Funkcionálanalízis. Általánosított függvények Disztribúciók el adás május Lineáris funkcionál
|
|
- Botond Boros
- 8 évvel ezelőtt
- Látták:
Átírás
1 Funkcionálanalízis el adás 212. május Általánosított függvények Disztribúciók Lineáris funkcionál Legyen C () az függvénytér, amely a végtelen sokszor dierenciálható, kompakt tartójú függvényeket tartalmazza: ϕɛc (), ha ϕ : végtelen sokszor dierenciálható, és tartója (support) supp(ϕ) := {x : ϕ(x) } kompakt. (Más szóval, I véges intervallum, melyre ϕ(x) = ha xɛ I.) C () lineáris tér. A továbbiakban rövid jelölést használunk D := C (). Deníció. A (ϕ n ) D sorozat konvergens (jelölés ϕ n ϕ) ha: 1) I véges, melyre supp ϕ n I n. 2) ϕ n (k) ϕ (k) egyenletesen k-ra, azaz minden derivált egyenletesen konvergál a határérték deriváltjaihoz az I intervallumban. Deníció. A T : D funkcionál általánosított függvény, ha: 1) lineáris: T (αϕ + βψ) = αt (ϕ) + βt (ψ), ha ϕ, ψɛd és α, βɛ. 2) folytonos: ϕ n ϕ T ϕ n T ϕ. Tehát az általánosított függvény egy speciális lineáris funkcionál. Az általánosított függvény elnevezés mellett használjuk a disztribúció elnevezést is. 1
2 Jelölés. D := { disztribúciók }. 1. Példa. f : tetsz leges folytonos függvény. A T f hozzárendelést így adjuk meg: Ekkor T f : D disztribúció. ϕ T f (ϕ) := fϕdx. 2. Példa. T (ϕ) := ϕ() nevezetes disztribúció. Ehhez kapcsolódó jelölések: δ(ϕ) := ϕ(), δ a (ϕ) := ϕ(a) Fizikában néha ezt a disztribúciót az el z példához hasonlóan jelölik: δ(ϕ) = (Mintha olyan lenne...) 3. Példa. f : tetsz leges lokálisan integrálható függvény. T f : D, T f (ϕ) := fϕdx ϕ(x)δ(x)dx. Jelölje L 1 loc () az -n értelmezett, lokálisan integrálható függvények halmazát. Minden fɛl 1 loc () "közönséges" függvény egyben általánosított függvény is. Ebben az esetben a "közönséges" függvényt és az általánosított függvényt ( megfelel lineáris funkcionált) azonosnak vesszük. Deníció. Ha a T ɛd disztribúcióhoz van fɛl 1 loc () függvény, melyre T = T f, akkor T reguláris disztribúció. 4. Példa. Dirac-δ disztribúció. T (ϕ) = ϕ() Ehhez nincs megfelel közönséges függvény. Ez a disztribúció nem reguláris. Disztribúciók deriválása A deníció el tt nézzük meg, mit remélhetünk. Deriválásnál elvárjuk, hogy ha f dierenciálható függvény, akkor legyen (T f ) = T f. Eszerint: T f (ϕ) = f ϕdt = fϕ } {{ } = fϕ dx = T f (ϕ ) Deníció. T ɛd deriváltja T ɛd, melyet így értelmezünk: T (ϕ) := T (ϕ ).
3 Tehát a T derivált egy olyan disztribúció ( lineáris funkcionál), mely tetsz leges ϕɛdhez a fenti módon rendel értéket. Következmény. Minden T ɛd akárhányszor deriválható, és k-dik deriváltja k T (ϕ) = (1) k T (ϕ (k) ). 5. Példa. A Dirac delta deriváltja δ(ϕ) = δ (ϕ) = ϕ (). 6. Példa. A Heaviside-függvény (egység-ugrás): A hozzá tartozó disztribúció: Ennek deriváltja: (T H ) (ϕ) = T H (ϕ ) = H(x) = T H (ϕ) =, x < 1, x [ ϕ (x)dx = ϕ(x)dx. ] ϕ(x) = + ϕ() = δ(ϕ) Tehát az egység-ugrás függvény deriváltja a Dirac delta általánosított függvény. 7. Példa. Ha az f függvény szakaszonként folytonosan dierenciálható - például ugrás van benne, - akkor általánosított értelemben vett deriváltjában megjelenik a Dirac delta függvény. Ezen az ábrán az f függvényben az x pontban egy m nagyságú ugrás van. Formálisan azt írhatjuk, hogy f = f + mh(x + x ), ahol f folytonosan dierenciálható, H pedig az egység-ugrás függvény. Ekkor a disztribúció értelemben vett derivált: f = f + mδ x.
4 Deníció. Az fɛl 1 loc-hez tartozó gyenge derivált gɛl 1 loc, ha: Állítás. ϕɛd : fϕ dx = gϕ dx - Az f függvény gyenge deriváltja - ha létezik - akkor egyértelm. - Ha f dierenciálható, akkor gyenge deriváltja g = f. - Ha az f függvényhez tartozó T f disztribúció deriváltja reguláris, éspedig T f = T g, akkor f gyenge deriváltja g. 8. Példa. Az f(x) = x függvény gyenge deriváltja? 1. ábra. Az abszolút érték függvény klasszikus értelemben nem deriválható. A denícióban megfogalmazott tulajdonság szerint az - egyel re ismeretlen - g függvényre A baloldalt átalakítva: x ϕ (x)dx = = [ xϕ(x) ] + x ϕ (x)dx = g(x)ϕ(x) dx. (x)ϕ (x)dx xϕ (x)dx = (1) ϕ(x)dx + [ xϕ(x) ] + 1 ϕ(x)dx. A függvény megváltozások elt nnek, csak a két integrál marad végül: x ϕ (x)dx = g(x)ϕ(x) dx, g(x) = Tehát g(x) = sgn(x) m.m. 1 ha x < +1 ha x >
5 2. ábra. Az abszolút érték függvény gyenge deriváltja. 9. Példa. Legyen f a racionális számok karakterisztikus függvénye: 1, xɛq f(x) = χ Q (x) =, egyébként Ennek gyenge deriváljta g(x) = (hiszen f = m.m). 1. Példa. Az f(x) = függvény gyenge deriváltja g(x) = H(x). 1, x < 1 + x, x
Valószín ségelmélet házi feladatok
Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott
RészletesebbenAnalízisfeladat-gyűjtemény IV.
Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította
RészletesebbenAnalízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév
Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra
RészletesebbenAnalízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:
RészletesebbenNevezetes függvények
Nevezetes függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt
RészletesebbenCsődvalószínűségek becslése a biztosításban
Csődvalószínűségek becslése a biztosításban Diplomamunka Írta: Deák Barbara Matematikus szak Témavezető: Arató Miklós, egyetemi docens Valószínűségelméleti és Statisztika Tanszék Eötvös Loránd Tudományegyetem,
RészletesebbenKockázati folyamatok. Sz cs Gábor. Szeged, 2012. szi félév. Szegedi Tudományegyetem, Bolyai Intézet
Kockázati folyamatok Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet Szeged, 2012. szi félév Sz cs Gábor (SZTE, Bolyai Intézet) Kockázati folyamatok 2012. szi félév 1 / 48 Bevezetés A kurzus céljai
Részletesebben86 MAM112M előadásjegyzet, 2008/2009
86 MAM11M előadásjegyzet, 8/9 5. Fourier-elmélet 5.1. Komplex trigonometrikus Fourier-sorok Tekintsük az [,], C Hilbert-teret, azaz azoknak a komplex értékű f : [,] C függvényeknek a halmazát, amelyek
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten ANALÍZIS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Nevezetes halmazok
RészletesebbenMatematika Tanszék MOE (PE MIK) MMAM143VB 1 / 34
Valószín½uségszámítás és matematikai statisztika Mihálykóné Orbán Éva Matematika Tanszék MOE (PE MIK) MMAM143VB 1 / 34 Valószín½uségi változók számérték½u jellemz½oi 1 várható érték 2 szórásnégyzet/szórás
RészletesebbenTómács Tibor. Matematikai statisztika
Tómács Tibor Matematikai statisztika Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika Eger, 01 Szerző: Dr. Tómács Tibor főiskolai docens Eszterházy Károly
RészletesebbenElMe 6. labor. Helyettesítő karakterisztikák: Valódi karakterisztika 1 pontosabb számításoknál 2 közelítő számításoknál 3 ideális esetben
ElMe 6. labor 1. Rajzolja fel az ideális és a valódi dióda feszültség-áram jelleggörbéjét! 5. Hogyan szokás közelíteni a számítások során a dióda karakterisztikáját? 4. Rajzolja fel a dióda karakterisztikáját,
RészletesebbenMITISZK Miskolc-Térségi Integrált Szakképző Központ
MITISZK Miskolc-Térségi Integrált Szakképző Központ VALÓSZÍNŰSÉG-SZÁMÍTÁS ÉS MATEMATIKAI STATISZTIKA FEGYVERNEKI SÁNDOR Miskolci Egyetem Gépészmérnöki és Informatikai Kar Készült a HEFOP-3.2.2-P.-2004-10-0011-/1.0
RészletesebbenMIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június
MIKROÖKONÓMIA I Készült a TÁMOP-412-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
RészletesebbenFourier sorok február 19.
Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható
RészletesebbenFunkcionálanalízis. Gyakorló feladatok március 22. Metrikus tér, normált tér és skalárszorzat tér
Funkcionálanalízis Gyakorló feladatok 2017 március 22 Metrikus tér, normált tér és skalárszorzat tér N1 Metrikát deniálnak-e R-en az alábbi függvények: (a) d(x, y) = x y (b) d(x, y) = x y (c) d(x, y) =
RészletesebbenAz analízis néhány alkalmazása
Az analízis néhány alkalmazása SZAKDOLGOZAT Eötvös Loránd Tudományegyetem Természettudományi kar Szerz : Fodor Péter Szak: Matematika Bsc Szakirány: Matematikai elemz Témavezet : Sikolya Eszter, adjunktus
RészletesebbenMATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
RészletesebbenMatematikai programozás gyakorlatok
VÁRTERÉSZ MAGDA Matematikai programozás gyakorlatok 2003/04-es tanév 1. félév Tartalomjegyzék 1. Számrendszerek 3 1.1. Javasolt órai feladat.............................. 3 1.2. Javasolt házi feladatok.............................
RészletesebbenSzéchenyi István Egyetem. Alkalmazott Mechanika Tanszék
Széchenyi István Egyetem Szerkezetek dinamikája Alkalmazott Mechanika Tanszék Elméleti kérdések egyetemi mesterképzésben (MSc) résztvev járm mérnöki szakos hallgatók számára 1. Merev test impulzusának
RészletesebbenMATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.
Részletesebben1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
RészletesebbenFELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b.
FELADATOK A RELÁCIÓK, GRÁFOK TÉMAKÖRHÖZ 1. rész A feladatsorban használt jelölések: R = {r R r < 0}, R + = {r R r>0}, [a; b] = {r R a r b}, ahol a, b R és a b. 4.1. Feladat. Adja meg az α = {(x, y) x +
RészletesebbenFunkcionálanalízis az alkalmazott matematikában
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Simon Péter Funkcionálanalízis az alkalmazott matematikában egyetemi jegyzet A jegyzet az ELTE IK 2010. évi Jegyzettámogatási pályázat támogatásával készült
Részletesebbenmatematikai statisztika 2006. október 24.
Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................
Részletesebben2. Interpolációs görbetervezés
2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,
RészletesebbenTŰZOLTÓ TECHNIKAI ESZKÖZÖK, FELSZERELÉSEK XI. FEJEZET TŰZOLTÓ SUGÁRCSÖVEK
1 TŰZOLTÓ TECHNIKAI ESZKÖZÖK, FELSZERELÉSEK XI. FEJEZET TŰZOLTÓ SUGÁRCSÖVEK 1. A TŰZOLTÓ SUGÁRCSÖVEK TŰZVÉDELMI MŰSZAKI KÖVETELMÉNYEI. A fejezet tárgya a tűzoltás céljára alkalmazható, legfeljebb 1,6 MPa
RészletesebbenGAZDASÁGI MATEMATIKA I.
GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z
RészletesebbenÖNJAVÍTÓ AGGREGÁLÁS SZENZORHÁLÓZATOKBAN ÉS AGGREGÁTOR NODE VÁLASZTÁS. Schaffer Péter. Tézisfüzet. Konzulens: Buttyán Levente, Ph.D.
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM HÍRADÁSTECHNIKAI TANSZÉK ÖNJAVÍTÓ AGGREGÁLÁS ÉS AGGREGÁTOR NODE VÁLASZTÁS SZENZORHÁLÓZATOKBAN Tézisfüzet Schaffer Péter Konzulens: Buttyán Levente, Ph.D.
RészletesebbenEgy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged
Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást
RészletesebbenFunkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
RészletesebbenParciális dierenciálegyenletek
Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok
RészletesebbenTermészetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5
1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat
RészletesebbenMiskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás
RészletesebbenNUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó
FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright Az Olvasó most egy egyetemi jegyzetet tart
RészletesebbenBemenet modellezése II.
Bemenet modellezése II. Vidács Attila 2005. november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási
RészletesebbenStatisztikai alapismeretek (folytatás)
Statisztikai alapismeretek (folytatás) 3. elıadás (5-6. lecke) Az alapsokaság fıbb jellemzıi () 5. lecke Folytonos változó megoszlásának jellemzése A sokasági átlag és szórás Átlag és szórás tulajdonságai
RészletesebbenValószínűségszámítás
Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Valószínűségszámítás programtervező informatikusok részére Eger, 010. szeptember 0. Tartalomjegyzék 1. Véletlen események...............................
RészletesebbenValószínűségszámítás és statisztika. István Fazekas
Valószínűségszámítás és statisztika István Fazekas Tartalomjegyzék 1. fejezet. A valószínűségszámítás alapfogalmai 5 1.1. A valószínűség 5 1.2. Halmazalgebrák és σ-algebrák 11 1.3. A feltételes valószínűség
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
Részletesebben2. előadás: További gömbi fogalmak
2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással
RészletesebbenCsAvArbiztosítási rendszer
CsAvArbiztosítási rendszer A mûködési elv Az alátétek a lejtős fogazású belső felülettel, egymással szemben összeragasztva kerülnek értékesítésre, így megkönnyítve az első felszerelést és megakadályozva
Részletesebben54 582 01 0000 00 00 Épületgépész technikus Épületgépész technikus 31 582 09 0010 31 01 Energiahasznosító berendezés szerelője
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
RészletesebbenOktatási segédlet. Acél- és alumínium-szerkezetek hegesztett kapcsolatainak méretezése fáradásra. Dr. Jármai Károly.
Oktatási segédlet Acél- és alumínium-szerkezetek hegesztett kapcsolatainak méretezése fáradásra a Létesítmények acélszerkezetei tárgy hallgatóinak Dr. Jármai Károly Miskolci Egyetem 013 1 Acél- és alumínium-szerkezetek
RészletesebbenJátékelmélet és pénzügyek
Játékelmélet és pénzügyek Czigány Gábor 2013. május 30. Eötvös Lóránd Tudományegyetem - Budapesti Corvinus Egyetem Biztosítási és pénzügyi matematika mesterszak Témavezet : Dr. Csóka Péter Tartalomjegyzék
RészletesebbenElméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
RészletesebbenMATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ
MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a
RészletesebbenVÉGTELENÜL RENDEZETLEN KRITIKUS VISELKEDÉS Iglói Ferenc, Kovács István MTA Wigner Fizikai Kutatóközpont
VÉGTELENÜL RENDEZETLEN KRITIKUS VISELKEDÉS Iglói Ferenc, Kovács István MTA Wigner Fizikai Kutatóközpont Elôzmények A fázisátalakulások és kritikus jelenségek a mindennapi életben is gyakran elôforduló
RészletesebbenElektromágneses hullámok - Hullámoptika
Bevezetés a modern fizika fejezeteibe 2. (c) Elektromágneses hullámok - Hullámoptika Utolsó módosítás: 2015. január 17. 1 Az elektromágneses hullámok visszaverődési és törési törvényei (1) Kérdés: Mi történik
RészletesebbenPénzügyi matematika. Medvegyev Péter. 2013. szeptember 8.
Pénzügyi matematika Medvegyev Péter 13. szeptember 8. Az alábbi jegyzet a korábbi ötéves gazdaságmatematikai képzés keretében a Corvinus egyetemen tartott matematikai el adásaim kib vített verziója. A
RészletesebbenElektromágneses terek gyakorlat - 6. alkalom
Elektromágneses terek gyakorlat - 6. alkalom Távvezetékek és síkhullám Reichardt András 2015. április 23. ra (evt/hvt/bme) Emt2015 6. alkalom 2015.04.23 1 / 60 1 Távvezeték
RészletesebbenFourier-transzformáció
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Simon Péter Fourier-transzformáció Ez a tanulmány az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával készült (a támogatás száma:
Részletesebben5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?
5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,
Részletesebbenszerepet tölt be. A nagy evolúciós átmenetek szinte minden esetben tekinthetők
Vélemény Szolnoki Attila Együttműködés térbeli koevolúciós modellekben című MTA doktori értekezéséről. 1. A témaválasztásról Az együttműködés a biológiai összes szerveződési szintjén kulcsfontosságú szerepet
RészletesebbenÖsszefoglaló valószínűségszámításból a Gépészmérnök Msc szak hallgatói számára
Összefoglaló valószínűségszámításból a Gépészmérnök Msc szak hallgatói számára Matematikai alapszöveg: Bálint Péter, BME Differenciálegyenletek Tanszék Konzultáció, kiegészítések gépészmérnöki szempontok
RészletesebbenKecskeméti Fıiskola GAMF Kar Informatika Tanszék. Johanyák Zsolt Csaba
Kecskeméti Fıiskola GAMF Kar Informatika Tanszék Johanyák Zsolt Csaba 003 Tartalomjegyzék. Bevezetés.... A megbízhatóság fogalmai..... A termék idıtıl függı képességei...... Használhatóság /Üzemkészség/
RészletesebbenBináris keres fák kiegyensúlyozásai. Egyed Boglárka
Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi
RészletesebbenStatisztika I. 6. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 6. előadás Előadó: Dr. Ertsey Imre GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE szorosan kapcsolódik a szóródás elemzéshez, elméleti
RészletesebbenJANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok
JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet
RészletesebbenKÉRDÉSEK_TECHNOLÓGIA MUNKATERÜLET: GÉPÉSZET ÉS FÉMMEGMUNKÁLÁS OKTATÁSI PROFIL: LAKATOS
KÉRDÉSEK_TECHNOLÓGIA MUNKATERÜLET: GÉPÉSZET ÉS FÉMMEGMUNKÁLÁS OKTATÁSI PROFIL: LAKATOS 1. Egy vagy több nagyság összehasonlítását egy másik azonos nagysággal, a következő képen nevezzük: 2 a) mérés b)
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenA nyírás ellenőrzése
A nyírás ellenőrzése A nyírási ellenállás számítása Ellenőrzés és tervezés nyírásra 7. előadás Nyírásvizsgálat repedésmentes állapotban (I. feszültségi állapotban) A feszültségek az ideális keresztmetszetet
Részletesebben19. Hasításos technikák (hash-elés)
19. Hasításos technikák (hash-elés) Példák: 1. Ha egy telefon előfizetőket a telefonszámaikkal azonosítjuk, mint kulcsokkal, akkor egy ritkán kitöltött kulcstartományhoz jutunk. A telefonszám tehát nem
RészletesebbenJANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. ***************
JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS II. Folytonosság, differenciálhatóság *************** Pécs, 1996 Lektorok: DR. SZÉKELYHIDI LÁSZLÓ egyetemi tanár, a mat. tud. doktora DR. SZILI LÁSZLÓ
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
RészletesebbenMODELLEK ÉS ALGORITMUSOK ELŐADÁS
MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
RészletesebbenKonvex optimalizálás feladatok
(1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy
RészletesebbenMesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.)
Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Bizonytalanságkezelés: Az eddig vizsgáltakhoz képest teljesen más világ. A korábbi problémák nagy része logikai,
RészletesebbenGAZDASÁGI STATISZTIKA
GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK
RészletesebbenStatisztikai módszerek
Statisztikai módszerek A hibaelemzı módszereknél azt néztük, vannak-e kiugró, kritikus hibák, amelyek a szabályozás kivételei. Ezekkel foglalkozni kell; minıségavító szabályozásra van szükség. A statisztikai
RészletesebbenMikroökonómia I. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét PREFERENCIÁK, HASZNOSSÁG 2. RÉSZ
MIKROÖKONÓMI I. ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia I. PREFERENCIÁK, HSZNOSSÁG 2. RÉSZ Készítette: K hegyi Gergely, Horn Dániel Szakmai felel s: K hegyi Gergely 2010. június tananyagot
Részletesebben4. LECKE: DÖNTÉSI FÁK - OSZTÁLYOZÁS II. -- Előadás. 4.1. Döntési fák [Concepts Chapter 11]
1 4. LECKE: DÖNTÉSI FÁK - OSZTÁLYOZÁS II. -- Előadás 4.1. Döntési fák [Concepts Chapter 11] A döntési fákon alapuló klasszifikációs eljárás nagy előnye, hogy az alkalmazása révén nemcsak egyedenkénti előrejelzést
RészletesebbenFerenczi Dóra. Sorbanállási problémák
Eötvös Loránd Tudományegyetem Természettudományi Kar Ferenczi Dóra Sorbanállási problémák BSc Szakdolgozat Témavezet : Arató Miklós egyetemi docens Valószín ségelméleti és Statisztika Tanszék Budapest,
Részletesebben4. A GYÁRTÁS ÉS GYÁRTÓRENDSZER TERVEZÉSÉNEK ÁLTALÁNOS MODELLJE (Dudás Illés)
4. A GYÁRTÁS ÉS GYÁRTÓRENDSZER TERVEZÉSÉNEK ÁLTALÁNOS MODELLJE (Dudás Illés) ). A gyártás-előkészítés-irányítás funkcióit, alrendszereit egységbe foglaló (általános gyártási) modellt a 4.1. ábra szemlélteti.
RészletesebbenSZAKDOLGOZAT. A klasszikus összhangzattan axiomatikája. Tóbiás András. 2014. március 14.
SZAKDOLGOZAT A klasszikus összhangzattan axiomatikája Tóbiás András 2014. március 14. Témavezet : G. Horváth Ákos egyetemi docens BME Matematika Intézet Geometria Tanszék BME 2014 Tartalomjegyzék 1. A
RészletesebbenSoukup Dániel, Matematikus Bsc III. év Email cím: dsoukup123@gmail.com Témavezető: Szentmiklóssy Zoltán, egyetemi adjunktus
Síktopológiák a Sorgenfrey-egyenes ötletével Soukup Dániel, Matematikus Bsc III. év Email cím: dsoukup123@gmail.com Témavezető: Szentmiklóssy Zoltán, egyetemi adjunktus 1. Bevezetés A Sorgenfrey-egyenes
RészletesebbenBrückler Zita Flóra. Lineáris rendszerek integrálása
Eötvös Loránd Tudományegyetem Természettudományi Kar Brückler Zita Flóra Lineáris rendszerek integrálása BSc szakdolgozat Témavezető: Dr. Kovács Sándor Numerikus Analízis Tanszék Budapest, 2012 Köszönetnyilvánítás
RészletesebbenEgzisztenciatételek a differenciálegyenletek elméletéből
Egzisztenciatételek a differenciálegyenletek elméletéből Bodó Ágnes Matematika BSc Szakdolgozat Témavezető: Besenyei Ádám adjunktus Alkalmazott Analízis és Számításmatematikai Tanszék Budapest, 2012. Tartalomjegyzék
RészletesebbenFeladatok és megoldások a 6. heti eladshoz
Feladatok és megoldások a 6. heti eladshoz Építőkari Matematika A3 1. Ha E(X = 1 és D 2 (X = 5, határozzuk meg (a E[(2 + X 2 ], (b D 2 (4 + 3X értékét. 2. Legyenek X 1, X 2,... független azonos eloszlású
RészletesebbenAdy Endre Líceum Nagyvárad XII.C. Matematika Informatika szak ÉRINTVE A GÖRBÉT. Készítette: Szigeti Zsolt. Felkészítő tanár: Báthori Éva.
Ady Endre Líceum Nagyvárad XII.C. Matematika Informatika szak ÉRINTVE A GÖRBÉT Készítette: Szigeti Zsolt Felkészítő tanár: Báthori Éva 2010 október Dolgozatom témája a különböző függvények, illetve mértani
RészletesebbenMikrohullámok vizsgálata. x o
Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia
RészletesebbenKomputer statisztika gyakorlatok
Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes
RészletesebbenMatematikai és matematikai statisztikai alapismeretek
Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok
RészletesebbenMarcsa Dániel. M.Sc. szakos mechatronikus hallgató. Konzulens: Dr. Kuczmann Miklós, Ph.D. egyetemi docens. Elektromágneses Terek Laboratórium
Mágneses csapágy szimulációja végeselem-módszerrel Írta: Marcsa Dániel M.Sc. szakos mechatronikus hallgató Konzulens: Dr. Kuczmann Miklós, Ph.D. egyetemi docens Elektromágneses Terek Laboratórium Távközlési
Részletesebben2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával.
2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával. A MÉRÉS CÉLJA Az elterjedten alkalmazott hőmérséklet-érzékelők (ellenállás-hőmérő, termisztor, termoelem) megismerése,
RészletesebbenFAIPARI ALAPISMERETEK
Faipari alapismeretek középszint 1221 ÉRETTSÉGI VIZSGA 2014. október 13. FAIPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos
RészletesebbenHajlított vasbeton keresztmetszet ellenőrzése III. feszültségi állapotban
Hajlított vasbeton keresztmetszet ellenőrzése III. feszültségi állapotban /Határnyomaték számítás/ 4. előadás A számítást III. feszültségi állapotban végezzük. A számításokban feltételezzük, hogy: -a rúd
RészletesebbenDebrecen. Bevezetés A digitális képfeldolgozás közel hetven éves múlttal rendelkezik. A kezdeti problémák
VÁZKIJELÖLŐ ALGORITMUSOK A DIGITÁLIS KÉPFELDOLGOZÁSBAN Fazekas Attila Debrecen Összefoglalás: A digitális képfeldolgozásban vonalas ábrák feldolgozása során gyakran használatos a vázkijelölés. Ez a módszer
RészletesebbenÁttekintés a felhasznált lineáris algebrai ismeretekről.
Kiegészítés az előadássorozathoz. Áttekintés a felhasznált lineáris algebrai ismeretekről. A valószínűségszámítás (és a matematika) bizonyos kérdéseiben fontos szerepet játszik a lineáris algebra néhány
RészletesebbenÁltalános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László
Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication
RészletesebbenE B D C C DD E E g e 112 D 0 e B A B B A e D B25 B B K H K Fejhallgató Antenna A B P C D E 123 456 789 *0# Kijelzés g B A P D C E 0 9* # # g B B 52 Y t ] [ N O S T \ T H H G ? > < p B E E D 0 e B D
RészletesebbenAnalízis. Ha f(x) monoton nő [a;b]-n, és difható egy (a;b)-beli c helyen, akkor f'(c) 0
Analízis A differenciálszámítás középértéktételei: 1) Rolle-tétel: Ha f folytonos a korlátos és zárt [a;b] intervallumon, f diffható [a;b]-n és f(a) = f(b), akkor van egy a < c < b belső pont, ahol f'(c)
RészletesebbenDifferenciálegyenletek
DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)
RészletesebbenNemzetközi Magyar Matematikaverseny 2016
Nemzetközi Magyar Matematikaverseny 2016 2016 Fazekas, Berzsenyi Budapest Berzsenyi Dániel Gimnázium Fazekas Mihály Gimnázium Budapest 2. javított kiadás 2016. március 1115. Technikai el készítés, tördelés:
RészletesebbenFeszített vasbeton gerendatartó tervezése költségoptimumra
newton Dr. Szalai Kálmán "Vasbetonelmélet" c. tárgya keretében elhangzott előadások alapján k 1000 km k m meter m Ft 1 1 1000 Feszített vasbeton gerendatartó tervezése költségoptimumra deg A következőkben
RészletesebbenFélévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz
Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Dátum Téma beadandó Feb 12Cs Konvolúció (normális, Cauchy,
RészletesebbenKalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév
Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],
RészletesebbenL(f, s) def. n s. n=1. n=1
VÉLEMÉNY Harcos Gergely: Subconvex Bounds for Automorphic L-functions and Applications doktori értekezéséről A téma. Már négy évtizeddel ezelőtt propagálta Turán Pál a moduláris formák akkor itthon még
Részletesebben