-e valami öze a tevéhez? Ha em aor a továbbiaba meggyzzü errl, mégpedig arról, hogy a matematiába ige is

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

3.3 Fogaskerékhajtások

3.3 Fogaskerékhajtások PTE, PMMK Stampfer M.: Gépelemek II / Mechaikus hajtások II / 7 / 3.3 Fogaskerékhajtások Jó tulajoságaikak köszöhetőe a fogaskerékhajtóművek a legelterjetebbek az összes mechaikus hajtóművek közül. A hajtás

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

FELADATOK a Bevezetés a matematikába I tárgyhoz

FELADATOK a Bevezetés a matematikába I tárgyhoz FELADATOK a Bevezetés a matematiába I tárgyhoz a számítástechia taár főisolai és a programozó matematius szao számára 2004 ovember 4 FIGYELEM: a számtech szaosoa csa a övetező feladato ellee: 2,6,7,8,9-13,16-25,27,31-33

Részletesebben

VI.Kombinatorika. Permutációk, variációk, kombinációk

VI.Kombinatorika. Permutációk, variációk, kombinációk VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti

Részletesebben

Hosszmérés finomtapintóval 2.

Hosszmérés finomtapintóval 2. Mechatroika, Optika és Gépészeti Iformatika Taszék kiadva: 0.0.. Hosszmérés fiomtapitóval. A mérések helyszíe: D. épület 53-as terem. Az aktuális mérési segédletek a MOGI Taszék holapjá érhetők el, a www.mogi.bme.hu

Részletesebben

Távközlő hálózatok és szolgáltatások Kapcsolástechnika

Távközlő hálózatok és szolgáltatások Kapcsolástechnika Távözlő hálózato és szolgáltatáso Kapcsolástechia émeth Krisztiá BME TMIT 015. ot. 1-8. A tárgy felépítése 1. Bevezetés. IP hálózato elérése távözlő és ábel-tv hálózatoo 3. VoIP, beszédódoló 4. Kapcsolástechia

Részletesebben

é ö é Ö é ü é é ö ö ö ü é é ö ú ö é é é Ő ö é ü é ö é é ü é é ü é é é ű é ö é é é é é é é ö ö í é ü é ö ü ö ö é í é é é ö ü é é é é ü ö é é é é é é é é é é é é é é é ö é Í ö í ö é Í í ö é Í é í é é é é

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

6. Bizonyítási módszerek

6. Bizonyítási módszerek 6. Bizonyítási módszere I. Feladato. Egy 00 00 -as táblázat minden mezőjébe beírju az,, 3 számo valamelyiét és iszámítju soronént is, oszloponént is, és a ét átlóban is az ott lévő 00-00 szám öszszegét.

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t.

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t. Ászpóke csapat Kalló Beát, Nagy Baló Adás Nagy Jáos, éges Máto Fazekas tábo 008. Igaz-e, hogy ha az f, g: Q Q függvéyek szigoúa ooto őek és étékkészletük a teljes Q, akko az f g függvéy étékkészlete is

Részletesebben

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA 9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.

Részletesebben

í ö í í ú ű í í í ú í ű í Ü ö ö ö ü ö ö ö í ö ö ö ö Ö Á ö ö É ö ö ú ú ö ö ú ö í Á Á ö Ü Ú í ÁÁ ö í ö í í ú ű í ö ö í ú É í ű í ö ö É í í ű í ű í É í í ü ű ü ű í Á Á í ü í ü í ü ö ű ö É ü É ú Á Ó í í í

Részletesebben

Ö ü ö ü Ö Ö ü ú ó ü ö ö Ö ó Ö ö ú ö ó ö ö ó ö ö ö í í ö ö ü ü ö í ü ö ö í ö í ó ü ö ö í ü í ö í ü ú ü ö Ö ü ö ű ó í ó ó ó ö í ü ó ó ó ö ö ó ö í ó ü ó ó ö ö ü ó ö ö ó ó ó ü ü ó ó ö ö ü í ö ű ö ű ö ö ű í

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

I. FEJEZET BICIKLIHIÁNYBAN

I. FEJEZET BICIKLIHIÁNYBAN I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük

Részletesebben

MISKOLCI EGYETEM GÉ PÉ SZMÉ RNÖ KI KAR Szerszámgépek Tanszéke FORGÁ CSOLÓ SZERSZÁ MGÉ PEK FOKOZATOS FŐ HAJTÓ MŰ VEI. Oktatá si segédlet

MISKOLCI EGYETEM GÉ PÉ SZMÉ RNÖ KI KAR Szerszámgépek Tanszéke FORGÁ CSOLÓ SZERSZÁ MGÉ PEK FOKOZATOS FŐ HAJTÓ MŰ VEI. Oktatá si segédlet MISKOLCI EGYETEM GÉ PÉ SZMÉ RNÖ KI KAR Sersámgépe Tasée FORGÁ CSOLÓ SZERSZÁ MGÉ PEK FOKOZATOS FŐ HAJTÓ MŰ VEI Otatá si segédlet Misolc, 00 PDF created with FiePrit pdffactory trial versio http://www.fieprit.com

Részletesebben

Tranziens káosz nyitott biliárdasztalokon

Tranziens káosz nyitott biliárdasztalokon Eötvös Lorád Tudomáyegyetem Természettudomáyi kar Vicze Gergely Trazies káosz yitott biliárdasztaloko Msc szakdolgozat Témavezető: Tél Tamás, egyetemi taár Elméleti Fizikai Taszék Budapest, 2012 1 Tartalom

Részletesebben

Mérések, hibák. 11. mérés. 1. Bevezető

Mérések, hibák. 11. mérés. 1. Bevezető 11. méré Méréek, hibák 1. evezető laboratóriumi muka orá gyakra mérük külöböző fizikai meyiégeket. Ezeket a méréeket bármeyire ügyeek vagyuk i, bármeyire moder digitáli mérőezköz gombjait yomogatjuk i

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

6. MÉRÉS ASZINKRON GÉPEK

6. MÉRÉS ASZINKRON GÉPEK 6. MÉRÉS ASZINKRON GÉPEK A techikai fejlettég mai zívoalá az azikro motor a legelterjedtebb villamo gép, amely a villamo eergiából mechaikai eergiát (forgó mozgát) állít elő. Térhódítáát a háromfáziú váltakozó

Részletesebben

A HŐMÉRSÉKLETI SUGÁRZÁS

A HŐMÉRSÉKLETI SUGÁRZÁS A HŐMÉRSÉKLETI SUGÁRZÁS 1. Törtéeti összefoglaló A tizekilecedik század végé a fizikát lezárt tudomáyak tartották. A sikeres Newto-i mechaika és gravitációs elmélet alapjá a Napredszer bolygóiak mozgása

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

Ftéstechnika I. Példatár

Ftéstechnika I. Példatár éecha I. Példaár 8 BME Épülegépéze azé éecha I. példaár aralojegyzé. Ha özeoglaló... 3.. Hvezeé...3.. Háadá....3. Hugárzá...6.. Háoáá....5. Szgeel axál hleadáához arozó ül áér....6. Bordázo vezeé.... Sugárzá...5.

Részletesebben

Á É Á É Ü É é í ü ü ü é é ö é é é é ö é ó ó é é í ó é é é é ü é ó ó éó ó ó é é é é é é é í ó Ü ö ö ű é ű í é ó é ó é ü é í ü é ü ü é é í ö ö é ü é í ü ü é é é ü ö é ó ó ö í ó é é ü ö é ö í é é é é ü é

Részletesebben

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise Nagyméretű emlieáris közúti közlekedési hálózatok speciális aalízise Dr. Péter Tamás* *Budapesti Műszaki és Gazdaságtudomáyi Egyetem Közlekedéautomatikai Taszék (tel.: +36--46303; e-mail: peter.tamas@mail.bme.hu

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

A logaritmus függvény bevezetése és alkalmazásai

A logaritmus függvény bevezetése és alkalmazásai Eötvös Loád Tudomáyegyetem Temészettudomáyi Ka A logaitmus függvéy bevezetése és alkalmazásai Szakdolgozat Készítette: Témavezető: Lebaov Dóa Mezei Istvá Adjuktus Matematika Bs Alkalmazott Aalízis és Matematikai

Részletesebben

Naprakész jogszabály a CompLex Kiadó jogi adatbázisából. A jel a legutoljára megváltozott bekezdést jelöli. 54/2001. (XII. 27.

Naprakész jogszabály a CompLex Kiadó jogi adatbázisából. A jel a legutoljára megváltozott bekezdést jelöli. 54/2001. (XII. 27. 1. oldal, összesen: 6 Naprakész jogszabály a CompLex Kiadó jogi adatbázisából. A jel a legutoljára megváltozott bekezdést jelöli. 54/2001. (XII. 27.) PM rendelet a biztosítók kötelezı gépjármő-felelısségbiztosítási

Részletesebben

3.1.1. Rugalmas elektronszórás; Recoil- és Doppler-effektus megfigyelése

3.1.1. Rugalmas elektronszórás; Recoil- és Doppler-effektus megfigyelése 3.1.1. Rugalmas elektroszórás 45 3.1.1. Rugalmas elektroszórás; Recoil- és Doppler-effektus megfigyelése Aray, ikkel, szilícium és grafit mitákról rugalmasa visszaszórt elektrook eergiaeloszlását mértem

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak Számelméleti alapfogalma A maradéos osztás tétele Legye a és b ét természetes szám, b, és a>b Aor egyértelme léteze q és r természetes számo, amelyere igaz: a b q r, r b Megevezés: a osztadó b osztó q

Részletesebben

CIVILEK A NYOMTATOTT SAJTÓBAN ÉRDEKÉRVÉNYESÍTÉS A MÉDIÁBAN 1

CIVILEK A NYOMTATOTT SAJTÓBAN ÉRDEKÉRVÉNYESÍTÉS A MÉDIÁBAN 1 csz12 elm filosz.qxd 2007. 06. 13. 14:53 Page 111 CIVILEK A NYOMTATOTT SAJTÓBAN ÉRDEKÉRVÉNYESÍTÉS A MÉDIÁBAN 1 Beszedics Otília Bevezetõ A 2003. augusztus 1. és 2007. február 28. közötti idõszakba a GPS

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

Digitál-analóg átalakítók (D/A konverterek)

Digitál-analóg átalakítók (D/A konverterek) 1.Laboratóriumi gyaorlat Digitál-analóg átalaító (D/A onvertere) 1. A gyaorlat célja Digitál-analóg onvertere szerezeti felépítése, műödése, egy négy bites DAC araterisztiájána felrajzolása, valamint az

Részletesebben

Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév

Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév Sersámgépe 5. előadás. Márcis. Sersámg mgépe 5. előad adás Misolc - Egyetemváros /.félév Sersámgépe 5. előadás. Márcis. A sabályohatósági tartomáy övelésée módserei Előetes megfotoláso: S mi mi M S φ,

Részletesebben

INFORMATIKA 1-4. évfolyam

INFORMATIKA 1-4. évfolyam INFORMATIKA 1-4. évfolyam Célok - A számítógépes munkaszabályainak és a legfontosabb balesetvédelmi előírások megismerése. - A számítógép és perifériáinak kezelési tudnivalóinak megismerése. - Az életkoruknak

Részletesebben

A hidegzömítés alapesetei és geometriai viszonyai a 4.6. ábrán láthatók. 4.6. ábra A hidegzömítés alapesetei, zömítés (l/d) viszonyai

A hidegzömítés alapesetei és geometriai viszonyai a 4.6. ábrán láthatók. 4.6. ábra A hidegzömítés alapesetei, zömítés (l/d) viszonyai Animáció - Hiegzömítés Ismételje át a zömítés tanult jellemzőit! Gyűjtse i és tanulmányozza a hiegzömítés alapeseteit! Rajzolja le a hiegzömítés alapeseteit! Jegyezze meg a megengeett zömítési viszony

Részletesebben

Sorbanállási modellek

Sorbanállási modellek VIII. előadás Sorbaállási modellek Sorbaállás: A sorbaállás, a várakozás általáos probléma közlekedés, vásárlás, takolás, étterem, javításra várás, stb. Eze feladatok elmélete és gyakorlata a matematikai

Részletesebben

UJJLENYOMATOK FELISMERÉSE

UJJLENYOMATOK FELISMERÉSE Babeş Bolyai Tudomáyegyetem Matematia Iformatia ar Iformatia sza UJJLENYOMATOK FELISMERÉSE Uleyomatépe feldolgozása, osztályozás euroális hálóal, azoosítási célú összehasolítás Vezetőtaár: Dr. Soós Aa

Részletesebben

Hálózati transzformátorok méretezése

Hálózati transzformátorok méretezése KÁLMÁN Telefogyár ISTVÁN Hálózati traszformátorok méretezése ETO 62.34.2.00.2 dolgozat célja olya számítási eljárás megadása, amelyek segítségével gyorsa és a gyakorlat igéyeit kielégítő potossággal lehet

Részletesebben

1. Az absztrakt adattípus

1. Az absztrakt adattípus . Az asztrakt adattípus Az iformatikáa az adat alapvető szerepet játszik. A számítógép, mit automata, adatokat gyűjt, tárol, dolgoz fel (alakít át) és továít. Mi adatak foguk tekitei mide olya iformációt,

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben

Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü

Részletesebben

Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó

Részletesebben

É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü

Részletesebben

ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü

Részletesebben

ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü

Részletesebben

VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL

VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL Surányi János Farey törte mate.fazeas.u Surányi János VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL FAREY-TÖRTEK. Egy a alós számot racionális számoal, azaz törteel aarun megözelíteni. A törteet az alábbiaban mindig

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

É Ü ö Ü ú Ú ű Ó Ó ű ö Ó Ó ú ű Ü Ö Ó Ó ö Ó Ő ű Ó Ó ú Ü Ü Ó Ó Ó Ü Ó Í Í ö ö ö ö ö ú ú ö ű ú ö ö ö ú ö ú ű ö ö ű ö ö ö ű ö ö ö ú ö ö ú ö ö ö ö ö ú ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ö ö Í ö Ö ö ú ö ö ö ö Ó Í

Részletesebben

ü ő ő ü ő ő ö ö ő ö í ü ő í ö ö í ő ö ő ű ú ő í ü ő ö ő Í ö ö ő ö ö ő ő ö ő í Í í ü ö ő í ü ü ú ü ö ö ő ü ő ö ő í ü ő í ö ö ő ő ő í í ő í ő ő Á Ó Í í í ő ű ú ő í í ő ő Í ő í ő í í Í í ő í ő í ő ő íí ő

Részletesebben

Í Ő É Ó É é Ö Á Á Á Ó é Ó é ö é Ö ű ö é ö ű ö é ö é é é é é é é é é é é é é é é é é é ü é é é Í é é é é ü é ö ü é ü é é ö ö é ú é é ü é é ü é é ü é ü é é é ú é Ó é é ú é ü é é ö é ö é Á Á Á Ó é Ó Í é ö

Részletesebben

ö í Ö Ó ü í ü ö Ö ö ü ü ö ö ö ö Ö ü ö ö Ö ü Ű Ö ö ü ú ű ö ö í ö ö í ü ö ö í í ö Á É ö Ö í ö Ö ü ö Ö ö ö ö ö ö ü í ü ö í ü ö ö ö Ö ü ö í ü í ö ö ö Ö ü ö Ö í í ö Ö ü ö Ö í ü ö Á É ö Ö í ü ö í ö ű ö ö ű ö

Részletesebben

ő ő ű í ó ú í ó í ó Á Á Á É ű ő ó ó ő ó ő Á É ó Á É ú Á É É Á ó Á Á Á Á Á É É ó Á É í É É í É ú ú ú ó ó Ö ú É ú ó ő ú ó í É É É É Ö Ö É Á É É É Ő Ó É ő ó ó í ő ú ő ő ű í ó ú Ő Ö ú É ú ú ő ő É É ő ő ő ő

Részletesebben

ö é é ü Ő Ö é ü ö é é ü é é ó é ü ü é é é é é í é ü é é é é é é ö é é ö ö é ü ö ö é ü í é ü ü é é é ü é ö é é é ó é é é é é ü ö é é ü ú ö é é é é ö é é ö é é ó é ó é é í é é ó é é ó é é í ó é é ü ü é ó

Részletesebben

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn A FIZIKA TANÍTÁSA KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsô Griz Márto ELTE Elméleti Fizikai Taszék Meszéa Tamás Ciszterci Red Nagy Lajos Gimázima Pécs, a Fizika taítása PhD program hallgatója

Részletesebben

9. évfolyam feladatai

9. évfolyam feladatai Hómezővásárhely, 015. április 10-11. A versenyolgozato megírására 3 óra áll a iáo renelezésére, minen tárgyi segéeszöz használható. Minen évfolyamon 5 felaatot ell megolani. Egy-egy felaat hibátlan megolása

Részletesebben

6. HMÉRSÉKLETMÉRÉS. A mérés célja: ismerkedés a villamos elven mköd kontakthmérkkel; exponenciális folyamat idállandójának meghatározása.

6. HMÉRSÉKLETMÉRÉS. A mérés célja: ismerkedés a villamos elven mköd kontakthmérkkel; exponenciális folyamat idállandójának meghatározása. 6. HMÉRSÉKLETMÉRÉS A mérés célja: ismeredés a villamos elven möd ontathmérel; exponenciális folyamat idállandójána meghatározása. Elismerete: ellenállás hmérséletfüggése; ellenállás és feszültség mérése;

Részletesebben

Tanmenetjavaslat. az NT-11580 raktári számú Matematika 5. tankönyvhöz. Oktatáskutató és Fejlesztő Intézet, Budapest

Tanmenetjavaslat. az NT-11580 raktári számú Matematika 5. tankönyvhöz. Oktatáskutató és Fejlesztő Intézet, Budapest Tameetjavaslat az NT-11580 ratári sú Matematia 5. taöyvhöz Otatásutató és Fejlesztő Itézet, Budapest A tameetjavaslat 144 órára lebotva dolgozza fel a taayagot. Ameyibe eél több idő áll a redelezésüre,

Részletesebben

TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorganizmusok számának meghatározása telepszámlálásos módszerrel

TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorganizmusok számának meghatározása telepszámlálásos módszerrel TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorgaizmusok számáak meghatározása telepszámlálásos módszerrel A telepszámlálásos módszerek esetébe a teyésztést szilárd táptalajo végezzük, így - szembe

Részletesebben

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke:

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke: A PÉNZ IDİÉRTÉKE A péz értéke többek között az idı függvéye. Ha idıbe késıbb jutuk hozzá egy jövedelemhez, akkor elveszítjük aak lehetıségét, hogy az eltelt idıbe azt befektessük, azaz elesük aak hozamától,

Részletesebben

E L Ő T E R J E S Z T É S

E L Ő T E R J E S Z T É S TÁRGY: Törvényességi felhívás Szálka Község Önkormányzat Képviselő-testületének működésére, mulasztására E L Ő T E R J E S Z T É S SZÁLKA KÖZSÉG ÖNKORMÁNYZATA KÉPVISELŐ-TESTÜLETÉNEK 2013. július 31 -i

Részletesebben

ÉT: x R ÉK: y R ZH: x = 0 SZÉ: - SZMN páratlan fv. n a

ÉT: x R ÉK: y R ZH: x = 0 SZÉ: - SZMN páratlan fv. n a A htváyozás iverz műveletei. (Htváy, gyök, logritmus) Ismétlés: Htváyozás egész kitevő eseté De.: :... Oly téyezős szorzt, melyek mide téyezője. : htváyl : kitevő : htváyérték A htváyozás zoossági egész

Részletesebben

Szakács Jenő Megyei Fizikaverseny

Szakács Jenő Megyei Fizikaverseny Szaác Jenő Megyei Fiziavereny 05/06. tanév I. forduló 05. noveber 0. . Egy cillagdában a pihenő zobából a agaabban lévő távcőzobába cigalépcő vezet fel. A ét helyiég özött,75 éter a zintülönbég. A cigalépcő

Részletesebben

KISTARCSA VÁROS ÖNKORMÁNYZAT POLGÁRMESTERE

KISTARCSA VÁROS ÖNKORMÁNYZAT POLGÁRMESTERE KISTARCSA VÁROS ÖNKORMÁNYZAT POLGÁRMESTERE 2143 Kistarcsa, Szabadság út 48. Telefon: (28)- 507-133 Fax: (28)-470-357 E L Ő T E R J E S Z T É S A Képviselő-testület 2015. szeptember 30-ai ülésére Nyílt

Részletesebben

2. Halmazelmélet (megoldások)

2. Halmazelmélet (megoldások) (megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek

Részletesebben

Csapágyak üzem közbeni vizsgálata a csavarhúzótól a REBAM 1 -ig 2

Csapágyak üzem közbeni vizsgálata a csavarhúzótól a REBAM 1 -ig 2 ÜZEMFENNTARTÁSI TEVÉKENYSÉGEK 3.9 Csapágyak üzem közbei vizsgálata a csavarhúzótól a REBAM 1 -ig 2 Gergely Mihály okl. gépészmérök, Acceleratio Bt. Budapest Tóbis Zsolt doktoradusz, Miskolci Egyetem Gépelemek

Részletesebben

Í Á Ó É é ü ö ö é Ö é ü é ő ő é ő ő é é ő ö ó é ó é é é ő í ő ő ö ö é é í ő ú é ő é ü ö ö é ó é é í é é ő é é ü í ő í é í é ő é ü ö é ő é é í é é í é é ó ő ő é ö é ő é ő í í é ő ő ó ö É ó É Á É Í É ü ú

Részletesebben

Halmazelmélet. 2. fejezet 2-1

Halmazelmélet. 2. fejezet 2-1 2. fejezet Halmazelmélet D 2.1 Két halmazt akkor és csak akkor tekintünk egyenl nek, ha elemeik ugyanazok. A halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele:. D 2.2 Az A halmazt a B halmaz

Részletesebben

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját

Részletesebben

A RUGALMAS GYÁRTÓRENDSZEREK MŰVELETTÍPUSON ALAPULÓ KAPACITÁSELEMZÉSÉNEK EGYSZERŰSÍTÉSE

A RUGALMAS GYÁRTÓRENDSZEREK MŰVELETTÍPUSON ALAPULÓ KAPACITÁSELEMZÉSÉNEK EGYSZERŰSÍTÉSE A RUGALMAS GYÁRTÓRENDSZEREK MŰVELETTÍPUSON ALAPULÓ KAPACITÁSELEMZÉSÉNEK EGYSZERŰSÍTÉSE 1. BEVEZETÉS Juász Vitor P.D. allgató A modern, profitorientált termelővállalato elsődleges célitűzései özé tartozi

Részletesebben

10. évfolyam, harmadik epochafüzet

10. évfolyam, harmadik epochafüzet 0. évfolyam, harmadik epochafüzet (Sorozatok, statisztika, valószíűség) Tulajdoos: MÁSODIK EPOCHAFÜZET TARTALOM I. Sorozatok... 4 I.. Sorozatok megadása, defiíciója... 4 I.. A számtai sorozat... 0 I...

Részletesebben

Készségszint-mérés és - fejlesztés a matematika kompetencia területén

Készségszint-mérés és - fejlesztés a matematika kompetencia területén Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő

Részletesebben

Síkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése

Síkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése íbel culó zeezete egyeúlyozáá éáy édée íbel culó zeezete egyeúlyozáá éáy édée DR BENKŐJÁNO gátudoáy Egyete Gödöllő Mg Gépt Itézet gyoozgáú gépzeezete tevezéée foto lépée z egyelete, ezgéete üzeet bztoító

Részletesebben

Előirányzott kötelezettségvállalások: az 1., 2., 3. évre a költségvetésben az adott évre elrendelt kötelezettségvállalások. Jelmagyarázat: Előirányzott kötelezettségvállalások (EKÖ) Kötelezettségvállalási

Részletesebben

é ő é ó á é ő ó í á á é ö é á é í é á á é é ű á é ö ö ö ó é ü ö ö ő é ó é ő á í á é í é é á á é í ű ö é Í é ü ö é ó é ü á ű é á ö á Í é ő é á á ó ő é

é ő é ó á é ő ó í á á é ö é á é í é á á é é ű á é ö ö ö ó é ü ö ö ő é ó é ő á í á é í é é á á é í ű ö é Í é ü ö é ó é ü á ű é á ö á Í é ő é á á ó ő é É Ö É Á í É Ó Á ö é é ö ö é é é é ó ü ö ü ö ö ő é ó é ó á í í á ó Í é á ö é ü é ó ő ő ő á é á é é í é é í á ö é é í é é á í ú é á á ő í é á é Í é é ü ö ö ő ű á á á ó á Íü é é í é ü ő ö é é ó ó í á á á

Részletesebben

INTERFERENCIA - ÓRAI JEGYZET

INTERFERENCIA - ÓRAI JEGYZET FZKA BSc,. évfolya /. félév, Optika tárgy TERFERECA - ÓRA JEGYZET (Erdei Gábor, Ph.D., 8. AJÁLOTT SZAKRODALOM: ALAPFOGALMAK Klei-Furtak, Optics Richter, Bevezetés a oder optikába Bor-Wolf, Priciples of

Részletesebben

2. Igazolja, hogy a dugattyús kompresszorok mennyiségi foka a. összefüggéssel határozható meg? . Az egyenletből fejezzük ki a hasznos térfogatot:

2. Igazolja, hogy a dugattyús kompresszorok mennyiségi foka a. összefüggéssel határozható meg? . Az egyenletből fejezzük ki a hasznos térfogatot: Fúó & Kmresszr /. Egy Rts-fúó muadugattyújáa átmérője 40 m, hssza m, eresztmetszete 88 m. Határzzu meg a fúó száítótejesítméyét a éeges ymás, ha a éeges frduatszám 00 frd/mi! Mera a fúó tejesítméyszüségete,

Részletesebben

FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL

FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL SZAKDOLGOZAT Készítette: Kovács Blázs Mtet BSc, tár szrá Tévezető: dr Wtsche Gergel, djutus ELTE TTK, Mtettítás és Módszert Közot Eötvös Lorád Tudoáegete Terészettudoá

Részletesebben

a legjobb kezekben K&H Csoport

a legjobb kezekben K&H Csoport a legjobb kezekbe A K&H Biztosító 1992 óta működik Magyarországo, és közel félmillió ügyfelet szolgál ki. A K&H Biztosító a magyar piac sajátosságait figyelembe véve alakította ki szolgáltatási palettáját,

Részletesebben

Az új szja törvénnyel kapcsolatos béralkalmazkodási lépések a kisés közepes vállalkozások körében

Az új szja törvénnyel kapcsolatos béralkalmazkodási lépések a kisés közepes vállalkozások körében Az új szja törvénnyel kapcsolatos béralkalmazkodási lépések a kisés közepes vállalkozások körében Az Országgyűlés által 21-ben elfogadott új személyi jövedelemadó törvény eredményeként a 29 ezer forint

Részletesebben

Tárgy: A közfoglalkoztatás rendszerének 2009. évi változása, várható ellátási formáinak megvitatása, Közfoglalkoztatási Terv készítése

Tárgy: A közfoglalkoztatás rendszerének 2009. évi változása, várható ellátási formáinak megvitatása, Közfoglalkoztatási Terv készítése ELŐTERJESZTÉS a Téti Kistérség Sokoróaljai Önkormányzatainak Többcélú Társulása, mint Kistérségi Fejlesztési Tanács 2009. március 5-i ülésére 1. NAPIRENDI PONT Tárgy: A közfoglalkoztatás rendszerének 2009.

Részletesebben

I. BEVEZETİ. i= 1 i= Z : Ai F és Ai Ai+ i Z : Bi F és Bi Bi+

I. BEVEZETİ. i= 1 i= Z : Ai F és Ai Ai+ i Z : Bi F és Bi Bi+ I ALAPFOGALMAK I BEVEZETİ Jelölése: K: véletle ísérlet, ω : elem eseméy, { : } Ω= ω : eseméytér, F Ω : eseméyalgebra, A F : eseméy, Ω F : bztos eseméy Mővelete eseméyeel: összegzés: A+B (halmazuó), szorzás:

Részletesebben

ü É Í ü ü ü Í ü ű ü ü ü ű ü ű ű ű ü ü ü ű ü Í ü ű ü ü ü Ű Í É É Á Ő Á Ó Á Á Á Á É Á Á Á Á É Á Í Á Á Í Í ű Á É É Á Á Ö Í Á Á Á Á Á É Á Á Ó ű Í ü ü ü ű ű ü ü ű ü Á ü ű ü Í Í Í ü Í Í ű ű ü ü ü ü ű ü ű ü ü

Részletesebben

Í Á Á É ö ö ö ö ö ű ü ö ű ű ű ö ö ö ü ö ü í ü í í í ü í ü Á ü ö ö ü ö ü ö ö ü ö í ö ö ü ö ü í ö ü ű ö ü ö ü í ö í ö ű ű ö ö ú ö ü ö ű ű ű í ö ű í ű ö ű ü ö í ű í í ö í ö ö Ó Í ö ű ű ű ű í í ű ű í í Ü ö

Részletesebben

Ű Í ó Ü Ö Á Á Ó Ö Ü Ü Ü Ü Á Í Ü Á Á Ü Ü Ü Ü Ü Ü Ö Ü Í Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Í Ü Í Í Á Í Í Ü Í Í Ü Á Ü Ü Ü Ü Ü Ü Ü Ü Ő Ö Á ÁÍ Á Ü Ü Á Í Ü Í Á Ü Á Í ó Í Í Ü Ü ő Í Ü Ű Ü Ü Ü Ü Í Ü Ü Ü Ü Ü Ü Ü Í Ü Á Ü Ö Á

Részletesebben

ű í ú ü Á ü ü ü ü ü É É É Ü í ü Á í í ű í ú É É É Ü Í í í í Á í í Á í Á Í É Ő Ú ú Ú í í í íí í ú í í Í í Í Í É í í Í Í í ú í ü Ó í Í ú Í Í ű í ű í í í Í É Ü ű í ü ű í ú É É É Ü ű í í í í ü í Í í Ú Í í

Részletesebben