Speciális függvénysorok: Taylor-sorok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Speciális függvénysorok: Taylor-sorok"

Átírás

1 Speciális függvénysoro: Taylor-soro Állítsu elő az alábbi függvénye x 0 0 helyhez tartozó hatványsorát esetleg ülönféle módszereel és állapítsu meg a hatványsor onvergenciatartományát! A cos 5x függvény hatványsora: A hatványsor alaja általános alaja: f x f 0+ f 0! x+ f 0! x + f 0 x +.! A cos5x függvény deriváltjai, és értéei az x 0 helyen: x 0 f x cos5x f x 5sin5x 0 f x 5 cos5x 5 f x 5 sin5x 0 f IV x 5 4 cos5x 5 4 f V x 5 5 sin5x 0 f VI x 5 6 cos5x 5 6 Ezeel a behelyettesítéseel a Taylor-sor: f x 5! x ! x4 56 6! x6... Konvergenciasugár: A sorozat általános tagja: a n a 5!. 5!. Györitériummal: n 5 an! 5!. Enne a sorozatna a határértée nem látszi azonnal, ezért megpróbálozu a hányadosritériummal is: a + a 5 + +! 5! 5 0, ha. + +

2 Eze szerint a sorozat minden x valós számra onvergens. Mási módszer: A cosu sorána ismeretében u 5x helyettesítés vissza ell, hogy adja a hatványsort: cosu A helyettesítést elvégezve: A sor minden x-re onvergens. u u!! + u4 4! u6 6! +. cos5x 5! x ! x4 56 6! x6 +. Az f x sinxcosx függvény hatványsora: Első módszer: Elő lehet állítani a Taylor-sort özvetlenül a deriválta meghatározásával, és behelyettesítéssel is. Másodi módszer: Tudván, hogy sinxcosx sinx: sinu Behelyettesítés után: Harmadi módszer: u + u u +! u! + u5 5! u7 7! + u9 9!. sinx x! x + 4 5! x5 6 7! x ! x9. A cost sorából tagonénti integrálással is meghatározható a Taylor-sor, hiszen f x A cos t sora: x 0 cost dt sinx. cost! t + 4 4! t4 6 6! t6 +. Tagonénti integrálással: Konvergenciasugár: Hányadosritériummal: x sinx x! + 4 x 5 4! 5 6 x 7 6! 7 +. a + a +!! 0, ha,

3 tehát a sor minden x-re onvergens. f x cos x sorbafejtése: A lehetséges módszere özül legegyszerűbbne tűni, ha cosu sorából u x helyettesítéssel állítju elő a ívánt hatványsort. cosu cos x Konvergenciasugár: a + a u u!! + u4 4! u6 6! + x! x! + x 4! x 6! + x4 8!. +!! 0, ha. + + Minden x-re onvergens, de x 0 ell legyen! 4 f x cos x π sorbafejtése az x 0 helyen: 4 Táblázattal: x 0 x 0 f x cos x π f IV x cos x π 4 4 f x sin x π f V x sin x π 4 4 f x cos x π f VI x cos x π 4 4 f x sin x π f VII x sin x π 4 4 Tehát a hatványsor: cos x π 4 + Konvergenciasugár: n0 x! a n+ a n x! x! + ]. n [ x n n! + xn+ n+! n+! n! x 4 4! + 0, ha n, n+ tehát minden x-re onvergens a sor, azaz < x < +. x 5 5!

4 5 f x sin x hatványora az x 0 helyen: Első lehetőség: Táblázattal: x 0 f x sin x 0 f x sinxcosx sinx 0 f x cosx f x 4sinx 0 f IV x 8cosx 8 f V x 6sinx 0 f VI x cosx f VII x 64sinx 0 f x! x 8 4! x4 + 6! x6 + Konvergenciasugár: a n+ a n n+ n+! n n! tehát minden x-re onvergens a sor. Mási lehetőség: n0 n n+ n+! xn+. 4 0, ha n, n+n+ A sin x cosx sorfejtésével a cosu sora ismeretében, u x helyettesítéssel: { } {cosx}! x +! x 8 4! x ! x+. Harmadi lehetőség: f x sinx ismeretében felírju sinu sorát, majd u t helyettesítéssel sint sorát, majd tagonént integrálun: sinu u + +! sint + +! t+. 4

5 x sin x sint dt alapján 0 sin x + x + +! + + +! x+. 6 f x e x hatványsora az x 0 helyen: Első lehetőség: Táblázattal: x 0 f x e x f x xe x 0 f x e x +x e x f x 4xe x +8xe x x e x 0 f IV x e x 4x e x 4x e x x 4 e x Innen a hatványsor: e x! x + 4! x x! + x4! +... Ez a módszer igen so munát igányel, nem elég hatéony. Mási lehetőség: e x sora alapján. e x hatványsora: e x x, < x < +.! e x hatványsora: e x x!. e x hatványsora: e x x x!! + x4!. Konvergenciasugár nyilván +, azaz < x < +. 7 f x e x hatványsora az x 0 helyen: Minthogy e x e x, ezért e u sorában u x helyettesítéssel apju a ívánt sorfejtést. A onvergenciatartomány itt is nyilvánvaló: < x < +. A eresett hatványsor tehát: e x x!. 5

6 8 f x shx sorfejtése az x 0 helyen: Az sh u sorfejtése alapján dolgozun: Innen: u 0 f u shu 0 f u chu f u shu 0 f u chu f IV u shu 0 shu! u+! u + 5! u u + +!. Nyilvánvaló, hogy a onvergenciatartomány < u < +. Innen: x + shx +!, ugyancsa < u < + onvergenciatartománnyal. 9 f x ch x sorfejtése az x 0 helyen: A ch x chx+ alapján és a chx sorfejtését felhasználva: u 0 f u chu f u shu 0 f u chu f u shu 0 f IV u chu chu +! u + 4! u4 + 6! u u!. Nyilvánvaló, hogy a onvergenciatartomány < u < +. x x chx +!! ch x chx+ + onvergenciatartománya < x < +. +! x 6

7 0 f x +x hatványsora az x 0 helyen: x 0 f x +x f x +x f x 6+x 6 f x 6 6 f IV x 0 0 Innen a +x +! x+ 6! x + 6! x +x+x +x polinom adódi, ami a öbreemelés eredménye. f x +x hatványsora az x 0 helyen: Binomiális sorfejtéssel: +x x x+6x 0x ! Konvergenciassugár meghatározása: a n+ a n n! n+ n+ n+, }{{}}{{}...n+n n+!...n+ 0 tehár R. A onvergenciatartomány: < x <. f x +x hatványsora x 0 helyen: Binomiális sorfejtéssel: +x x +... x + x 9 x x... 7

8 Két példa a binomiális együtthatóra: 0!! 9 5! 9! 9, A onvergenciatartomány meghatározása: a n+ a n n+ n+n n!n+ n n+ n! n 4 n+ n+ n+ n+. Innen R, a onvergenciatartomány: < x <. f x ln+x sorbafejtése az x 0 helyen: Táblázattal: Innen az ln + x Taylor-sora: ugyanis 4 f x +x x 0 f x ln+x 0 f x +x f x +x f x +x f IV 6 x +x 6 6 ln+x x, ln+x! x! x +! x 6 4! x x x + x x x +... sorfejtése az x 0 helyen: 8

9 Minthogy +x {ln+x}, ezért az előbbi sort tagonént differenciálva apju a ívánt sorfejtést: +x x x x. Konvergenciasugár: R, tartomány: < x <. 5 f x sorfejtése az x 0 helyen: x A sorfejtéshez szüséges deriválta: f x x x f x x +x x x x 4 x +8x x +6x x f x x x + +6x x x x 6 xx +x+6x x 4 f IV x 4x+4x x 4 4+7x x 4 +4 x x 4x+4x x 8 44x +7x 7x 4 +9x +9x 4 +x 5 0x4 +40x +4 x 5 Eze értéei az x 0 helyen rendre: f 0 ; f 0 0; f 0 ; f 0 0; f IV 0 4. Innen a érdéses Taylor-sor: x +! x + 4 4! x x +x A onvergenciatartomány: < x <. 6 f x x sorfejtése az x 0 helyen: +x Mivel [ ln +x ] x +x, x. ezért ln +x sorána tagonénti differenciálásával nyerjü a ívánt sorfejtést. Vagyis a. feladat alapján: ln +x x 9 < x <.

10 Tehát: x +x x +. A onvergenciatartomány: < x <. 7 f x sorfejtése az x 0 helyen: x Első lehetőség: x binomiális sorfejtésével: x x ++x +4x +... Másodi lehetőség: A 4. feladat alapján. x x sorfejtésből, alapján, tagonénti differenciálással: x x +x. onvergenciatartomány: < x <. 8 f x lnx sorfejtése az x 0 helyen: alapján és sorából 7. feladat. A övetező ifejezést tagonént integrálju: x Ebből apju: x lnx x dx 0 +x. x x lnx x x. onvergenciatartomány: < x <. x + + x. 9 f x ln x sorfejtése az x 0 helyen: Első lehetőség: x x ahol < x < sorból. ln x 0 x 0 x x dx

11 felhasználásával x-szel szorozva és tagonént integrálva Innen: ln x x x x +. A onvergenciatartomány: < x <. x+ + x + +. Másodi lehetőség: ln x lnx+x lnx + + ln+x alapján, a lnx és ln+x sorána összegeént.. és 8. feladat. ln+x x x x + x x4 4 + x lnx Ezen soro összege: x x x x x4 4 x ln x x x4 4 x x f x ln +x sorfejtése az x 0 helyen: ln+x x ahol < x < sor alapján. feladat: ln +x x, ugyancsa < x < onvergenciatartománnyal. +x f x ln sorfejtése az x 0 helyen: x +x ln x ln+x x alapján: ln+x lnx x x x + x x x x x x x4 4...

12 Innen: ln +x x x+ x +x x + +. onvergenciatartomány: < x <. f x arc tgx sorfejtése az x 0 helyen: Az arusz tangens deriváltját fejtjü sorba, majd tagonént integrálun: Innen: arc tgx +x x, arc tgx x A onvergenciatartomány: < x <. 0 +x dx x + +. Írju fel az alábbi függvénye Taylor-sorfejtését az x 0 helyen! f x e x sorfejtése az x 0 helyen: Táblázattal: x 0 f x e x f x e x f x e x f x e x f IV x e x e e e e e Innen a érdéses sor: e x e+ e! x+ e! x e ex! x +...!. A onvergenciatartomány: < x < + 4 f x lnx sorfejtése az x 0 helyen: Táblázattal:

13 x 0 f x lnx 0 f x x f x x f x x x 4 x f IV x 6x x 6 6 x 4 6 Innen az lnx sora: lnx 0+ x! x+ + 4 x +!! + 5 6x !x 4!! + x. Konvergenciasugár: a n+ a n n+ n n n+. Tehát R, a onvergenciatartomány eze szerint 0 < x, ugyanis x 0-nál az lnx deriváltjai nincsene értelmezve. 5 f x x x sorfejtése az x 0 helyen: Táblázattal: Innen a övetező polinom adódi: f x 4 + x 0 f x x x 4 f x 6x f x x 6 f x f IV x 0 0 x + x + x. 6 f x x+ x+ sorfejtése az x 0 helyen:

14 Első lehetőség: A Taylor-formula alalmazásával, deriválással, táblázattal. A deriválást az x+ x+ átalaítással végezzü. x+ Másodi lehetőség: A övetező mértani sor felhasználásával: x+ x+ x+ +x+ [ ] x++x+ x x+. A onvergenciasugár: R A onvergenciatartomány: a n+ a n x+ n+ x+ n x+ < Innen < x+ <, azaz < x <. 7 f x x+ x+ sorfejtése az x 0 helyen: x+ x+ x+ x+ x+ +x+ + x+ A másodi tag egy q x+ hányadosú mértani sor összege. Emiatt: [ x+ x+ x+ + x+ 4 + x+. A onvergenciasugár: R x+ 8 A onvergenciatartomány: [ R; + R], azaz < x <. 8 f x +x sorfejtése az x 0 helyen: ] x f x +x +x + x [ x x x ] n x n n+ n0 4

15 A -gal jelölt helyen a q x+ hányadosú mértani sor összegépletét használtu fel. onvergenciatartomány: x < x < < x < 5. 9 Felírandó az y tgx függvény hatodfoú Taylor-polinomja az x 0 0 helyen. Egy f függvény n-edfoú Taylor-polinomja: T n x f x 0 + f x 0 xx 0 + f x 0 xx fn x 0 xx 0 n!! n! a övetező éplet szerint özelíti meg az f függvényt: H f xt n x xx 0 n+ max f n+ x. n+! x,x 0 Az egyes deriválta: dy dx cos x sin x+cos x cos + tg x +y x d y dx d +x yy dx d x dy d dx yy y +yy y 4 d dx y +yy y y +y y +yy y 5 d dx y y +y y +yy y +y y +y y +yy 4 y 6 d 6y +8y y +yy 4 y y +8y y +8y y 4 +y y 4 +yy 5 dx Az egyes deriválta értéei az x 0 0 helyen: Innen a Taylor-polinom: y0 0 y 0 y 0 0 y 0 y y y T 5 x T 6 x x x x5 x + +6 x+!! 5! + 5 x5. 5

16 0 Írju fel az y cos x függvény Maclaurin-sorát! cosz z! + z4 4! +...+n z n n! +... Ezzel a érdéses sor némi átalaítás után: y cos x +cosx + cosx + x + 4 x n n x n! 4! n! +. Ez a sor is onvergens a < x < számözben, mert a maradétag 0-hoz tart, ha n. Ugyanis tetszőleges x esetén xn 0, ha n. n! Váltaozó előjelű sor esetében a hiba isebb, mint a legelső figyelembe nem vett tag. Hasonló módon adódi, hogy sin x x! 8x4 4! sor is a < x < számözben onvergens. Felírandó az y A binomiális sorfejtés értelmében: x x n n n x n +... n! x függvény Taylor-sora x 0 0 helyen. 0 + x + x + n x + + n+ x n +... n! + x + 4 x n 4 n A sor a < x < intervallumon mindenütt onvergens. x x n x Számítsu i az y ch4x hatodfoú özelítő Taylor-polinomját a 0 hely özelében! A szüséges deriválta és azo értéei az x 0 helyen: 6

17 Innen a Taylor-polinom: x 0 f x ch4x f x 4sh4x 0 f x 4 ch4x 4 f x 4 sh4x 0 f IV x 4 4 ch4x 4 4 f V x 4 5 sh4x 0 f VI x 4 6 ch4x 4 6 T 6 x + 4! x ! x ! x6 Ugyanehhez az eredményhez jutun, ha az y chu sorában u helyett 4x-et írun a megfelelő tagoban: T 6 u + u! + u4 4! + u6 6!, ahonnan egyszerű behelyettesítés után apju a ívánt sort. Meghatározandó az y e x függvény n-edfoú Taylor-féle polinomja a 0 hely özelében. Az y e u Maclaurin-sora ismert: e u + u! + u! Itt u helyébe x -et helyettesítve: un n! +... x x x n T n x ,!! n! tehát a érdéses sor: T n x x.! 4 Határozzu meg az y lnx n-edfoú polinomját az x 0 pont örnyezetében! 7

18 x 0 f x lnx 0 f x x f x x. f n x n+ n x n Eze alapján a Taylor-polinom:. n+ n T n x! x! x +!! x n+ n! n x n + x. n! 5 Meghatározandó T 4 x, ha f x Mivel +x. +x, ezért a itevő n. A binomiális együttható +x iszámítása: n 0 n n n 0 n! n nn nnn n nnnn Tehát a Taylor-sor: T 4 x x+ 8 x 5 6 x x4. 6 Meghatározandó az e értée ét tizedes pontossággal. Véve az f x e x sorát az x 0 0 helyen, és x -et helyettesítve: e +! +! n!

19 A ét tizedesjegyű pontosság matematiai feltétele: + e! +! n! H < 0,005. A hibaéplet szerint: H < xx 0 n+ n+! max x fn+ x, 0,x tehát minthogy x 0 0 és x, f n+ x < a 0,-ban, ezért H < n+ n+! n+! < 0, , tehát < n+!, 5 ahonnan n 5, hiszen n+! 6! 70. T 5 x-szel számolva: T 5 x + x! + x! + x! + x4 4! + x5 5! ,5+0,667+0,047+0,008, Meora szaaszon helyettesíthető az y chx görbe másodfoú parabolával, ha előírju, hogy a hiba isebb legyen, mint 5 0? A hibatag: chx + x! x4 4! max x4 chx < 0,x 4! ex < x4 x < 0,005. 4! A helyettesítés azon az x 0 < x < x 0 szaaszon tehető meg, ahol x 0 ielégíti az x 4 x 4! 0,005, azaz a x 4 x 0,0 egyenletet. Ezt csa özelítő módszerrel lehet megoldani, mely alapján x 0 0,5 és 0,6 özé esi. Összegzésül álljon itt néhány fontosabb függvény Taylor-sora és azo onvergenciaintervallumai: e x sinx x, < x < +! x +, < x < + +! 9

20 cosx x, < x < +! shx chx ln+x ar thx x +, < x < + +! x, < x < +! x, < x < +x ln x x +, < x < + 0

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány Függvénye hatványsorba fejtése, Maclaurin-sor, onvergenciatartomány Taylor-sor, ) Állítsu elő az alábbi függvénye x helyhez tartozó hatványsorát esetleg ülönféle módszereel) éa állapítsu meg a hatványsor

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 4 IV HATVÁNYSOROk 1 ELmÉLETI ALAPÖSSZEFÜGGÉSEk Az olyan végtelen sort, amelynek tagjai függvények, függvénysornak nevezzük Ha a tagok hatványfüggvények, akkor a sor neve hatványsor

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.

Részletesebben

Analízis példatár. Országh Tamás. v0.2. A példatár folyamatosan bővül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a

Analízis példatár. Országh Tamás. v0.2. A példatár folyamatosan bővül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a Analízis példatár v0.2 A példatár folyamatosan bővül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a letölthető példatárak közt. Országh Tamás Budapest, 2005-2010 1 Mottó: Ki kéne vágni minden

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

1. Határozza meg az alábbi határértéket! A válaszát indokolja!

1. Határozza meg az alábbi határértéket! A válaszát indokolja! Matematika (Analízis és dierenciálegyenletek), NGB_MA003_1, 2. zárthelyi 2014. 11. 20., 1A-csoport x 2 + 6x x 2 5 5x 2 f(x) = tg(2x + 1) 2 x + cos x x 16 5 x + 16 2 x 16 4. Határozza meg, hogy az f(x)

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás

Részletesebben

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1 Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya

Részletesebben

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e Az. gyakorlat HF-inak megoldása. Deriváljuk az alábbi függvényeket. sin x cos x = cos x sin x, x ln x = x / ln x + x x x, x x = x / = x/ = = e x cos x+e x sin x e x cos x cos x, x sin x ln x = + x x, x

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (L Hospital szabály, Taylor-polinom,

First Prev Next Last Go Back Full Screen Close Quit. (L Hospital szabály, Taylor-polinom, Valós függvények (L Hospital szabály, Taylor-polinom, függvények közelítése) . Tegyük fel, hogy f és g differenciálható az (a, p) (p, b) halmazon, ahol a < b, g-nek és g -nek nincs gyöke ebben a halmazban.

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Régebbi Matek B1 és A1 zh-k. deriválás alapjaival kapcsolatos feladatai. n )

Régebbi Matek B1 és A1 zh-k. deriválás alapjaival kapcsolatos feladatai. n ) Régebbi Matek B1 és A1 zh-k Sorozatok és függvények határértékével, folytonossággal és a deriválás alapjaival kapcsolatos feladatai. 1. Számítsuk ki: (a) n ( 2n 1) n+3 1 + arccos( 2n + 1 n ) (b) n ( n

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL A primitív függvény és a határozatlan integrál 5 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Gyaorlato és feladato ( oldal) I Vizsgáld meg, hogy a övetező függvényene milyen halmazon van primitív

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

= x2. 3x + 4 ln x + C. 2. dx = x x2 + 25x. dx = x ln 1 + x. 3 a2 x +a 3 arctg x. 3)101 + C (2 + 3x 2 ) + C. 2. 8x C.

= x2. 3x + 4 ln x + C. 2. dx = x x2 + 25x. dx = x ln 1 + x. 3 a2 x +a 3 arctg x. 3)101 + C (2 + 3x 2 ) + C. 2. 8x C. . Határozatlan integrál megoldások.. 5. 7 5 5. t + t 5t. 8 = 7 8 = 8 5 8 5 6. e + 5 ln + tg + 7. = 8. + 5 = 5 ln + 5 9. = + 5 + 5 5 + 5 + 5 = /5 = 5 6 6/5 + 5 5 = + ln = 5 + 5 = + ln + 0.. a +a arctg a.

Részletesebben

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) FELADATOK Taylor- (Maclaurin-) sorok, hibabecslés

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) FELADATOK Taylor- (Maclaurin-) sorok, hibabecslés FELADATOK Taylor- (Maclauri- soro, hibabecslés Határozzu meg az e üggvéy -örüli Taylor-sorát! Adju meg a hatváysor overgecia sugarát, ill. overgecia halmazát! Számítsu i a deriváltaat a -helye: e, e, e,

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

Fourier sorok február 19.

Fourier sorok február 19. Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus függvény

Részletesebben

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4.

Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4. Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 2017. október 4. Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl

Részletesebben

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

Hatványsorok, Fourier sorok

Hatványsorok, Fourier sorok a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés

Részletesebben

A gyors Fourier-transzformáció (FFT)

A gyors Fourier-transzformáció (FFT) A gyors Fourier-transzformáció (FFT) Egy analóg jel spetrumát az esete döntő többségében számítástechniai eszözöel határozzu meg. A jelet mintavételezzü és elvégezzü a mintasorozat diszrét Fouriertranszformációját.

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Dierenciálhatóság. Wettl Ferenc el adása alapján és 205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Polinomok maradékos osztása

Polinomok maradékos osztása 14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)

Részletesebben

a) az O(0, 0) középpontú, r = 2 sugarú, negatív irányítasú körvonal P( 2, 2), Q( 2, 2) pontjait

a) az O(0, 0) középpontú, r = 2 sugarú, negatív irányítasú körvonal P( 2, 2), Q( 2, 2) pontjait 06.05.7. Kalulus II. NÉV:... A csoport EHA:... FELADATOK. Határozzu meg a xy da integrált, ahol H az A(, ), B(0, 0) és C(, ) ponto által megha- y + 3 tározott háromszög. H 0pt. Oldju meg: y y + 5y = e

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [

[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [ Bodó Beáta 1 FÜGGVÉNYEK 1. Határozza meg a következő összetett függvényeket! g f = g(f(x)); f g = f(g(x)) (a) B f(x) = cos x + x 2 ; g(x) = x; f(g(x)) =?; g(f(x)) =? f(g(x)) = cos( x) + ( x) 2 = cos( x)

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc

Részletesebben

x a x, ha a > 1 x a x, ha 0 < a < 1

x a x, ha a > 1 x a x, ha 0 < a < 1 EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény

Részletesebben

Példatár Lineáris algebra és többváltozós függvények

Példatár Lineáris algebra és többváltozós függvények Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................

Részletesebben

Matematika példatár 4.

Matematika példatár 4. Nyugat-magyarországi Egyetem Geoinformatikai Kara Csabina Zoltánné Matematika példatár 4 MAT4 modul Integrálszámítás szabályai és módszerei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax) III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Határozatlan integrál, primitív függvény

Határozatlan integrál, primitív függvény Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,

Részletesebben

1. Egyensúlyi pont, stabilitás

1. Egyensúlyi pont, stabilitás lméleti fizia. elméleti összefoglaló. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan pontoat nevezzü, ahol a tömegpont gyorsulása 0. Ha a tömegpont egy ilyen pontban tartózodi, és nincs sebessége,

Részletesebben

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 + . Fourier-soro. Bevezet definíció Enne a fejezetne a célja, hogy egy szerint periodius függvényt felírjun mint trigonometrius függvényeből épzett függvénysorént. Nyilván a cos x a sin x függvénye szerint

Részletesebben

Elérhető maximális pontszám: 70+30=100 pont

Elérhető maximális pontszám: 70+30=100 pont Villamosmérnök Szak Távoktatás 2. félév Matematika kollokvium 2008. dec. 20. Név: Neptun Kód: Tanár: Fel.: Elm.: Hf.: Össz.: Oszt.: Vajda István Rendelkezésre álló idő: 105 perc Elérhető maximális pontszám:

Részletesebben

A feladatok megoldása

A feladatok megoldása A feladato megoldása A hivatozáso C jelölései a i egyenleteire utalna.. feladat A beérezési léps felszíne fölött M magasságban indul a mozgás, esési ideje t = M/g. Ezalatt a labda vízszintesen ut utat,

Részletesebben

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt 27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,

Részletesebben

Kurzusinformáció. Analízis II, PMB1106

Kurzusinformáció. Analízis II, PMB1106 Kurzusinformáció Analízis II, PMB1106 2013 Tantárgy neve: Analízis II Tantárgy kódja: PMB1106 Kreditpont: 4 Heti kontakt óraszám (elm.+gyak.): 2+2 Előfeltétel: PMB1105 Félévi követelmény: kollokvium Előadás

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Feladatok matematikából 3. rész

Feladatok matematikából 3. rész Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

1. Bevezetés Differenciálegyenletek és azok megoldásai

1. Bevezetés Differenciálegyenletek és azok megoldásai . Bevezetés.. Differenciálegyenletek és azok megoldásai Differenciálegyenlet alatt olyan függvény egyenleteket értünk, melyekben független változók, függvények és azok deriváltjai szerepelnek. Legegyszerűbb

Részletesebben

Kalkulus I. gyakorlat, megoldásvázlatok

Kalkulus I. gyakorlat, megoldásvázlatok Kalkulus I. gyakorlat, megoldásvázlatok Fizika BSc I/.. Ábrázoljuk a következ halmazokat a síkon! a {, y R : + y < }, b {, y R : + y < }, c {, y R : + y

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Megoldások november

IV. INTEGRÁLSZÁMÍTÁS Megoldások november IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

Alkalmazott matematika és módszerei I Tantárgy kódja

Alkalmazott matematika és módszerei I Tantárgy kódja Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

FÜGGVÉNYTANI ALAPOK A) ÉRTELMEZÉSI TARTOMÁNY

FÜGGVÉNYTANI ALAPOK A) ÉRTELMEZÉSI TARTOMÁNY FÜGGVÉNYTANI ALAPOK Foglalkoztunk az alaptulajdonságnak tekinthető értelmezési tartománnyal, és a paritással, továbbá az összetett függvények képzési módjával, illetve ezeknek az elemi függvényekre való

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Tizenegyedi gyaorlat: Parciális dierenciálegyenlete Dierenciálegyenlete, Földtudomány és Környezettan BSc A parciális dierenciálegyenlete elmélete még a özönséges egyenleteénél is jóval tágabb, így a félévben

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12 XL. Felvidéi Magyar Matematiaverseny Oláh György Emléverseny Galánta 016 Megoldáso 1. évfolyam 1. Oldju meg az egész számo halmazán az egyenletet. x 005 11 + x 004 1 = x 11 005 + x 1 004 Az egyenlet mindét

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

IV. INTEGRÁLSZÁMÍTÁS Feladatok november IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

Trigonometrikus függvények azonosságai

Trigonometrikus függvények azonosságai Ez az útmutató a képletgyűjtemény táblázataihoz nyújt részletes magyarázatot. A képletgyűjteménynek nem célja, hogy az elméleti tudást helyettesítse, mindössze egy emlékeztető, ami segíti az előadások

Részletesebben

Exponenciális és logaritmikus kifejezések Megoldások

Exponenciális és logaritmikus kifejezések Megoldások Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása

Részletesebben

0, különben. 9. Függvények

0, különben. 9. Függvények 9. Függvények 9.. Ábrázolja a megadott függvényeket, és vizsgálja meg a függvények korlátosságát, monotonitását, konveitását, paritását, előjelét, zérushelyeit, periodicitását és határozza meg a valós

Részletesebben

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,

Részletesebben

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, 3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.

Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim. Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

Gyakorlo feladatok a szobeli vizsgahoz

Gyakorlo feladatok a szobeli vizsgahoz Gyakorlo feladatok a szobeli vizsgahoz Függvények. Viszgaljuk meg, hogy az alabbi fuggvenyek kozuk melyik injektv, szurjektv, illetve bijektv? F : N N, n n b) F : Q Q, c) F : R R, d) F : N N, n n e) F

Részletesebben

KONVEXITÁS, ELASZTICITÁS

KONVEXITÁS, ELASZTICITÁS Bodó Beáta 1 KONVEXITÁS, ELASZTICITÁS 1. B Az f(x) függvény értelmezési tartománya. Hol konkáv az f(x) függvény, ha második deriváltja f (x) = (x + 6) 5 (4x 12) 8 (x + 2)? f (x) zérushelyei: 6; 2; 3 D

Részletesebben