Analízis. Ha f(x) monoton nő [a;b]-n, és difható egy (a;b)-beli c helyen, akkor f'(c) 0
|
|
- Kristóf Szőke
- 9 évvel ezelőtt
- Látták:
Átírás
1 Analízis A differenciálszámítás középértéktételei: 1) Rolle-tétel: Ha f folytonos a korlátos és zárt [a;b] intervallumon, f diffható [a;b]-n és f(a) = f(b), akkor van egy a < c < b belső pont, ahol f'(c) = 0 (vízszintes) 2) Lagrange-tétel: Ha f folytonos a korlátos és zárt [a;b], f diffható (a;b)-n, akkor létezik olyan a < c < b, hogy f'(c) = (f(b) - f(a))/(b a) 3) Cauchy-tétel: Legyen f,g folytonos a korlátos és zárt [a;b] szakaszon, és diffhatók (a;b)-n. Akkor létezik a <c< b közbülső hely, hogy f'(c)/g'(c) = (f(b) f(a))/(g(b) g(a)) Tetel: Legyen f folytonos a korlátos és zárt [a,b] szakaszon, diffható (a,b)-n. Akkor f konstans [a;b]-n. akkor és csak akkor, ha f'=0 (a;b)-n. Függvény mnotonitásvisgálata differenviálással: Ha f(x) monoton nő [a;b]-n, és difható egy (a;b)-beli c helyen, akkor f'(c) 0 Hasonlóan, ha f(x) monoton csökken [a;b]-n, és difható egy (a;b)-beli c helyen, akkor f'(c) 0. Tétel: Monotoitás vizsgálata deriválttal: Legyen I egy véges, vagy végtelen intervallum, végpontjaival, vagy anélkül. Legyen f(x) folytonos I-n, diifható az I belső pontjaiban. Akkor: a) f(x) monoton nő I-n akkor és csak akkor, ha f'(x) 0 I minden belső pontjában (csökken) ( ) b) f(x) szig. mon. nő I-n akkor és csak akkor, ha f'(x ) 0 I belső pontjaiban, és nincs (csökken) ( ) I-nek olyan részintervalluma, ahol f' 0 (konstans) c) Ha f'(x) > 0 I minden belső pontjában, akkor f szig. mon. nő I-n (<) (csökken) köv: a) f = konst f' = 0 belül b) f mon. nő f' 0 belül c) f szig mon nő f' > 0 belül (visszafelé nem igaz) asin (x) arcus sinus x [ arc sin (x), sin -1 (x)] sin (x): [-π/2; π/2] [-1;1] asin (x) [-1;1] [-π/2; π/2] sin (x) szig mon nő, mert sin' = cos > 0 (-π/2; π/2) intervallumon, zárt intervallumon még szigorúbb a monotonitás d/dx asin (x) = 1/ (1-x 2 ) x < 1 acos (x) arcus cosinus x [arc cos (x), cos -1 (x)] cos (x): [0; π] [-1; 1] acos (x): [-1; 1] [0; π] cos (x) szig mon csökken, mert cos' = - sin < 0 (0; π)-n d/dx acos (x) = -1/ (1-x 2 ) x < 1
2 köv: (asin + asin') = 0 (-1;1)-en, mert asin + acos = konstans [-1;1]-en asin (x) + acos (x) = π/2 [-1;1]-en megj: sin α = cos ( π/2-α) ezért π/2 asin (x) = acos (x) atan (x) arcus tangens x [arc tg (x); tan -1 (x)] tan (x): (-π/2; π/2) R atan (x): R (-π/2; π/2) tan (x) szig mon nő, mert tan' = 1/cos 2 > 0 d/dx atan (x) = 1/(1+x 2 ) x R acot (x) arcus cotangens x [arc ctg (x); cot -1 (x)] cot (x): (0; π) R acot (x): R (0; π) cot (x) szig mon csökken, mert cot' = - 1/sin 2 < 0 d/dx acot (x) = -1/(1+x 2 ) x R megj: sin α = cos ( π/2-α) cos α = sin (π/2-α) tan α = cot ( π/2-α) Áll: lim acot = π lim acot = Hiperbólikus függvények lim atan = -π/2 lim atan = π/2 - + sinh (x) = (e x - e -x )/2 sinus hiperbolikus [sh (x)] páratlan cosh (x) = (e x + e -x )/2 cosinus hiperbolikus [ch (x)] páros tanh (x) = sinh (x)/cosh (x) = (e x e -x )/(e x + e -x ) tangens hiperbolikus [th (x)]páratlan coth (x) = cosh (x)/sinh (x) = (e x + e -x )/(e x e -x ) x 0 cotangens hiperbolikus [cth (x)] páratlan d/dx cosh (x) = sinh (x) d/dx sinh (x) = cosh (x) Köv: a) cosh (x) szig mon nő [0; )-en, mert cosh' = sinh > 0, ha x > 0 (csökken (- ; 0]-n) < 0, ha x < 0 b) cosh x 1, mert x = 0-ban minimuma van c) sinh x szig mon nő R-en, mert sinh' = cosh 1 > 0 Megj: cosh 2 (x) sinh 2 (x) = 1 Addíciós képletek hiperbolikus függvényekre:
3 sinh (x+y) = sinh (x) cosh (y) + cosh (x) sinh (y) Spec: sinh (2x) = 2 sinh (x) cosh (x) cosh (x+y) = cosh (x) cosh (y) + sinh (x) sinh (y) Spec: cosh (2x) = cosh 2 (x) + sinh 2 (x) d/dx tanh (x) = 1/cosh 2 (x) d/dx coth (x) = -1/sinh 2 (x) x 0 Áll: lim tanh = lim coth = lim tanh = lim coth = lim coth = + lim coth = A hiperbolikus függvények inverzei: asinh (x) area sinus hiperbolikus x [arsh (x)] sinh' = cosh 1 sinh szig mon nő d/dx asinh (x) = 1/ (1+x 2 ) x R Áll: asinh (x) = ln (x+ (x 2 +1)) acosh (x) area cosinus hiperbolikus x [arch (x)] cosh' = sinh > 0, ha x > 0, ezért cosh szig mon nő, ha x 0 d/dx acosh (x) = 1/ (1-x 2 ) x > 1 Áll: acosh (x) = ln(x+ (x 2-1)) x 1 atanh (x) area tangens hiperbolikus x [arth (x)] tanh' = 1/cosh 2 > 0 tanh deriválható atanh: (-1; 1) R d/dx atanh (x) = 1/(1-x 2 ) x < 1 acoth (x) area cotangens hiperbolikus x [arcth (x)] d/dx acoth (x) = 1/(1-x 2 ) x > 1 Áll: atanh (x) = ½ ln ((1+x)/(1-x)) x < 1 acoth (x) = ½ ln ((1+x)/(1-x)) x > 1
4 Def: Az f [a;b] konvex, ha a grafikonjának bármely szelője a grafikon fölött halad Def: Az f (x) konkáv, ha minden szelője a grafikon alatt halad Tétel: Konvexitás tesztje az első deriválttal Legyen f folytonos a korlátos és zárt [a;b], diffható (a;b)-n. Akkor ekvivalens: a) f konvex [a;b]-n b) f' monoton nő (a;b)-n (csökken) c) grafikonjának bármely érintőegyenese a grafikon fölött halad (alatt) Tétel: Konvexitás tesztje a második deriválttal: 0 Legyen f ([a;b] -n, kétszer diffható (a;b)-n. Akkor f konvex [a;b]-n akkor és csak akkor, ha (konkáv) f'' 0 (f'' 0) Eljárás 0/0; / ; 0 ; 1 típusú határértékek kiszámítására Tétel: l' Hopital szabály Legyen a) lim f (x) = lim g (x) = 0 x a x a b) lim g (x) = + x a Tegyük fel, hogy létezik lim f'(x)/g'(x). Akkor létezik lim f (x)/g (x) is, és lim f (x)/g (x) = lim f' (x)/g' (x) ugyanez érvényes a féloldali x a x a x a határértékekre, +/- -ben vett határértékekre és akkor is igaz, ha lim f'/g' = +/- Def: f(x)-nek x = x 0 -ban lokális minimum helye van, ha van olyan K környezete x 0 -nak, ahol f értelmezett és f (x) f (x 0 ) minden x K-ra. Lokális maximum hely f (x) f (x 0 ) Def: f(x)-nek x 0 -ban (abszolút) minimum helye van, ha f(x) f(x 0 ) minden x D(f)-re Abszolút max f (x) f (x 0 ) Szélsőértékhelyek keresése deriválással: Def: Az f (x) függvény előjelet vált x 0 -ban, ha létezik olyan r > 0, hogy (x 0 -r;x 0 )-ban f 0, (x 0 ;x 0 + r) en f 0 (f - +), vagy (x 0 -r;x 0 ) ban f 0, (x 0 ;x 0 + r) en f 0 (f + -) Áll: ha f (x 0 ) = 0 és f' (x 0 ) > 0, akkor f - + x 0 -ban ha f (x 0 ) = 0 és f' (x 0 ) < 0, akkor f + - x 0 -ban Tétel: Lokális szélsőérték szükséges feltétele: Ha f (x)-nek x 0 -ban lokális szélsőérték helye van és f diffható x 0 -ban, akkor f' (x 0 ) = 0 Tétel: Lokális szélsőértékhely elégséges feltétele: Ha f (x) diffható x 0 egy környezetében, akkor a) f' - + x 0 -ban f-nek lokális minimuma van x 0 -ban
5 b) f' + - x 0 -ban f-nek lokális maximuma van x 0 -ban Tétel: Lokális szélsőérték elégséges feltétele a második deriválttal: a) f' (x 0 ) = 0; f'' > 0 f-nek x 0 -ban lokális minimum helye van b) f' (x 0 ) = 0; f'' < 0 f-nek x 0 -ban lokális maximum helye van Lokális szélsőérték keresés: f gyökeiben f'' előjele: - f'' > 0 lokális min - f'' < 0 lokális max - f'' = 0? f' előjelét ellenőrizzük Módszer f(x) abszolút szélsőérték helyeinek megkeresésére: Legyen f ([a;b] létezik minimum és maximum hely is. A szélsőérték lehet: - végpontban - belső pontban, ott f' = 0 kell legyen szélsőérték jelöltek: f' gyökei és az intervallum végpontjai a legnagyobb függvényértéknél lesz max hely, a legkisebbnél pedig min hely Tétel: az infelexiós pont szükséges és elégséges feltétele: x 0 inflexiós pont akkor és csak akkor ha f'' előjelet vált x 0 -ban Def: Az y = ax + b egyenes aszimptotája f(x)-nek + -ben, ha lim (f(x) (ax+b)) = 0 (- ) x + (- ) Def: Az x = a egyenes aszimptotája f(x)-nek, ha lim f = vagy lim f = a+ (- ) a- (- ) Aszimptota érintő a végtelenben Aszimptota megkeresése: (pl. + -ben) a) lim f(x)/x = a egyenes meredeksége + b) lim (f(x) ax) az eltolás konstansa x + lim (e t 1)/t =1 t 0 Függvényvizsgálat lépései: 1) értelmezési tartomány meghatározása 2) lim f féloldali határértékei a szakadási pontokban és D(f) határoló pontokban (+/- -ben) 3) f páros, páratlan, periodikus-e? 4) f zérus helyei (ha nem nehéz) 5) monoton szakaszok, lokális és globális szélsőértékhelyek 6) konvex és konkáv szakaszok, inflexiós pontok 7) Aszimptotálás 8) grafikon lerajzolása Numerikus számítások
6 Def: df(a)(x) = f'(a)(x-a), az f(x) a bázispontú differenciáljának értéke az x helyen megj: a differenciál párhuzamos az a-beli érintőegyenessel f(x) = f(a) + f'(a)(x-a) + ε(x) lim ε(x)/(x-a) = 0 ε(x) sokkal kisebb (x-a)-nál, ha x közel van a-hoz x a Ezért: ha f'(a) 0, akkor ε(x) elhanyagolható az f'(a)(x-a) -hoz képest Azaz: f(x)-f(a) f'(a)(x-a), ha x közel van a-hoz f'(a)(x-a) df f(x) - f(a) f f df Tétel: Ha f kétszer differenciálható [a;x] szakaszon, akkor létezik olyan c (a;x), hogy f(x) = f(a) + f'(a)(x-a) + ½ f''(c)(x-a) 2, ezért Newton módszer: f(x) = 0 megoldására f df ½ f''(c)(x-a) 2 ½ M(x-a) 2 M = max f'' [a;x] x n+1 az x n ponthoz tartozó érintő metszéspontja az x tengellyel y-f(x n ) = f'(x n )(x x n ) x n+1 = x n (f(x n )/f'(x n )) A Newton módszer konvergenciája nagyon gyors A Newton-módszer gyorsan konvergens, ha: a) a gyök közeléből indítjuk az iterációt b) a gyök egyszeres, azaz f'(x * ) 0 c) f c 2 az x * környezetében f kétszer deriválható ilyenkor x n-1 x * c x n x * 2 Megj: a gyöktől távolabbról indítva az iteráció divergálhat Létezik egy lassabb, de biztosan konvergens eljárás felezéses módszer Lépésenként a hiba feleződik f(a) f(b) < 0 Legyen c = (a+b)/2 Integrál számítás Def: Legyen I véges vagy végtelen intervallum végpontokkal vagy anélkül, legyen f: I R A F: I R függvény primitív függvénye f-nek az I intervallumon, ha: a) F folytonos b) F' = f az I belső pontjaiban Tétel: A primitív függvény konstans összeadandó erejéig egyértelmű, F(x) + c alakú az összes primitív függvény Jelölés: f(x) dx jelöli f bármely primitív függvényét
7 Primitív függvény kiszámítási technikája: Áll: Ha f(x) dx = F(x)+ c, akkor f(ax+b) dx = 1/a F(ax+b)+c f változójában lineáris függvényt adunk meg Tétel: a) f'(x) f α (x) dx = (f α+1 (x))/(α+1) + c ha α 0 egész, vagy h f(x) > 0 minden x-re, és x R és α -1 b) f'(x)/f(x) dx = ln f(x) + c olyan intervallumokon, ahol f(x)-nek nincs gyöke Láncszabály: Ha F' = f, akkor d/dt F (φ(t)) = F' (φ(t)) φ'(t) = f(φ(t)) φ'(t), azaz f(φ(t)) φ'(t) dt = F(φ(t)) +c Ha itt φ(t) szig mon, akkor invertálható, tehát x = φ(t)-ből t = φ -1 (x) kiszámolható Tétel: Helyettesítéses integrálás Ha φ(t) szig mon és diffható I-n, akkor ott f(x) primitív függvénye f(x) dx = f(φ(t)) φ'(t) dt t = φ -1 (x) Tétel: Parciális integrálás Legyen f, g folytonos I-n, diffható I belső pontjaiban. Ha f'g-nek van primitív függvénye I-n, akkor fg'-nek is van, és f(x)g'(x) dx = f(x)g(x) - f'(x)g(x) dx A deriválást átdobjuk g-ről f-re Alapintegrálok: x α dx = (x α+1 )/(α+1) +c ha x > 0, α -1 valós vagy x R és α 0 egész 1/x dx = ln x +c x 0 e x dx = e x +c a x dx = (a x )/(ln (a)) +c ha a > 0, a 1 cos (x) dx = sin (x) +c sin (x) dx = -cos (x) +c 1/cos 2 (x) = tan (x) +c 1/sin 2 (x) = - cot (x) + c x (k+1/2) π x kπ cosh (x) dx = sinh (x) + c sinh (x) dx = cosh (x) + c 1/cosh 2 (x) = tanh (x) + c 1/sinh 2 (x) = - coth (x) + c 1/ (1-x 2 ) dx = asin (x) + c x < 1 = -acos (x) + c x < 1 (asin (x) + acosh (x) = π/2
8 1/ (1+x 2 ) dx = asinh x + c = ln (x + (x 2 +1) + c 1/(1-x 2 ) dx = acosh (x) +c ha x > 1 = - acosh (-x) + c ha x < -1 = ln x + (x 2-1) + c ha x > 1 1/(1+x 2 ) dx = atan (x) + c = -acot (x) + c 1/(1-x 2 ) dx = atanh (x) + c ha x < 1 = acoth (x) + c ha x > 1 = ½ ln (1+x)/(1-x) + c ha x +/- 1
1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra
Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus függvény
Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4.
Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 2017. október 4. Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten ANALÍZIS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Nevezetes halmazok
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl
Matematikai programozás gyakorlatok
VÁRTERÉSZ MAGDA Matematikai programozás gyakorlatok 2003/04-es tanév 1. félév Tartalomjegyzék 1. Számrendszerek 3 1.1. Javasolt órai feladat.............................. 3 1.2. Javasolt házi feladatok.............................
Analízisfeladat-gyűjtemény IV.
Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította
e s gyakorlati alkalmaza sai
Sze lso e rte k-sza mı ta s e s gyakorlati alkalmaza sai Szakdolgozat ı rta: Pallagi Dia na Matematika BSc szak, elemzo szakira ny Te mavezeto : Svantnerne Sebestye n Gabriella Tana rsege d Alkalmazott
A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:
. Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
Dierenciálhatóság. Wettl Ferenc el adása alapján és
205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási
MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június
MIKROÖKONÓMIA I Készült a TÁMOP-412-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
Határozatlan integrál
Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás
Inverz függvények Inverz függvények / 26
Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás
x a x, ha a > 1 x a x, ha 0 < a < 1
EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény
Egyváltozós függvények 1.
Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata
JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. ***************
JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS II. Folytonosság, differenciálhatóság *************** Pécs, 1996 Lektorok: DR. SZÉKELYHIDI LÁSZLÓ egyetemi tanár, a mat. tud. doktora DR. SZILI LÁSZLÓ
FELADATOK A KALKULUS C. TÁRGYHOZ
FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:
Nevezetes függvények
Nevezetes függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt
6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények
6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai
5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?
5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,
GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert)
GYAKORLAT. Elemi logika, matematikai állítások és következtetések, halmazok lásd EA-ban is; iskolából ismert I. Halmazok.. Alapfogalmak: "halmaz" és "eleme". Halmaz kritériuma: egyértelm en eldönthet,
Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév
Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
Határozatlan integrál, primitív függvény
Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,
= x2. 3x + 4 ln x + C. 2. dx = x x2 + 25x. dx = x ln 1 + x. 3 a2 x +a 3 arctg x. 3)101 + C (2 + 3x 2 ) + C. 2. 8x C.
. Határozatlan integrál megoldások.. 5. 7 5 5. t + t 5t. 8 = 7 8 = 8 5 8 5 6. e + 5 ln + tg + 7. = 8. + 5 = 5 ln + 5 9. = + 5 + 5 5 + 5 + 5 = /5 = 5 6 6/5 + 5 5 = + ln = 5 + 5 = + ln + 0.. a +a arctg a.
86 MAM112M előadásjegyzet, 2008/2009
86 MAM11M előadásjegyzet, 8/9 5. Fourier-elmélet 5.1. Komplex trigonometrikus Fourier-sorok Tekintsük az [,], C Hilbert-teret, azaz azoknak a komplex értékű f : [,] C függvényeknek a halmazát, amelyek
5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14.
Tartalomjegyzék 1 A matematikai logika elemei 1 11 Az ítéletkalkulus elemei 1 12 A predikátum-kalkulus elemei 7 13 Halmazok 10 14 A matematikai indukció elve 14 2 Valós számok 19 21 Valós számhalmazok
Függvények csoportosítása, függvénytranszformációk
Függvények csoportosítása, függvénytranszformációk 4. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények csoportosítása p. 1/2 Függvények nevezetes osztályai Algebrai függvények
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Matematika POKLICNA MATURA
Szakmai érettségi tantárgyi vizsgakatalógus Matematika POKLICNA MATURA A tantárgyi vizsgakatalógus a 0-es tavaszi vizsgaidőszaktól kezdve alkalmazható mindaddig, amíg új nem készül. A katalógus érvényességét
2012. október 9 és 11. Dr. Vincze Szilvia
2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények
Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz
Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz Vas Gabriella 204. február A feladatgy jtemény a TÁMOP-4.2.4.A/2-/-202-000 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve
Függvény deriváltja FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS. lim határértékkel egyenlő, amennyiben az létezik ( lásd Fig. 16).
FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS Definíció Definíció Az f ( ) függvény pontban értelmezett deriváltja a f ( + ) f ( ) lim határértékkel egyenlő amennyiben az létezik ( lásd Fig 6) df A deriváltat
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás
0, különben. 9. Függvények
9. Függvények 9.. Ábrázolja a megadott függvényeket, és vizsgálja meg a függvények korlátosságát, monotonitását, konveitását, paritását, előjelét, zérushelyeit, periodicitását és határozza meg a valós
Valós függvények tulajdonságai és határérték-számítása
EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye
Nemzeti versenyek 11 12. évfolyam
Nemzeti versenyek 11 12. évfolyam Szerkesztette: I. N. Szergejeva 2015. február 2. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó
Fizikai alapismeretek
Fizikai alapismeretek jegyzet Írták: Farkas Henrik és Wittmann Marian BME Vegyészmérnöki Kar J6-947 (1990) Műegyetemi Kiadó 60947 (1993) A jegyzet BME nívódíjat kapott 1994-ben. Az internetes változatot
Matematika példatár 4.
Matematika példatár 4 Integrálszámítás szabályai és Csabina, Zoltánné Created by XMLmind XSL-FO Converter Matematika példatár 4: Integrálszámítás szabályai és Csabina, Zoltánné Lektor: Vígné dr Lencsés,
Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény
Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek
C# gyorstalpaló. Készítette: Major Péter
C# gyorstalpaló Készítette: Major Péter Adattípusok Logikai változó Egész szám (*: előjel nélküli) Lebegőponto s szám Típus Típusnév másképpen (egyenértékű) Helyigény (bit) Példa bool Boolean 8 (!) true,
IV. INTEGRÁLSZÁMÍTÁS Feladatok november
IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin
Az ablakos problémához
1 Az ablakos problémához A Hajdu Endre által felvetett, egy ablak akadályoztatott kinyitásával kapcsolatos probléma a következő. Helyezzünk el egy d oldalhosszúságú, álló, négyzet alapú egyenes hasábot
2. Hatványozás, gyökvonás
2. Hatványozás, gyökvonás I. Elméleti összefoglaló Egész kitevőjű hatvány értelmezése: a 1, ha a R; a 0; a a, ha a R. Ha a R és n N; n > 1, akkor a olyan n tényezős szorzatot jelöl, aminek minden tényezője
1. Halmazok, halmazműveletek, ponthalmazok
1. Halmazok, halmazműveletek, ponthalmazok A) Halmazok Halmaz, halmazhoz tartozás: alapfogalom (bizonyos tulajdonságok, pontok összessége) Egy halmazt akkor tekintünk adottnak, ha minden dologról egyértelműen
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
2014. november Dr. Vincze Szilvia
24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
Függvény differenciálás összefoglalás
Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a
1. Monotonitas, konvexitas
1. Monotonitas, konvexitas 1 Adjuk meg az alabbi fuggvenyek monotonitasi intervallumait! a) f (x) = x 2 (x 3) B I b) f (x) = x x 5 I c) f (x) = (x 2) p x I d) f (x) = e 6x 3 3x 2 I 2 A monotonitas vizsgalat
Anyagmozgatás és gépei. 3. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék.
Anyagmozgatás és gépei tantárgy 3. témakör Egyetemi szintű gépészmérnöki szak 3-4. II. félé MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék - 1 - Graitációs szállítás Jellemzője: hajtóerő nélküli,
Hatványsorok, elemi függvények
Hatványsorok, elemi függvények EL 1 Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL Definíció: függvénysorozat Legyen A R, H { f f:a R }. (A H halmaz elemei az A halmazon értelmezett függvények)
Elektromágneses terek gyakorlat - 6. alkalom
Elektromágneses terek gyakorlat - 6. alkalom Távvezetékek és síkhullám Reichardt András 2015. április 23. ra (evt/hvt/bme) Emt2015 6. alkalom 2015.04.23 1 / 60 1 Távvezeték
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
Algoritmusok Tervezése. 1. Előadás MATLAB 1. Dr. Bécsi Tamás
Algoritmusok Tervezése 1. Előadás MATLAB 1. Dr. Bécsi Tamás Tárgy adatok Előadó: Bécsi Tamás, St 106, becsi.tamas@mail.bme.hu Előadás:2, Labor:2 Kredit:5 Félévközi jegy 2 db Zh 1 hallgatói feladat A félév
Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány
Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........
Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek
Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges
Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5
1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat
[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [
Bodó Beáta 1 FÜGGVÉNYEK 1. Határozza meg a következő összetett függvényeket! g f = g(f(x)); f g = f(g(x)) (a) B f(x) = cos x + x 2 ; g(x) = x; f(g(x)) =?; g(f(x)) =? f(g(x)) = cos( x) + ( x) 2 = cos( x)
MATEMATIKA 9. osztály Segédanyag 4 óra/hét
MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
Kockázati folyamatok. Sz cs Gábor. Szeged, 2012. szi félév. Szegedi Tudományegyetem, Bolyai Intézet
Kockázati folyamatok Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet Szeged, 2012. szi félév Sz cs Gábor (SZTE, Bolyai Intézet) Kockázati folyamatok 2012. szi félév 1 / 48 Bevezetés A kurzus céljai
Dierenciálhányados, derivált
9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez
Vektorszámítás Fizika tanárszak I. évfolyam
Vektorszámítás Fizika tanárszak I. évfolyam Lengyel Krisztián TARTALOMJEGYZÉK Tartalomjegyzék. Deriválás.. Elmélet........................................... Deriválási szabályok..................................
Matematika A3 1. előadás (2013.09.11.) 1. gyakorlat (2013.09.12.) 2. előadás (2013.09.18.) 2. gyakorlat (2013.09.19.) 3. előadás
Matematika A3. előadás (3.9..). gyakorlat (3.9..). előadás (3.9.8.). gyakorlat (3.9.9.) 3. előadás (3.9.5.) 3. gyakorlat (3.9.6.) 4. előadás (3...) 4. gyakorlat (3..3.) 5. előadás (3..9.) 6. előadás (3..6.)
2. előadás: További gömbi fogalmak
2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással
Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
Függvények vizsgálata
Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =
10. Valószínűségszámítás
. Valószínűségszámítás.. Események A valószínűségszámítás nagyon leegyszerűsítve események bekövetkezésének valószínűségével foglalkozik. Példák: Ha egy játékban egy dobókockával dobunk, akkor a kockadobás
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
program használata a középiskolai matematika oktatásban
Eötvös Loránd Tudományegyetem Informatika Kar Média- és Oktatásinformatika Tanszék A program használata a középiskolai matematika oktatásban Készítette: Horváthné Oroján Gabriella levelező informatika-tanár
4.1. A differenciálszámítás alapfogalmai
69 4. Egyváltozós valós függvények differenciálszámítása 4.. A differenciálszámítás alapfogalmai 4... A görbe érintője és a pillanatnyi sebesség Tekintsük az f : R + R + f) 4 függvényt. Húzzuk meg az y
Trigonometrikus függvények azonosságai
Ez az útmutató a képletgyűjtemény táblázataihoz nyújt részletes magyarázatot. A képletgyűjteménynek nem célja, hogy az elméleti tudást helyettesítse, mindössze egy emlékeztető, ami segíti az előadások
Az analízis néhány alkalmazása
Az analízis néhány alkalmazása SZAKDOLGOZAT Eötvös Loránd Tudományegyetem Természettudományi kar Szerz : Fodor Péter Szak: Matematika Bsc Szakirány: Matematikai elemz Témavezet : Sikolya Eszter, adjunktus
Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november
Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Matematika I. NÉV:... FELADATOK:
24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n
Tómács Tibor. Matematikai statisztika
Tómács Tibor Matematikai statisztika Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika Eger, 01 Szerző: Dr. Tómács Tibor főiskolai docens Eszterházy Károly
Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2
Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék
A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)
Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő
Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok
JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet
1. Határozza meg az alábbi határértéket! A válaszát indokolja!
Matematika (Analízis és dierenciálegyenletek), NGB_MA003_1, 2. zárthelyi 2014. 11. 20., 1A-csoport x 2 + 6x x 2 5 5x 2 f(x) = tg(2x + 1) 2 x + cos x x 16 5 x + 16 2 x 16 4. Határozza meg, hogy az f(x)
Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit
Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos
MATLAB OKTATÁS 1. ELŐADÁS ALAPOK. Dr. Bécsi Tamás Hegedüs Ferenc
MATLAB OKTATÁS 1. ELŐADÁS ALAPOK Dr. Bécsi Tamás Hegedüs Ferenc BEVEZETŐ A Matlab egy sokoldalú matematikai programcsomag, amely a mérnöki számításokat egyszerusíti le. (A Matlab neve a MATrix és a LABoratory
FELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b.
FELADATOK A RELÁCIÓK, GRÁFOK TÉMAKÖRHÖZ 1. rész A feladatsorban használt jelölések: R = {r R r < 0}, R + = {r R r>0}, [a; b] = {r R a r b}, ahol a, b R és a b. 4.1. Feladat. Adja meg az α = {(x, y) x +
f(x) a (x x 0 )-t használjuk.
5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex
Analízis példatár. Országh Tamás. v0.2. A példatár folyamatosan bővül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a
Analízis példatár v0.2 A példatár folyamatosan bővül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a letölthető példatárak közt. Országh Tamás Budapest, 2005-2010 1 Mottó: Ki kéne vágni minden