= x2. 3x + 4 ln x + C. 2. dx = x x2 + 25x. dx = x ln 1 + x. 3 a2 x +a 3 arctg x. 3)101 + C (2 + 3x 2 ) + C. 2. 8x C.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "= x2. 3x + 4 ln x + C. 2. dx = x x2 + 25x. dx = x ln 1 + x. 3 a2 x +a 3 arctg x. 3)101 + C (2 + 3x 2 ) + C. 2. 8x C."

Átírás

1 . Határozatlan integrál megoldások t + t 5t. 8 = 7 8 = e + 5 ln + tg + 7. = = 5 ln = = /5 = 5 6 6/ = + ln = = + ln a +a arctg a. + a ln a. e e = + C = 9. a + b n+ + C, ha b 0, n ; bn + a n + c, ha b = r... ln a + b b + 8 sin. cos = sin cos = sin sin +C. P.7 + C, ha b 0, n = ; 5. cos + cos 6. cos + cos 5 cos sin sin5 5 sin cos = cos sin = cos. cos cos

2 . Határozatlan integrál sin sin cos = cos sin cos + cos = = cos cos sin + sin cos = cos + sin cos sin cos + C = sin tg cos = tg cos átalakítással az eredmény: tg +C. ln. 5 sh5 + sh 6. ch + = ch = sh ln sh + sh 7 8. ln 9. ln ln + 0. ln +. ln + a. lna +. Az sin cos = tg cos, vagy az sin cos = sin + cos = sin sin cos cos + cos azonosság alkalmazásával az eredmény: ln tg sin 5. Az el z feladat eredményét felhasználva: sin = sin cos = ln tg 6. = ln th sh ch 7. = ln sh th 8. ln + e 9. ln a lna arctg arctg + { 5. arth + C, ha < < arcth + C, ha <, vagy > = ln + C { 5. arth + C, ha < < arcth + C, ha <, vagy > = ln + + C { 5. arth + C, ha < < arcth = + C, ha <, vagy > 8 0 ln C = + = arctg /.

3 . Határozatlan integrál átalakítással az eredmény a /a arth a a + C = a ln a + a + C, ha < a arcth a a + C = a ln + a a + C, ha > a. átalakítással az eredmény: 6 ln + + C, ill. arth + C, ha < 8, és arcth + C, ha > arsh 59. A = = arsh 9 6 = arch + átalakítással: = arcsin / arch = arctg e = e e e = arcsin e 67. ln a + a a ln a = ln a arctg a 68. cos ln sh sh 69. = = ch ch arch ch + C = ln C = ln arcsin ch 70. ln ln 7. ln ln ln 7. sin + cos = cos tg = +. ch =

4 . Határozatlan integrál = arctg + tg / tg átalakítással az eredmény cos 7. A el z feladat megoldásához hasonlóan az eredmény a ab arctg b tg + C, ha a b a + C, ha a = b. 7. sin + cos + C, 75. cos + sin 76. sin + cos sin +C. 77. sin + cos 78. cos + sin + cos 79. cos + sin + 6 cos 6 sin 80. sin + cos 6 sin 6 cos sin + cos e ln ln 8. e e sin + cos e 86. sin + cos 5 e a 87. a cos b + b sin b + C, a, b 0 konstans. a + b e6 cos + sin e 5 cos sin 90. f -ként az konstansfüggvényt választjuk. Az eredmény: arcsin + 9. arcsin + arcsin 9. arcsin 9. arccos arch 9. arctg ln Legyen f =, g = arctg és f = /. Ekkor arctg = arctg + = + arctg Megjegyzés: Az f megválasztásánál általában nem vagyunk tekintettel az integrációs konstansra, ügyes megválasztása azonban néha egyszerüsítheti a megoldást. Például az f = + / választással: arctg = + arctg + + = + arctg 96. I = arctg = arctg = arctg + + = arctg + ln + + C..

5 . Határozatlan integrál arctg 98. arctg = arctg + ln + arctg arctg arsh + C = + arctg ln ln = ln 0.ln ln + 0.ln ln + 6 ln 6 0. ln + ln + 0. ln + + arctg 05. ln lg e ln C ln e. 09. v+ ln v + v + 0. tg ln cos + tg. ch sh. + sh 9 + ch 7 8 ln 8. + ch + sh +C.. sh cos ch sin A kiszámítandó integrált röviden I-vel jelölve I = cos n cos = = cos n sin + n cos n sin = = cos n sin + n cos n cos = = cos n sin + n cos n n I. ni = cos n sin + n cos n, I = n cosn sin + n cos n. n 6. Hasonlóan az el z feladat megoldásához. 7. = sin t helyettesítéssel arcsin + 8. a arcsin a + a 9. a arsh a + a arsh a 5 arcsin a a.u = c + helyettesítéssel a megoldás: c + c 5.u = c + helyettesítéssel c + arth + C = c + c ln c c c c + + c.5

6 . Határozatlan integrál. 8 arch = sin t helyettesítéssel a megoldás tg arcsin + C = 6. = sh t helyettesítéssel arsh = sh t helyettesítéssel + arsh 8. A = ch t helyettesítéssel a megoldás: arch + Vagy: = u helyettesítéssel u u du adódik, ezt u u u felbontással parciálisan integrálva a végeredmény: + arth 9. A = sin t helyettesítéssel arcsin 0. A Vagy: = u helyettesítéssel + arctg = + = + átalakítás után az + = sin t helyettesítéssel a megoldás: arcsin arcsin arsh A + = + = után a = sh t helyettesítéssel a megoldás: 8. arsh 5. 8 arcsin [ arsh Az a = sh u helyettesítéssel a a + + átalakítás ] + 7.u = a helyettesítéssel a megoldás: a arsh a

7 . Határozatlan integrál 0. = u helyettesítéssel ln +. A = u helyettesítéssel a megoldás: + ln +. Az = u 6 helyettesítéssel a megoldás: 6 6 arctg 6. = u helyettesítéssel a megoldás: arctg. = u [ helyettesítéssel a megoldás: ln + ] tg arth + C, arctg < < arctg + 5. tg arcth + C, < arctg, vagy > arctg + = ln cos + sin + + cos sin A sin = t helyettesítéssel, vagy 6 alapján, és felhasználva, hogy cos = sgnsin, az eredmény: sgnsin arshsin + C = sgnsin ln cos + + cos 7. tg + 8. tg 9. ln tg + π 50. arctg tg +C. 5.t = tg helyettesítéssel 5 tg + arctg 5. sin = átalakítás után t = tg helyettesítéssel sin + sin tg + arctg tg 5. tg = t helyettesítéssel / tg / ctg + ln tg A számítás rövidebb, ha a sin cos = 8 sin átalakítással kezdjük, majd a sin helyébe a tg = t helyettesítésnek megfelel en a t kifejezést írjuk. + t 5. = tg t helyettesítéssel: tg t dt tg t + cos t = = sin t cos t cos t dt = sin t cos tg t t = tg t + = Az u = ln helyettesítéssel ln ln ln 56. = sin tg arsh sin + sin átalakítás után t = tg helyettesítéssel.7

8 . Határozatlan integrál 57. Az e u = u helyettesítéssel u + du = = e arctg e 58.e lne ln th 60. A tg = t helyettesítéssel a kiszámítandó I integrál: I = c + b dt + c b c+b t. Az c = b esetben I = c tg Ha c > b : c b c + b t = c b c + b t, I = c b arctg c b c + b tg Az c < b esetben c b c + b t = b c c + b t, és ezért b c arth b c b + c tg b + c + C, ha < arctg b c I = b c arcth b c b + c tg b + c + C, ha > arctg b c = A + B + C. A kiszámítandó határozatlan integrál: = ln arctg + + K. 6. ln + + ln 6. ln + ln ln ln ln + + ln + ln + A A + A + A = = + = = ln + + C = = ln 69. ln + + ln ln 6 ln arctg +.8

9 . Határozatlan integrál átalakítás és u = helyettesítés után elemi törtekre bontással az eredmény: 8 ln átalakítás és u = helyettesítés után elemi törtekre bontással 7 az eredmény: ln ln e e 7. Az = t helyettesítéssel ln = ln t; mindkét oldalt t szerint dierenciálva ln + dt = t. Emiatt ln + ln + = t dt tln + = dt tt = t dt = t = ln + C. 75. arctg 76. Parciális integrálással: f f 77. f. 78. Az adott egyenletb l kapjuk, hogy f =, aminek mindkét oldalát integráljuk: f = + C, azaz f = 79.f = 80. A formula igaz voltát mindkét oldal deriválásával igazolhatjuk. 8. Ha 0, akkor az integrál értéke +C, ha 0, akkor az integrál értéke + C. A két konstanst úgy kell megválasztani, hogy a kapott függvény mindenütt dierenciálható legyen. Így az integrál értéke: C. 8.e + C, ha < 0; e + C, ha C, ha ; + sgn + C, ha >. 86. arcsin = arcsin +. A második tagban = u helyettesítéssel a végeredmény: arcsin ln = = arctg 88. ln + + arctg.9

10 . Határozatlan integrál = 5 átalakítással az eredmény: arth 5 + C, ha < < arcth 5 + C, ha <, vagy >. 90. ln arctg ln ln ++8 arctg + +C. 9. A nevez t másodfokú tényez kre bontjuk: + = + + = + = Tehát + = A + B C + D +, azaz = A + B + + C + D + +, amib l = A+C + A+B + C +D +A B +C + D+B +D. A megfelel együtthatók összehasonlításából: A + C = 0 A + B + C + D = 0 A B + C + D = 0 B + D =. Ezekb l B = D =, C =, A = = + = = + = ln = = ln = + = ln arctg + + arctg + C = = ln arctg 9. 7 arctg 7.0

11 . Határozatlan integrál 95. arth + C, ha < < arcth + C, ha < 96. Az cos cos +, és, vagy > +. felbontással parciális integrálást végezve, majd a még integrálandó tag számlálójában sin = cos átalakítást alkalmazva a kiszámítandó I határozatlan integrálra az I = sin cos I + cos egyenletet kapjuk, amib l I = sin cos + ln tg + π 97. cos sin + ln tg 98. ch sh ln th 99. cos = + cos cos = tg = cos = tg + tg cos = tg + tg + C. 00. ctg ctg 0. tg = tg tg = cos tg = tg + ln cos + tg 0. sin = sin + tg sin cos = ln tg + tg 0. tg + 0. tg sin = cos = cos = tg cos 05.u = tg helyettesítéssel u 5 + u du = u u + u du = tg tg ln cos u tg sin sin + sin sin 08. Az u = és v = arctg választással arctg = arctg + arctg = + arctg arctg + ln + Lásd a.0/a és /b feladatokat. 09.a ln a ln a + ln a 0. ch + ch ch.

12 . Határozatlan integrál.t = th helyettesítéssel az eredmény: a + b arth a th b a + b.. A kiszámítandó integrált I-vel jelölve ch sh I = a + b sh = b ch b ch b a + b sh b sh b a + b sh. Parciálisan integrálva a g = b ch és f b ch = a + b sh választással I = [ b ch ] b a + b sh a a + b sh a b I, I = [ b ch ] a + b a + b sh a a + b sh + C. Az utóbbi integrál kiszámításához lásd az el z feladatot.. sin ln cos ln. arsh arch sin cos 5. a = b esetén az integrál = a a sin a b esetben viszont a sin + b cos = a b sin cos. a sin + b cos Ekkor az eredmény: a b 6. cos = sh u-t véve I = [ ] cth arsh cos + arsh cos sin sin cos 7.I = + cos cos = + cos cos. Legyen cos = sh u, ekkor cos sin = ch u du, és ch u + sh I = sh u du = u ch u du = cth u u + C = sh u sh u u + C = + cos = arsh cos + C. cos 8. Átalakításokkal cos 6 + sin 6 = + cos. I = sin + cos. Legyen cos = sh u, akkor I = [ arsh cos + cos + cos ]. 6 sin + cos 9.I = a + b cos = = b sin b sin b a + b cos + b cos b a + b cos. Parciálisan integrálva a g = b sin és f b sin = a + b cos választással I = b b sin a + b cos b a a + a + b cos b I..

Határozatlan integrál

Határozatlan integrál Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Megoldások november

IV. INTEGRÁLSZÁMÍTÁS Megoldások november IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

Határozatlan integrál, primitív függvény

Határozatlan integrál, primitív függvény Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,

Részletesebben

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Dierenciálhatóság. Wettl Ferenc el adása alapján és 205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási

Részletesebben

0, különben. 9. Függvények

0, különben. 9. Függvények 9. Függvények 9.. Ábrázolja a megadott függvényeket, és vizsgálja meg a függvények korlátosságát, monotonitását, konveitását, paritását, előjelét, zérushelyeit, periodicitását és határozza meg a valós

Részletesebben

x a x, ha a > 1 x a x, ha 0 < a < 1

x a x, ha a > 1 x a x, ha 0 < a < 1 EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus függvény

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4.

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4. Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 2017. október 4. Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus

Részletesebben

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények 6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál 05. április.. Alapfeladatok. Feladat: Határozzuk meg az alábbi határozatlan integrált! + sin ch Megoldás: Az integrálandó függvényen belül összeadás illetve kivonás m velete szerepel,

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

Inverz függvények Inverz függvények / 26

Inverz függvények Inverz függvények / 26 Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő

Részletesebben

Példatár Lineáris algebra és többváltozós függvények

Példatár Lineáris algebra és többváltozós függvények Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Kalkulus I. gyakorlat, megoldásvázlatok

Kalkulus I. gyakorlat, megoldásvázlatok Kalkulus I. gyakorlat, megoldásvázlatok Fizika BSc I/.. Ábrázoljuk a következ halmazokat a síkon! a {, y R : + y < }, b {, y R : + y < }, c {, y R : + y

Részletesebben

Határozatlan integral, primitívkeresés (Antiderivált). HATÁROZATLAN INTEGRÁL, PRIMITÍVKERESÉS (PRIMITÍV FÜGGVÉNY, ANTIDERIVÁLT FOGALMA)

Határozatlan integral, primitívkeresés (Antiderivált). HATÁROZATLAN INTEGRÁL, PRIMITÍVKERESÉS (PRIMITÍV FÜGGVÉNY, ANTIDERIVÁLT FOGALMA) Határozatlan integral primitívkeresés (Antiderivált). HATÁROZATLAN INTEGRÁL PRIMITÍVKERESÉS (PRIMITÍV FÜGGVÉNY ANTIDERIVÁLT FOGALMA). Definíció A differenciálszámítás egyik legfontosabb feladata az hogy

Részletesebben

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1 Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

Feladatok matematikából 3. rész

Feladatok matematikából 3. rész Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!

Részletesebben

Analízis 3. A szakirány Gyakorlati jegyzet 1-6. óra.

Analízis 3. A szakirány Gyakorlati jegyzet 1-6. óra. Analízis. A szakirány Gyakorlati jegyzet -6. óra. A jegyzetet Umann Kristóf készítette Filipp Zoltán István gyakorlatán. Utoljára frissítve: 07. május. Tartalomjegyzék. Információk a gyakorlattal kapcsolatban.

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.

Részletesebben

(arcsin x) (arccos x) ( x

(arcsin x) (arccos x) ( x ALAPDERIVÁLTAK ( c ) (si ) cos ( ) (cos ) si ( ) ( ) ( tg) cos ( e ) e ( ctg ) si ( a ) a l a ( sh) ch (l ) ( ch) sh (log a ) ( th) l a ch (arcsi ) (arccos ) ( arctg ) DERIVÁLÁSI SZABÁLYOK. ( c ) c. c

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.?

lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.? FÜGGVÉNYEK HTÁÉTÉKE Mosóczi ndrás..?..?..?..?..?..?..?.8.? FOLYTONOSSÁG DEFINÍCIÓ. z üggvény olytonos az a helyen értelmezve van az a helyen létezik és véges a tárértéke az a helyen és a a DEFINÍCIÓ. z

Részletesebben

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt, 205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:

Részletesebben

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL A primitív függvény és a határozatlan integrál 5 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Gyaorlato és feladato ( oldal) I Vizsgáld meg, hogy a övetező függvényene milyen halmazon van primitív

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

Függvény deriváltja FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS. lim határértékkel egyenlő, amennyiben az létezik ( lásd Fig. 16).

Függvény deriváltja FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS. lim határértékkel egyenlő, amennyiben az létezik ( lásd Fig. 16). FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS Definíció Definíció Az f ( ) függvény pontban értelmezett deriváltja a f ( + ) f ( ) lim határértékkel egyenlő amennyiben az létezik ( lásd Fig 6) df A deriváltat

Részletesebben

Beregszászi István Programozási példatár

Beregszászi István Programozási példatár Beregszászi István Programozási példatár 2 1. fejezet 1. laboratóriumi munka 1.1. Matematikai kifejezések Írja fel algoritmikus nyelven a megadott kifejezést megfelelő típusú változók segítségével! Figyeljen

Részletesebben

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},

Részletesebben

2014. november Dr. Vincze Szilvia

2014. november Dr. Vincze Szilvia 24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata

Részletesebben

Integrálás helyettesítéssel

Integrálás helyettesítéssel NTEGRÁLÁS HELYETTESÍTÉSSEL ntegrálás helyettesítéssel az alapötlet Az integrálszámitás egyik leghatékonyabb módszere a helyettesítéses módszer Több hasznos helyettesítés létezik, amit integrálok kiszámitására

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

Matematikai analízis II.

Matematikai analízis II. Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények

Részletesebben

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt 27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

Függvények határértéke és folytonosság

Függvények határértéke és folytonosság Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,

Részletesebben

Hatványsorok, elemi függvények

Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL 1 Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL Definíció: függvénysorozat Legyen A R, H { f f:a R }. (A H halmaz elemei az A halmazon értelmezett függvények)

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.

Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim. Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2

Részletesebben

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, 3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5

Részletesebben

10. Differenciálszámítás

10. Differenciálszámítás 0. Differenciálszámítás 0. Vázolja a következő függvények, és határozza meg az értelmezési tartomány azon pontjait, ahol nem differenciálhatóak: a, f() = - b, f()= sin c, f() = sin d, f () = + e, f() =

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

Parciális integrálás

Parciális integrálás . PARCÁLS NTEGRÁLÁS... Példák Legyenek a f ( ),g( ),f'( ),g'( ) függények folyamatosak az [ a,b] interallmban. Ebből f dg f g' d f g g f' d agy () d d, ahol f, d g' d az integrálandó függény részei. Az

Részletesebben

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév) . Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

IV. INTEGRÁLSZÁMÍTÁS Feladatok november IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin

Részletesebben

KALKULUS II. PÉLDATÁR

KALKULUS II. PÉLDATÁR Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár SOROZATSZERKESZTŽ Fazekas István Lajkó Károly KALKULUS II. PÉLDATÁR Programozó és programtervez

Részletesebben

II. rész. Valós függvények

II. rész. Valós függvények II. rész Valós függvények Feladatok 3 4 3.. Értelmezési tartomány Határozza meg a következ függvények értelmezési tartományát! 3.. y = + + 3.. 3.4. 3.6. y = y = 3 y = + 3 ln 5 4 3.3. 3.5. 3.7. y = 3 +

Részletesebben

Analízis. Ha f(x) monoton nő [a;b]-n, és difható egy (a;b)-beli c helyen, akkor f'(c) 0

Analízis. Ha f(x) monoton nő [a;b]-n, és difható egy (a;b)-beli c helyen, akkor f'(c) 0 Analízis A differenciálszámítás középértéktételei: 1) Rolle-tétel: Ha f folytonos a korlátos és zárt [a;b] intervallumon, f diffható [a;b]-n és f(a) = f(b), akkor van egy a < c < b belső pont, ahol f'(c)

Részletesebben

Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.

Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim. Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5

Részletesebben

1. Analizis (A1) gyakorló feladatok megoldása

1. Analizis (A1) gyakorló feladatok megoldása Tartalomjegyzék. Analizis A) gyakorló feladatok megoldása.................... Egyenl tlenségek, matematikai indukció, számtani-mértani közép....... Számsorozatok............................... 5... Számorozatok................................

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása. 5), akkor

Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása. 5), akkor Integrálszámítás Integrálási szabályok Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása Motivációs feladat Valószínűség-számításnál találkozhatunk

Részletesebben

Polinomok maradékos osztása

Polinomok maradékos osztása 14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik

Részletesebben

A dierenciálszámítás alapjai és az érint

A dierenciálszámítás alapjai és az érint A dierenciálszámítás alapjai és az érint 205. november 7.. Alapfeladatok. Feladat: Határozzuk meg az fx) x 2 3 x függvény deriváltját! Megoldás: Deriválás el tt célszer átalakítani a függvényt. A gyök

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben

4.1. A differenciálszámítás alapfogalmai

4.1. A differenciálszámítás alapfogalmai 69 4. Egyváltozós valós függvények differenciálszámítása 4.. A differenciálszámítás alapfogalmai 4... A görbe érintője és a pillanatnyi sebesség Tekintsük az f : R + R + f) 4 függvényt. Húzzuk meg az y

Részletesebben

(f) f(x) = x2 x Mutassa meg, hogy ha f(x) dx = F (x) + C, akkor F (ax + b) a 3. Számolja ki az alábbi határozatlan integrálokat: 1.

(f) f(x) = x2 x Mutassa meg, hogy ha f(x) dx = F (x) + C, akkor F (ax + b) a 3. Számolja ki az alábbi határozatlan integrálokat: 1. PROGRAMTERVEZŐ MATEMATIKUS SZAK II. ÉVF. III. FÉLÉV GYAKORLÓ FELADATOK AZ II. ANALÍZIS ZH-RA Primitívfüggvéy keresés. Adja meg az f függvéy egy primitívfüggvéyét: f) = 6 8 + 3 b) f) = + 3 f) = + 5 ) /

Részletesebben

Többváltozós analízis gyakorlat, megoldások

Többváltozós analízis gyakorlat, megoldások Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,

Részletesebben

Matematika példatár 4.

Matematika példatár 4. Nyugat-magyarországi Egyetem Geoinformatikai Kara Csabina Zoltánné Matematika példatár 4 MAT4 modul Integrálszámítás szabályai és módszerei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

MATEMATIKA II. FELADATGY JTEMÉNY

MATEMATIKA II. FELADATGY JTEMÉNY MATEMATIKA II. FELADATGY JTEMÉNY KÉZI CSABA Date: today. KÉZI CSABA ELŽSZÓ Ez a feladatgy jtemény a Debreceni Egyetem M szaki Karának Matematika II. tantárgyának tematikájához szorosan illeszkedik. Célja

Részletesebben

Matematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére

Matematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére Matematika II. Feladatgyűjtemény GEMANB Anyagmérnök BSc szakos hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . gyakorlat Matematika II.. Az alábbi f függvényeknél adja meg f -t! f() = + 5; (b) f()

Részletesebben

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x. Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

Kettős és többes integrálok

Kettős és többes integrálok Kettős és többes integrálok ) f,) + + kettős integrálja az, tartománon Megoldás: + + dd 6 + 6 + 8 + 9 + ] + + ] d 8 + 8 + ) f,) sin + ) integrálja a, tartománon Megoldás: ] d + 9 + d + + 68 8 7,5 + sin

Részletesebben

Speciális függvénysorok: Taylor-sorok

Speciális függvénysorok: Taylor-sorok Speciális függvénysoro: Taylor-soro Állítsu elő az alábbi függvénye x 0 0 helyhez tartozó hatványsorát esetleg ülönféle módszereel és állapítsu meg a hatványsor onvergenciatartományát! A cos 5x függvény

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0, Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ

Részletesebben

Régebbi Matek B1 és A1 zh-k. deriválás alapjaival kapcsolatos feladatai. n )

Régebbi Matek B1 és A1 zh-k. deriválás alapjaival kapcsolatos feladatai. n ) Régebbi Matek B1 és A1 zh-k Sorozatok és függvények határértékével, folytonossággal és a deriválás alapjaival kapcsolatos feladatai. 1. Számítsuk ki: (a) n ( 2n 1) n+3 1 + arccos( 2n + 1 n ) (b) n ( n

Részletesebben

Keresztezett pálcák II.

Keresztezett pálcák II. Keresztezett pálcák II Dolgozatunk I részéen a merőleges tengelyű pálcák esetét vizsgáltuk Most nézzük meg azt az esetet amikor a pálcák tengelyei nem merőlegesen keresztezik egymást Ehhez tekintsük az

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Integráltáblázatok. v du. u dv = uv. lna cosu du = sinu+c. sinu du = cosu+c. (ax+b) 1 dx = 1 a ln ax+b +C. a 2. x(ax+b) 1 dx = x a b a 2 ln ax+b +C

Integráltáblázatok. v du. u dv = uv. lna cosu du = sinu+c. sinu du = cosu+c. (ax+b) 1 dx = 1 a ln ax+b +C. a 2. x(ax+b) 1 dx = x a b a 2 ln ax+b +C Typote Kidó Itegráltábláztok 1.. 3. 4. 5. 6. 7. 8. 9. 1. 11. 1. u dv = uv v du u du = u, 1, > l cosu du = siu siu du = cosu (+b) = (+b), 1 () (+b) 1 = 1 l +b 13. () 14. 15. 16. 17. 18. 19.. (+b) = (+b)

Részletesebben

Analízis példatár. Országh Tamás. v0.2. A példatár folyamatosan bővül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a

Analízis példatár. Országh Tamás. v0.2. A példatár folyamatosan bővül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a Analízis példatár v0.2 A példatár folyamatosan bővül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a letölthető példatárak közt. Országh Tamás Budapest, 2005-2010 1 Mottó: Ki kéne vágni minden

Részletesebben

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e Az. gyakorlat HF-inak megoldása. Deriváljuk az alábbi függvényeket. sin x cos x = cos x sin x, x ln x = x / ln x + x x x, x x = x / = x/ = = e x cos x+e x sin x e x cos x cos x, x sin x ln x = + x x, x

Részletesebben

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett! nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a 4 6 8 6 egyenletben az együtthatók összege 6 8 6 ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési

Részletesebben

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval 4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)

Részletesebben

Valós változós komplex függvények. y 0 görbe egyenlete komplex alakban: f x, y 0. Komplex változós komplex függvények y, ahol z x.

Valós változós komplex függvények. y 0 görbe egyenlete komplex alakban: f x, y 0. Komplex változós komplex függvények y, ahol z x. Valós váltoós omplx üggvéy, t x t yt rt cost st r t t, t dt b Ft C, t dt F t FbFa a t x t y t b. x, y görb gylt omplx alaba: x, y. a Komplx váltoós omplx üggvéy u x, y v x, y, ahol x y, Drválás: ( ) lm

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

25 i, = i, z 1. (x y) + 2i xy 6.1

25 i, = i, z 1. (x y) + 2i xy 6.1 6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =

Részletesebben

esetben, ahol mindkettő nulla a számlálót is és a nevezőt is szorzattá alakítjuk.

esetben, ahol mindkettő nulla a számlálót is és a nevezőt is szorzattá alakítjuk. FÜGGVÉNYEK HTÁÉTÉKÉNEK KISZÁMOLÁS? Véges helyen vett tárérték a Ilyenkor az első lépés hogy helyettesítsük be a üggvénybe az a -t. Ha amit így kapunk értelmezhető akkor kész is vagyunk az a szám a tárérték*.

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben