Bemenet modellezése II.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bemenet modellezése II."

Átírás

1 Bemenet modellezése II. Vidács Attila november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási rendszer kiszolgálási idejének leírására DES-ben. rendelkezésre álló mérések: n = 23 mért érték a kiszolgálás id tartamáról: , 28.92, 98.64, 55.56, , 45.60, 67.80, , 48.48, 51.84, , 51.96, 54.12, 68.64, 93.12, 68.88, 84.12, 68.64, 41.52, , 42.12, 17.88, Els lépés: Annak eldöntése, hogy a meggyelések függetlenek és azonos eloszlásúak-e (iid) vagy nem. Fontos, hogy az adatok a mérés sorrendjében álljanak rendelkezésünkre! Példák, amikor a függetlenség feltételezése nem helytálló: Egy új munkatárs els 23 ügyfelének kiszolgálási ideje. (Várhatóan csökken a kiszolgálási id ahogyan az illet belejön a munkába.) Egy nehéz zikai munka utolsó 23 munkadarabjának elkészítési ideje a munkaid végéhez közeledve.

2 Hálózati szimulációs technikák, 2005/11/3 2 Kiszolgálási id k modellezése Tegyük fel, hogy okunk van feltételezni, hogy a kiszolgálási id az id vel csökken. Lineáris modell: Y = β 0 + β 1 X + ɛ, ahol X a meggyelés sorszáma, Y a kiszolgálási id, β 0 a tengelymetszet, β 1 a meredekség, ɛ pedig a hibatag. Hipotézis teszt: H 0 : β 1 = 0, H 1 : β 1 < 0. Hálózati szimulációs technikák, 2005/11/3 3 Kiszolgálási id k vs. meggyelés sorszáma

3 Hálózati szimulációs technikák, 2005/11/3 4 Kiszolgálási id k modellezése A hipotézis-teszthez tartozó p-érték a konkrét esetben 0.14, ami nem elég bizonyíték arra, hogy statisztikailag szignikáns lineáris trend van a mérésben. Több más grakus és statisztikai módszer is létezik a függetlenség vizsgálatára, pl: A minta autokorrelációs függvényének vizsgálata. scatter plot a szomszédos meggyelésekre,... Hálózati szimulációs technikák, 2005/11/3 5 Minta autokorrelációs függvény

4 Hálózati szimulációs technikák, 2005/11/3 6 Kiszolgálási id k modellezése Következ lépés: Hisztogramm rajzolása és statisztikák számítása. Hisztogramm (ld. köv. fólia) Az adathalmaz kicsi ugyan, de egy ferde (skewed) harangforma azért meggyelhet. A legnagyobb meggyelés nagyon a jobb szélen helyezkedik el. Minta statisztikák Mintaátlag x = Tapasztalati szórás: s = Variációs együttható: s/x = 0.52 Ferdeség (skewness): 1 n n ( ) 3 xi x = 0.88 s Hálózati szimulációs technikák, 2005/11/3 7 Hisztogramm

5 Hálózati szimulációs technikák, 2005/11/3 8 Kiszolgálási id k modellezése Példák a minta statisztikák értelmezésére: Ha az s/x variációs együttható 1-hez közeli, aza hisztogramm alakját is gyelembe véveaz exponenciális eloszlást mint lehetséges választást mutatja. Ha a minta ferdeség 0-hoz közeli, az szimmetrikus eloszlást jelez (pl. normális vagy egyenletes eloszlás). A következ lépés: Parametrikus vagy nemparametrikus modellt válasszunk? Pl. Egy nemparaméteres lehetséges modell az, ha a mért értékekb l választunk egyet véletlenszer en 1/23-ad valószín séggel. Az adathalmaz kis mérete, a érték kétszeres el fordulása, valamint a kiugró másodperces minta inkább paraméteres modell választását sugallja. Hálózati szimulációs technikák, 2005/11/3 9 Paraméteres modellezés Az adatok alapján id független, egyváltozós, folytonos modellt választunk. A hisztogramm alapján szóba jöhet eloszlások: gamma, inverz-normális, log-normális, Weibull. Weibull eloszlás illesztése A Weibull eloszlás s r ségfüggvénye: f(x) = λ κ κx κ 1 e (λx)κ, x 0 ahol λ az ún. skála (scale) paraméter, κ pedig az alak (shape) paraméter. Az eloszlás paramétereinek becslésére szolgáló módszerek: Legkisebb négyzetek (least squares) módszere, momentum módszer, maximum likelihood módszer.

6 Hálózati szimulációs technikák, 2005/11/3 10 Maximum likelihood módszer Legyenek x 1, x 2,..., x n a mintapontok. A maximum likelihood függvény: L(λ, κ) = [ n n ] κ 1 f(x i ) = λ nκ κ n x i A log-likelihood függvény: log L(λ, κ) = n log κ + κn log λ + (κ + 1) A log-likelihood függvény parciális deriváltjai: log L(λ, κ) κ log L(λ, κ) λ e n (λx i) κ n log x i λ κ = κn λ n κλκ 1 x κ i, = n n κ + n log λ + log x i n x κ i. n (λx i ) κ log λx i. Hálózati szimulációs technikák, 2005/11/3 11 Maximum likelihood módszer (folyt.) A parciális deriváltakat 0-val egyenl vé téve a paraméterek megkaphatók. Az adott esetben nincs zárt alakú megoldás a ˆλ és ˆκ MLE becsl kre. A becsl k iteratív módon számolhatók.... A kapott paraméter értékek: Standard errors:. ˆλ = , ˆκ = 2.1 ˆσˆλ = , ˆσˆκ = Az aszimptotikus 95% -os kondencia-intervallum κ-ra: < κ < < κ < 2.74

7 Hálózati szimulációs technikák, 2005/11/3 12 Az illesztett Weibull eloszlás Hálózati szimulációs technikák, 2005/11/3 13 Kiszolgálási id k modellezése A következ feladat: A modell érvényesítése Illeszkedésvizsgálati (goodness-of-t tests) módszerek Chi-square teszt, Kolmogorov-Smirnov teszt, Anderson-Darlling teszt, Vizuális tesztek (pl. Q-Q plot),... A Kolmogorov-Smirnov teszt: Maximális vertikális eltérés az illesztett és az empirikus (tapasztalati) eloszlásfüggvény között. Az adott példában a 0.15-ös p-érték a Weibull eloszlás jó illeszkedését mutatja. Q-Q plot (vagy P-P plot)

8 Hálózati szimulációs technikák, 2005/11/3 14 P-P (probability-probability) Plot Hálózati szimulációs technikák, 2005/11/3 15 Példa: Vendégek érkezése egy menzán. Érkezési folyamat modellezése Mérés: Három napon rögzítettük az érkezéseket 11:00-t l 15:30-ig. Összesen n = 150 érkezést gyeltünk meg: n 1 = 56, n 2 = 42 és n 3 = 52 a k = 3 napon. Deniálva a (0, 4.5] id intervallumot (órákban mérve) a folyamat három realizációja: , , Els kérdés: A három realizáció egyazon sokaságból származik? A küls hatásoknak (pl. id járás, a hét melyik napja, hirdetések,...) azonosnak kell lenniük. A meggyeléseinket úgy tekintjük, mint reprezentáns független mintákat.

9 Hálózati szimulációs technikák, 2005/11/3 16 Érkezési folyamat modellezése Következ feladat: A megfelel modelltípus kiválasztása A választás: folytonos idej, diszkrét állapotú sztochasztikus folyamat. Következ kérdés: Tekinthet -e a folyamat stacionáriusnak? Ha az érkezési folyamat nemstacionáriusnak mutatkozik, egy inhomogén Poisson folyamat megfelel választás lehet. A választás: Modellezzük a folyamatot egy inhomogén Poisson folyamattal, és vizsgáljuk meg az intenzitás-paraméter id függését. Következ lépés: Modellillesztés Inhomogén Poisson folyamat intenzitásfüggvénye: λ(t) (Pl. λ(2) = 10 esetén az beérkezési intenzitás 10 vendég óránként t = 2 id ben.) A kumulatív intenzitásfüggvény Λ(t) = t 0 λ(τ) dτ Hálózati szimulációs technikák, 2005/11/3 17 Érkezési folyamat modellezése Feladat: A Λ(t) kumulatív intenzitásfüggvény becslése k realizációból, nemparametrikus eljárással. Legyen: (0, S] a becsléshez használt id intervallum, n i, i = 1, 2,..., k az i-edik realizációban meggyelt érkezések száma, n = k n i, t (1), t (2),..., t (n) a k realizáció szuperpozíciójának rendezett mintája (azaz t (i) t (i+1) ), t (0) = 0, t (n+1) = S, A kumulatív intenzitásfüggvény szakaszonként lineáris becsl je az érkezési id pontok között: ˆΛ(t) = in (n + 1)k + n(t t (i) ) (n + 1)k(t (i+1) t (i) ), t (i) < t t (i+1), i = 0, 1, 2,..., n

10 Hálózati szimulációs technikák, 2005/11/3 18 Kumulatív intenzitásfüggvény Hálózati szimulációs technikák, 2005/11/3 19 Érkezési folyamat modellezése Ha ˆΛ(t) lineáris, akkor a stacionárius modell megfelel. A vizsgált példában a függvény nemlineáris (12:00 és 13:00 között nagyobb intenzitással érkeznek a vendégek), azaz az inhomogén Poisson folyamat a megfelel modell. A következ kérdés: Paraméteres vagy nemparaméteres modellt használjunk? Az ábra szerint a λ(t) intenzitásfüggvény kezdetben növekszik, aztán nagyjából konstans marad egy-másfél óráig, majd csökken. Ezt a viselkedést nehéz lenne paraméteres modellel leírni. A példában a nemparaméteres modell (ˆΛ(t) használatával) t nik a legalkalmasabbnak. Ha mégis paraméteres modellel próbálkozunk: Több lehetséges paraméteres modell létezik nemstacionárius érkezési folyamatokra. Pl: hatvány (power law) folyamatok.

11 Hálózati szimulációs technikák, 2005/11/3 20 Hatványfüggvény folyamat illesztése Feladat: Hatványfüggvény (power law) folyamat illesztése az érkezési folyamatra. Az intezitásfüggvény: λ(t) = λ κ κt κ 1, t > 0 A likelihood-függvény k realizáció esetén: A log-likelihood függvény: L(λ, κ) = k n λ nκ κ n e k(λs)κ n t κ 1 i. log L(λ, κ) = n log(kκ) nκ log λ k(λs) κ + (κ 1) n log t i. Hálózati szimulációs technikák, 2005/11/3 21 Hatványfüggvény folyamat illesztése A log-likelihood függvény parciális deriváltjai: log L(λ, κ) κ log L(λ, κ) λ = κn λ ksκ κλ κ 1, = n log λ + n n κ + log t i k(λs) κ log(λs). a parciális deriváltakat nullával egyenl vé téve a kapott ML becsl k: ˆκ = n n log S 1 ( n ) 1/κ n log t, ˆλ =. i S k a konkrét példánkban: ˆλ = 4.86, ˆκ = A kumulatív intenzitásfüggvény: Λ(t) = (λt) κ, t > 0

12 Hálózati szimulációs technikák, 2005/11/3 22 Empirikus és illesztett kumulatív intenzitásfüggvény Hálózati szimulációs technikák, 2005/11/3 23 Érkezési folyamat modellezése Példák egyéb lehetséges paraméteres nemstacionárius modellekre: Log-logistic process (Lawless 1982): λ(t) = λκ(λt)κ (λt) κ, t > 0 EPTM exponential-polynomial-trigonometric function with multiple periodicies model (Crawford 1991): [ m λ(t) = exp α i t i + i=0 ] p γ k sin(ω k t + φ k ), t > 0 k=1

13 Hálózati szimulációs technikák, 2005/11/3 24 Modellválasztás A modellezés kedvez esetben leegyszer södik a megfelel eloszlás kiválasztásának feladatára. A helyzet kedvez, ha az alábbi egyszer sít feltevéseink helytállóak: A vizsgált folyamat független, azonos (közös) eloszlású (iid) valószín ségi változók sorozata. A közös eloszlás a szokásos eloszláscsaládok egyike, amelyek elérhet k szinte minden szimulációs programcsomagban: pl. béta, Erlang, exponenciális, gamma, lognormális, normális, Poisson, egyenletes, Weibull. Rendelkezésünkre állnak mérési eredmények, amelyre illeszthetjük az eloszlást valamilyen módszerrel, mint például: maximmum likelihood vagy momentum módszer. A választott eloszlás jól illeszkedik az adatokra, amit valamely vizuális vizsgálattal vagy illeszkedésvizsgálattal ellen rizhetünk. Hálózati szimulációs technikák, 2005/11/3 25 Modellválasztás A helyzet néha nem kedvez az alábbi okok miatt: A szokásos eloszláscsaládok nem eléggé rugalmasak ahhoz, hogy a meggyelt adatok sajátos jellegét leírják. A folyamat elemei nem függetlenek. (Vagy az id sor elemei valahogyan összefügg ek, vagy a folyamat korrelált a rendszer más bemenetével.) A folyamat paraméterei az id ben változnak (nemstacionaritás). Nem áll rendelkezésünkre mérés, amire az illesztést elvégezhetnénk. A továbbiakban néhány példát és megoldást adunk a fenti esetekre.

14 Hálózati szimulációs technikák, 2005/11/3 26 Egyváltozós modellek Feladat: Olyan modellezési esetekben, amikor a változósorozat független, azonos eloszlású (iid), amikor az eloszlásnak valamilyen szokványostól eltér jellege van (pl. egynél több módus), vagy nincs mért adat amire illeszteni szeretnénk, hanem az eloszlás bizonyos jellemz it adjuk meg (pl. momentumok, percentilis). Modellek Johnson eloszláscsalád Inverz eloszlás polinomiális sz r vel (Bézier eloszlások) Hálózati szimulációs technikák, 2005/11/3 27 Johnson eloszláscsalád Az eloszlások egy rugalmasabb családja el állítható a következ (Johnson) transzformációval: F (x) = Φ {γ + δg[(x ξ)/λ]}, < x <, ahol Φ a standard normális eloszlásfüggvény, γ és δ az alak (shape) paraméterek, ξ a helyzet (location) paraméter, λ a skála (scale) paraméter, g pedig a következ transzformációk egyike: log(x) sinh 1 (x) g(x) = log[x/(1 x)] x a lognormális családnál, a nem korlátos családnál, a korlátos családnál, a normális családnál. A megfelel transzformáció kiválasztható egy véletlen minta ferdeségének és lapultságának becslésével, és ezek illesztésével.

15 Hálózati szimulációs technikák, 2005/11/3 28 Johnson eloszláscsalád (2) A véletlen változók generálása egy Z standard normális eloszlású v.v. transzformációjával: X = ξ + λg 1 [(Z γ)/δ], ahol e a a lognormális családnál, g 1 (e a e a )/2 a nem korlátos családnál, (a) = 1/(1 + e a ) a korlátos családnál, a a normális családnál. Megjegyzés: Ha nem állnak rendelkezésre mért adatok, az eloszlás szubjektív információkra is illeszthet (DeBrota et al., 1989). Hálózati szimulációs technikák, 2005/11/3 29 Inverz eloszlás polinomiális sz r vel Inverse Distribution with Polinomial Filter (IDPF) Ha a választott referencia-eloszlás illesztése után kiderül, hogy az illeszkedés nem kielégít, akkor használható az IDPF módszer. Ismeretlen, folytonos eloszlású v.v.-k generálásához gyakran használjuk az illesztett F X tapasztalati eloszlásfüggvény inverzét: ahol U U(0, 1). X = F 1 X (U), Ötlet: Az illeszkedést javíthatjuk a következ módosított transzformációval: ahol q az U egy polinomja. X = F 1 X (q(u)),

16 Hálózati szimulációs technikák, 2005/11/3 30 Inverz eloszlás polinomiális sz r vel (2) Legyen q(u) egy r-edrend polinom: q(u) = b 1 U + b 2 U b r U r. A {b i ; i = 1, 2,..., r} együtthatókat úgy kell megválasztanunk, hogy F 1 X legitim inverz-eloszlásfüggvény maradjon, azaz (q(u)) q(u) szigorúan növekv U-n, q(0) = 0 és q(1) = 1. A b i együtthatók becslése a legkisebb négyzetek módszerével megoldható: ê 2 = min b 1,...,b r n { X (i) F 1 X [ q ( )]} 2 i 0.5. n Hálózati szimulációs technikák, 2005/11/3 31 Többváltozós modellek Ha több véletlen változóról van szó, ezek lehetnek összefügg ek (vektorok vagy id sorok). Általánosan használt modellek: Többváltozós normál eloszlás véletlen vektorokhoz, p-edrend Gauss-i autoregresszív (AR(p)) modellek id sorokhoz. (Id sorok modellezését ld. kés bb.) Adott eloszlású véletlen vektorok el állításához használatos módszerek: (Johnson eloszláscsalád többváltozós kiterjesztése) (Kétváltozós Bézier eloszlások) NORTA NORmal To anything

17 Hálózati szimulációs technikák, 2005/11/3 32 NORTA NORTA NORmal To Anything (Normálist bármivé) Ötlet: Transzformáljunk egy standard (többváltozós) normális eloszlású véletlen vektort a kívánt eloszlásúra. Egy Z (k 1) véletlen vektor standard normális eloszlású µ = (0, 0,..., 0) várható érték vektorral és 1 ρ 12 ρ 1k ρ 21 1 ρ 2k Σ = ρ k1 ρ k2 1 korrelációs mátrixszal, ahol az i-edik Z i elem N(0, 1) eloszlású, és ρ ij = Corr{Z i, Z j }. A Σ és µ paraméterek egyértelm en meghatározzák az eloszlást. Hálózati szimulációs technikák, 2005/11/3 33 Legyen NORTA (2) X = F 1 X 1 [Φ(Z 1 )] F 1 X 2 [Φ(Z 2 )]. F 1 X k [Φ(Z k )] ahol Z = (Z 1, Z 2,..., Z k ) egy standard normális eloszlású vektor Σ korrelációs mátrixszal, és F X1, F X2,..., F Xk a kívánt határeloszlások. A feladat: Megtalálni azt a Σ mátrixot, ami X kívánt korrelációs mátrixszát eredményezi. Ez nem túl bonyolult numerikus probléma (Cairo és Nelson, 1997). Habár az illesztés id igényes lehet, ezt modellenként csak egyszer kell végrehajtani.,

Bemenet modellezése (III.), forgalommodellezés

Bemenet modellezése (III.), forgalommodellezés Bemenet modellezése (III.), forgalommodellezés Vidács Attila 2007. október 31. Hálózati szimulációs technikák, 2007/10/31 1 Modellválasztás A modellezés kedvez esetben leegyszer södik a megfelel eloszlás

Részletesebben

Biztosítási ügynökök teljesítményének modellezése

Biztosítási ügynökök teljesítményének modellezése Eötvös Loránd Tudományegyetem Természettudományi Kar Budapest Corvinus Egyetem Közgazdaságtudományi Kar Biztosítási ügynökök teljesítményének modellezése Szakdolgozat Írta: Balogh Teréz Biztosítási és

Részletesebben

matematikai statisztika 2006. október 24.

matematikai statisztika 2006. október 24. Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................

Részletesebben

Feladatok és megoldások a 6. heti eladshoz

Feladatok és megoldások a 6. heti eladshoz Feladatok és megoldások a 6. heti eladshoz Építőkari Matematika A3 1. Ha E(X = 1 és D 2 (X = 5, határozzuk meg (a E[(2 + X 2 ], (b D 2 (4 + 3X értékét. 2. Legyenek X 1, X 2,... független azonos eloszlású

Részletesebben

Valószín ségelmélet házi feladatok

Valószín ségelmélet házi feladatok Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott

Részletesebben

Csődvalószínűségek becslése a biztosításban

Csődvalószínűségek becslése a biztosításban Csődvalószínűségek becslése a biztosításban Diplomamunka Írta: Deák Barbara Matematikus szak Témavezető: Arató Miklós, egyetemi docens Valószínűségelméleti és Statisztika Tanszék Eötvös Loránd Tudományegyetem,

Részletesebben

konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14.

konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14. Valószínűség, pontbecslés, konfidencia-intervallum Logikai vektorok az R-ben 2012. március 14. Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra

Részletesebben

Tómács Tibor. Matematikai statisztika

Tómács Tibor. Matematikai statisztika Tómács Tibor Matematikai statisztika Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika Eger, 01 Szerző: Dr. Tómács Tibor főiskolai docens Eszterházy Károly

Részletesebben

Statisztikai alapismeretek (folytatás)

Statisztikai alapismeretek (folytatás) Statisztikai alapismeretek (folytatás) 3. elıadás (5-6. lecke) Az alapsokaság fıbb jellemzıi () 5. lecke Folytonos változó megoszlásának jellemzése A sokasági átlag és szórás Átlag és szórás tulajdonságai

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

ÖNJAVÍTÓ AGGREGÁLÁS SZENZORHÁLÓZATOKBAN ÉS AGGREGÁTOR NODE VÁLASZTÁS. Schaffer Péter. Tézisfüzet. Konzulens: Buttyán Levente, Ph.D.

ÖNJAVÍTÓ AGGREGÁLÁS SZENZORHÁLÓZATOKBAN ÉS AGGREGÁTOR NODE VÁLASZTÁS. Schaffer Péter. Tézisfüzet. Konzulens: Buttyán Levente, Ph.D. BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM HÍRADÁSTECHNIKAI TANSZÉK ÖNJAVÍTÓ AGGREGÁLÁS ÉS AGGREGÁTOR NODE VÁLASZTÁS SZENZORHÁLÓZATOKBAN Tézisfüzet Schaffer Péter Konzulens: Buttyán Levente, Ph.D.

Részletesebben

Kockázati folyamatok. Sz cs Gábor. Szeged, 2012. szi félév. Szegedi Tudományegyetem, Bolyai Intézet

Kockázati folyamatok. Sz cs Gábor. Szeged, 2012. szi félév. Szegedi Tudományegyetem, Bolyai Intézet Kockázati folyamatok Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet Szeged, 2012. szi félév Sz cs Gábor (SZTE, Bolyai Intézet) Kockázati folyamatok 2012. szi félév 1 / 48 Bevezetés A kurzus céljai

Részletesebben

Ferenczi Dóra. Sorbanállási problémák

Ferenczi Dóra. Sorbanállási problémák Eötvös Loránd Tudományegyetem Természettudományi Kar Ferenczi Dóra Sorbanállási problémák BSc Szakdolgozat Témavezet : Arató Miklós egyetemi docens Valószín ségelméleti és Statisztika Tanszék Budapest,

Részletesebben

2. előadás: További gömbi fogalmak

2. előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással

Részletesebben

Kecskeméti Fıiskola GAMF Kar Informatika Tanszék. Johanyák Zsolt Csaba

Kecskeméti Fıiskola GAMF Kar Informatika Tanszék. Johanyák Zsolt Csaba Kecskeméti Fıiskola GAMF Kar Informatika Tanszék Johanyák Zsolt Csaba 003 Tartalomjegyzék. Bevezetés.... A megbízhatóság fogalmai..... A termék idıtıl függı képességei...... Használhatóság /Üzemkészség/

Részletesebben

Sztochasztikus folyamatok 1. házi feladat

Sztochasztikus folyamatok 1. házi feladat Sztochasztikus folyamatok 1. házi feladat 1. Egy borfajta alkoholtartalmának meghatározására méréseket végzünk. Az egyes mérések eredményei egymástól független valószínûségi változók, melyek normális eloszlásúak,

Részletesebben

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication

Részletesebben

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Diszkrét és hibrid diagnosztikai és irányítórendszerek LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba?

1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? Matematikai statisztika példák Matematikai statisztika példák Normális eloszlás 1. A skót bakák mellkas körmérete N(88, 10). A skót bakák mekkora hányada fér bele egy 84-es zubbonyba? 2. Majmok ébredését

Részletesebben

SZTOCHASZTIKUS MÓDSZEREK

SZTOCHASZTIKUS MÓDSZEREK EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR BUDAPESTI CORVINUS EGYETEM KÖZGAZDASÁGTUDOMÁNYI KAR SZTOCHASZTIKUS MÓDSZEREK A NEM-ÉLETBIZTOSÍTÁSOK TARTALÉKOLÁSÁBAN MSc szakdolgozat Írta: Orbán Barbara

Részletesebben

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény

Részletesebben

Szepesvári Csaba. 2005 ápr. 11

Szepesvári Csaba. 2005 ápr. 11 Gépi tanulás III. Szepesvári Csaba MTA SZTAKI 2005 ápr. 11 Szepesvári Csaba (SZTAKI) Gépi tanulás III. 2005 ápr. 11 1 / 37 1 Döntési fák 2 Felügyelet nélküli tanulás Klaszter-anaĺızis EM algoritmus Gauss

Részletesebben

Matematikai programozás gyakorlatok

Matematikai programozás gyakorlatok VÁRTERÉSZ MAGDA Matematikai programozás gyakorlatok 2003/04-es tanév 1. félév Tartalomjegyzék 1. Számrendszerek 3 1.1. Javasolt órai feladat.............................. 3 1.2. Javasolt házi feladatok.............................

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc Dr. Kersner Róbert 007 Tartalomjegyzék Előszó ii. Determináns. Mátrixok 6 3. Az inverz mátrix 9 4. Lineáris egyenletrendszerek 5. Lineáris

Részletesebben

statisztikai menürendszere Dr. Vargha András 2007

statisztikai menürendszere Dr. Vargha András 2007 A statisztikai menürendszere Dr. Vargha András 2007 2 tartalomjegyzék 1. Alapok (egymintás elemzések Alapstatisztikák Részletesebb statisztikák számítása Gyakorisági eloszlás, hisztogram készítése Középértékekre

Részletesebben

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi

Részletesebben

MITISZK Miskolc-Térségi Integrált Szakképző Központ

MITISZK Miskolc-Térségi Integrált Szakképző Központ MITISZK Miskolc-Térségi Integrált Szakképző Központ VALÓSZÍNŰSÉG-SZÁMÍTÁS ÉS MATEMATIKAI STATISZTIKA FEGYVERNEKI SÁNDOR Miskolci Egyetem Gépészmérnöki és Informatikai Kar Készült a HEFOP-3.2.2-P.-2004-10-0011-/1.0

Részletesebben

Elektromágneses terek gyakorlat - 6. alkalom

Elektromágneses terek gyakorlat - 6. alkalom Elektromágneses terek gyakorlat - 6. alkalom Távvezetékek és síkhullám Reichardt András 2015. április 23. ra (evt/hvt/bme) Emt2015 6. alkalom 2015.04.23 1 / 60 1 Távvezeték

Részletesebben

Becslési módszerek errors-in-variables környezetben

Becslési módszerek errors-in-variables környezetben Becslési módszerek errors-in-variables környezetben PhD értekezés tézisei Hunyadi Levente Budapesti Műszaki és Gazdaságtudományi Egyetem Automatizálási és Alkalmazott Informatikai Tanszék Témavezető: Dr.

Részletesebben

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Dátum Téma beadandó Feb 12Cs Konvolúció (normális, Cauchy,

Részletesebben

Tűgörgős csapágy szöghiba érzékenységének vizsgálata I.

Tűgörgős csapágy szöghiba érzékenységének vizsgálata I. Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Tudományos Diákköri Konferencia Tűgörgős csapágy szöghiba érzékenységének vizsgálata I. Szöghézag és a beépítésből adódó szöghiba vizsgálata

Részletesebben

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június MIKROÖKONÓMIA I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

86 MAM112M előadásjegyzet, 2008/2009

86 MAM112M előadásjegyzet, 2008/2009 86 MAM11M előadásjegyzet, 8/9 5. Fourier-elmélet 5.1. Komplex trigonometrikus Fourier-sorok Tekintsük az [,], C Hilbert-teret, azaz azoknak a komplex értékű f : [,] C függvényeknek a halmazát, amelyek

Részletesebben

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Z UNIVERSITAS-GYŐR Kht. Győr, 25 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR TÁVKÖZLÉSI TANSZÉK Egyetemi jegyzet Írta:

Részletesebben

ESR színképek értékelése és molekulaszerkezeti értelmezése

ESR színképek értékelése és molekulaszerkezeti értelmezése ESR színképek értékelése és molekulaszerkezeti értelmezése Elméleti alap: Atkins: Fizikai Kémia II, 187-188, 146, 1410, 152 158 fejezetek A gyakorlat során egy párosítatlan elektronnal rendelkező benzoszemikinon

Részletesebben

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai Matematika előadás elméleti kérdéseinél kérdezhető képletek Lineáris Algebra GEMAN 203-B A három dimenziós tér vektorai, egyenesei, síkjai a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b

Részletesebben

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A

Részletesebben

4. sz. Füzet. A hibafa számszerű kiértékelése 2002.

4. sz. Füzet. A hibafa számszerű kiértékelése 2002. M Ű S Z A K I B I Z O N S Á G I F Ő F E L Ü G Y E L E 4. sz. Füzet A hibafa számszerű kiértékelése 00. Sem a Műszaki Biztonsági Főfelügyelet, sem annak nevében, képviseletében vagy részéről eljáró személy

Részletesebben

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június MIKROÖKONÓMIA I Készült a TÁMOP-412-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra

Részletesebben

Sztochasztikus modellek az egészségbiztosításban Diplomamunka Írta: Márton Anikó alkalmazott matematikus szak Témavezet k: Mályusz Károly, vezet aktuárius Cardif Életbiztosító Zrt. és Arató Miklós, bels

Részletesebben

Elméleti összefoglalók dr. Kovács Péter

Elméleti összefoglalók dr. Kovács Péter Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...

Részletesebben

Brückler Zita Flóra. Lineáris rendszerek integrálása

Brückler Zita Flóra. Lineáris rendszerek integrálása Eötvös Loránd Tudományegyetem Természettudományi Kar Brückler Zita Flóra Lineáris rendszerek integrálása BSc szakdolgozat Témavezető: Dr. Kovács Sándor Numerikus Analízis Tanszék Budapest, 2012 Köszönetnyilvánítás

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

Bóra Eszter. Véletlen gráfok és társadalmi hálózatok. Eötvös Loránd Tudományegyetem Természettudományi Kar. Témavezet : Backhausz Ágnes

Bóra Eszter. Véletlen gráfok és társadalmi hálózatok. Eötvös Loránd Tudományegyetem Természettudományi Kar. Témavezet : Backhausz Ágnes Eötvös Loránd Tudományegyetem Természettudományi Kar Bóra Eszter Véletlen gráfok és társadalmi hálózatok BSc Szakdolgozat Matematika BSc, alkalmazott matematikus szakirány Témavezet : Backhausz Ágnes Valószín

Részletesebben

MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia

MINİSÉGSZABÁLYOZÁS. Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia MINİSÉGSZABÁLYOZÁS A GÉPIPARBAN Dr. Drégelyi-Kiss Ágota e-mail: dregelyi.agota@bgk.uni-obuda.hu http://uni-obuda.hu/users/dregelyia ISO 9000:2008 A STATISZTIKAI MÓDSZEREK HASZNÁLATÁRÓL A statisztikai módszerek

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Definíció. Definíció. 2. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása. 2-5. fejezet. A variabilitás mér számai 3.

Definíció. Definíció. 2. El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása. 2-5. fejezet. A variabilitás mér számai 3. . El adás (folytatása) Az adatok leírása, megismerése és összehasonlítása -1 Áttekintés - Gyakoriság eloszlások -3 Az adatok vizualizációja -4 A centrum mérıszámai -5 A szórás mérıszámai -6 A relatív elhelyezkedés

Részletesebben

A NŐK GAZDASÁGI AKTIVITÁSA ÉS FOGLALKOZTATOTTSÁGA*

A NŐK GAZDASÁGI AKTIVITÁSA ÉS FOGLALKOZTATOTTSÁGA* A NŐK GAZDASÁGI AKTIVITÁSA ÉS FOGLALKOZTATOTTSÁGA* NAGY GYULA A tanulmány a magyarországi gazdasági átalakulás nyomán a nők és a férfiak munkaerőpiaci részvételében és foglalkoztatottságában bekövetkezett

Részletesebben

Adatbányászati módszerek alkalmazása a Robert Bosch számára

Adatbányászati módszerek alkalmazása a Robert Bosch számára Adatbányászati módszerek alkalmazása a Robert Bosch számára Készítette: Tóth Zsolt Neptun kód: F23Y80 Témavezet : Dr. Kovács László Ipari konzulens: Gróf Richárd Miskolci Egyetem, 2010 1. fejezet Bevezetés

Részletesebben

Statisztikai programcsomagok

Statisztikai programcsomagok Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés

Részletesebben

Munkapiaci áramlások Magyarországon

Munkapiaci áramlások Magyarországon Kónya István MTA-KRTK Közgazdaságtudományi Intézet és Közép-európai Egyetem 2015.11.13 MTA KRTK KTI Motiváció Munkapiaci áramlások központi szerepe Munkapiac keresési modellje Munkanélküliség és aktivitás

Részletesebben

Budapesti Corvinus Egyetem Közgazdaságtudományi Kar Eötvös Loránd Tudományegyetem Természettudományi Kar

Budapesti Corvinus Egyetem Közgazdaságtudományi Kar Eötvös Loránd Tudományegyetem Természettudományi Kar Budapesti Corvinus Egyetem Közgazdaságtudományi Kar Eötvös Loránd Tudományegyetem Természettudományi Kar Hermán Dániel Nyugdíjváromány el rejelzése egyéni paraméterek alapján MSc. szakdolgozat Témavezet

Részletesebben

Komputer statisztika gyakorlatok

Komputer statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes

Részletesebben

8. előadás EGYÉNI KERESLET

8. előadás EGYÉNI KERESLET 8. előadás EGYÉNI KERESLET Kertesi Gábor Varian 6. fejezete, enyhe változtatásokkal 8. Bevezető megjegyzések Az elmúlt héten az optimális egyéni döntést elemeztük grafikus és algebrai eszközökkel: a preferenciatérkép

Részletesebben

Méréssel kapcsolt 3. számpélda

Méréssel kapcsolt 3. számpélda Méréssel kapcsolt 3. számpélda Eredmények: m l m 1 m 3 m 2 l l ( 2 m1 m2 m l = 2 l2 ) l 2 m l 3 = m + m2 m1 Méréssel kapcsolt 4. számpélda Állítsuk össze az ábrán látható elrendezést. Használjuk a súlysorozat

Részletesebben

FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE

FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE FELTÉTELES VALÓSZÍNŰSÉG, TELJES VALÓSZÍNŰSÉG TÉTELE, BAYES TÉTELE 1. Egy alkalmassági vizsgálat adatai szerint a vizsgált személyeken 0,05 valószínűséggel mozgásszervi és 0,03 valószínűséggel érzékszervi

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

Rejtett részcsoportok és kvantum-számítógépek

Rejtett részcsoportok és kvantum-számítógépek Ivanyos Gábor MTA SZTAKI MTA, 2007 május 23. Kvantum bitek Kvantum kapuk Kvantum-ármakörök Tartalom 1 Kvantum bitek és kvantum-áramkörök Kvantum bitek Kvantum kapuk Kvantum-ármakörök 2 Háttér Deníció,

Részletesebben

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1

Részletesebben

Online tanulás nemstacionárius Markov döntési folyamatokban

Online tanulás nemstacionárius Markov döntési folyamatokban Online tanulás nemstacionárius Markov döntési folyamatokban Neu Gergely Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem PhD értekezés tézisei Témavezető:

Részletesebben

Differenciálegyenletek a hétköznapokban

Differenciálegyenletek a hétköznapokban Differenciálegyenletek a hétköznapokban BSc Szakdolgozat Írta: Gondos Réka Matematika BSc, alkalmazott matematikus szakirány Témavezető: Besenyei Ádám adjunktus Alkalmazott Analízis és Számításmatematikai

Részletesebben

Biostatisztika e-book Dr. Dinya Elek

Biostatisztika e-book Dr. Dinya Elek TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok

Részletesebben

Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok

Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 05/08/2012 Beadás ideje: 05/11/2012 Érdemjegy: 1 1. A mérés

Részletesebben

Fókuszált fénynyalábok keresztpolarizációs jelenségei

Fókuszált fénynyalábok keresztpolarizációs jelenségei Fókuszált fénynyalábok keresztpolarizációs jelenségei K házi-kis Ambrus, Klebniczki József Kecskeméti F iskola GAMF Kar Matematika és Fizika Tanszék, 6000 Kecskemét, Izsáki út 10. Véges transzverzális

Részletesebben

VII. Gyakorlat: Használhatósági határállapotok MSZ EN 1992 alapján Betonszerkezetek alakváltozása és repedéstágassága

VII. Gyakorlat: Használhatósági határállapotok MSZ EN 1992 alapján Betonszerkezetek alakváltozása és repedéstágassága VII. Gyakorlat: Használhatósági határállapotok MSZ EN 199 alapján Betonszerkezetek alakváltozása és repedéstágassága Készítették: Kovács Tamás és Völgyi István -1- Készítették: Kovács Tamás, Völgyi István

Részletesebben

Beton-nyomószilárdság értékelésének alulmaradási tényezője

Beton-nyomószilárdság értékelésének alulmaradási tényezője Beton-nyomószilárdság értékelésének alulmaradási tényezője Acceptance constant of concrete compressive strength evaluation Dr. KAUSAY Tibor okl. vasbetonépítési szakmérnök, címzetes egyetemi tanár Budapesti

Részletesebben

Madarak kollektı v lesza lla sa nak vizsga lata sza mı to ge pes szimula cio val

Madarak kollektı v lesza lla sa nak vizsga lata sza mı to ge pes szimula cio val Szakdolgozat Madarak kollektı v lesza lla sa nak vizsga lata sza mı to ge pes szimula cio val Ferdinandy Bence Fizika BSc., fizikus szakira ny III. e vfolyam Te mavezeto k: Prof. Vicsek Tama s Kuna l Bhatta

Részletesebben

ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ

ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ Szolnoki Főiskola Üzleti Fakultás, 5000 Szolnok, Tiszaligeti sétány ÚTMUTATÓ A MÓDSZERTANI SZIGORLAT LETÉTELÉHEZ A 4/1996. (I. 18.) Korm. rendelet a közgazdasági felsőoktatás alapképzési szakjainak képesítési

Részletesebben

Matematika POKLICNA MATURA

Matematika POKLICNA MATURA Szakmai érettségi tantárgyi vizsgakatalógus Matematika POKLICNA MATURA A tantárgyi vizsgakatalógus a 0-es tavaszi vizsgaidőszaktól kezdve alkalmazható mindaddig, amíg új nem készül. A katalógus érvényességét

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 6. elıadás (11-12. lecke) Szórás-stabilizáló transzformációk (folyt.), t-próbák 11. lecke További variancia-stabilizáló transzformációk Egy-mintás t-próba Szórás-kiegyenlítı

Részletesebben

1. Kivonat 3. 2. Bevezetés 5. 3. Káoszelmélet [1, 2] 6

1. Kivonat 3. 2. Bevezetés 5. 3. Káoszelmélet [1, 2] 6 1 Contents 1. Kivonat 3 2. Bevezetés 5 3. Káoszelmélet [1, 2] 6 4. A Bloch-egyenlet iteratív megoldása 10 4.1. Az iterációs séma 10 4.2. Ljapunov-exponens számítás 12 4.3. Példák 14 4.3.1. A számítás kiindulási

Részletesebben

Természeti erőforrások vagyonértékelése

Természeti erőforrások vagyonértékelése Gazdaság- és Társadalomtudományi Kar TÁMOP 4.2.1.B-11/2/KMR-2011-0003 Természeti erőforrások vagyonértékelése (Témaösszefoglaló) Összeállította: Szűcs István DSc alprojekt vezető Ugrósdy György PhD alprojekt

Részletesebben

4. előadás. Vektorok

4. előadás. Vektorok 4. előadás Vektorok Vektorok bevezetése Ha adottak a térben az A és a B pontok, akkor pontosan egy olyan eltolás létezik, amely A-t B- be viszi. Ha φ egy tetszőleges eltolás, akkor ez a tér minden P pontjához

Részletesebben

DIFFERENCIAEGYENLETEK

DIFFERENCIAEGYENLETEK DIFFERENCIAEGYENLETEK A gazdaság változómennyiségeit (jövedelem, fogyasztás, beruházás,...) általában bizonyos időszakonként (naponta, hetente, havonta, évente) figyeljük meg. Ha ezeket a megfigyeléseket

Részletesebben

4. A GYÁRTÁS ÉS GYÁRTÓRENDSZER TERVEZÉSÉNEK ÁLTALÁNOS MODELLJE (Dudás Illés)

4. A GYÁRTÁS ÉS GYÁRTÓRENDSZER TERVEZÉSÉNEK ÁLTALÁNOS MODELLJE (Dudás Illés) 4. A GYÁRTÁS ÉS GYÁRTÓRENDSZER TERVEZÉSÉNEK ÁLTALÁNOS MODELLJE (Dudás Illés) ). A gyártás-előkészítés-irányítás funkcióit, alrendszereit egységbe foglaló (általános gyártási) modellt a 4.1. ábra szemlélteti.

Részletesebben

Kaotikus vagy csak összetett? Labdák pattogása lépcs n Gruiz Márton, Meszéna Tamás, Tél Tamás. 1. Bevezetés. 2. A modell

Kaotikus vagy csak összetett? Labdák pattogása lépcs n Gruiz Márton, Meszéna Tamás, Tél Tamás. 1. Bevezetés. 2. A modell . Bevezetés Kaotikus vagy csak összetett? Labdák pattogása lépcs n Gruiz Márton, Meszéna Tamás, Tél Tamás Egy osztrák gimnáziumi tankönyvben több, közismerten kaotikus mozgással járó jelenség bemutatása

Részletesebben

2. Interpolációs görbetervezés

2. Interpolációs görbetervezés 2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,

Részletesebben

Csicsman József-Sipos Szabó Eszter csicsman@calculus.hu, siposeszti@gmail.com. Matematikai alapok az adatbányászati szoftverek első megismeréséhez

Csicsman József-Sipos Szabó Eszter csicsman@calculus.hu, siposeszti@gmail.com. Matematikai alapok az adatbányászati szoftverek első megismeréséhez Csicsman József-Sipos Szabó Eszter csicsman@calculus.hu, siposeszti@gmail.com Matematikai alapok az adatbányászati szoftverek első megismeréséhez 1.1 A statisztikai sokaság A statisztika a valóság számszerű

Részletesebben

Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés

Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés 6. MENETMEGMUNKÁLÁSOK A csavarfelületek egyrészt gépelemek összekapcsolására (kötő menetek), másrészt mechanizmusokban mozgás átadásra (kinematikai menetek) szolgálnak. 6.1. Gyártási eljárások a) Öntés

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 6. MA3-6 modul A statisztika alapfogalmai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999.

Részletesebben

Kibernetika korábbi vizsga zárthelyi dolgozatokból válogatott tesztkérdések Figyelem! Az alábbi tesztek csak mintául szolgálnak a tesztkérdések megoldásához, azaz a bemagolásuk nem jelenti a tananyag elsajátítását

Részletesebben

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I. Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

Alapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom

Alapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom Alapfogalmak áttekintése Pszichológiai statisztika, 1. alkalom Hipotézisek Milyen a jó null hipotézis?? H0: Léteznek kitőnı tanuló diszlexiások.? H1: Nem léteznek. Sokkal inkább: H0: Nincs diszlexiás kitőnı

Részletesebben

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPEST, 1997 A szerzők Lineáris Algebra, illetve Lineáris Algebra II c jegyzeteinek átdolgozott

Részletesebben

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002.

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002. INFORMÁCIÓELMÉLET Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2002. i TARTALOMJEGYZÉK. Bevezetés 2. Az információmennyiség 6 3. Az I-divergencia 3 3. Információ és bizonytalanság

Részletesebben

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a

Részletesebben

TMDK-DOLGOZAT. Stacionárius és rádiófrekvenciás elektromágneses terek vizsgálata a momentumok módszerének segítségével

TMDK-DOLGOZAT. Stacionárius és rádiófrekvenciás elektromágneses terek vizsgálata a momentumok módszerének segítségével TMDK-DOLGOZAT Stacionárius és rádiófrekvenciás elektromágneses terek vizsgálata a momentumok módszerének segítségével Írta: M.Sc. szakos villamosmérnök hallgató Konzulens: Friedl Gergely doktorandusz hallgató,

Részletesebben

EÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN

EÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN EÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN SZAKDOLGOZAT Készítette: Bényász Melinda Matematika Bsc Matematikai elemz szakirány Témavezet : Kósa Balázs Informatikai Kar Információs

Részletesebben

Gravitáció mint entropikus erő

Gravitáció mint entropikus erő Gravitáció mint entropikus erő Takács Gábor MTA-BME Lendület Statisztikus Térelméleti Kutatócsoport ELFT Elméleti Fizikai Iskola Szeged, Fizikai Intézet 2012. augusztus 28. Vázlat 1. Entropikus erő: elemi

Részletesebben

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 4 2.1. A függvény

Részletesebben

MATEMATIKA FELADATGYŰJTEMÉNY

MATEMATIKA FELADATGYŰJTEMÉNY Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................

Részletesebben

KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016.

KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016. KÉRDÉSEK_GÉPELEMEKBŐL_TKK_2016. 1.Tűréseknek nevezzük: 2 a) az anyagkiválasztás és a megmunkálási eljárások előírásait b) a gépelemek nagyságának és alakjának előírásai c) a megengedett eltéréseket az

Részletesebben

Pénzügyi matematika. Medvegyev Péter. 2013. szeptember 8.

Pénzügyi matematika. Medvegyev Péter. 2013. szeptember 8. Pénzügyi matematika Medvegyev Péter 13. szeptember 8. Az alábbi jegyzet a korábbi ötéves gazdaságmatematikai képzés keretében a Corvinus egyetemen tartott matematikai el adásaim kib vített verziója. A

Részletesebben

V. Gyakorlat: Vasbeton gerendák nyírásvizsgálata Készítették: Friedman Noémi és Dr. Huszár Zsolt

V. Gyakorlat: Vasbeton gerendák nyírásvizsgálata Készítették: Friedman Noémi és Dr. Huszár Zsolt . Gyakorlat: asbeton gerenák nyírásvizsgálata Készítették: Frieman Noémi és Dr. Huszár Zsolt -- A nyírási teherbírás vizsgálata A nyírási teherbírás megfelelő, ha a következő követelmények minegyike egyiejűleg

Részletesebben