Matematika példatár 4.
|
|
- Frigyes Farkas
- 8 évvel ezelőtt
- Látták:
Átírás
1 Nyugat-magyarországi Egyetem Geoinformatikai Kara Csabina Zoltánné Matematika példatár 4 MAT4 modul Integrálszámítás szabályai és módszerei SZÉKESFEHÉRVÁR 2010
2 Jelen szellemi terméket a szerzői jogról szóló 1999 évi LXXVI törvény védi Egészének vagy részeinek másolása, felhasználás kizárólag a szerző írásos engedélyével lehetséges Ez a modul a TÁMOP /1/A Tananyagfejlesztéssel a GEO-ért projekt keretében készült A projektet az Európai Unió és a Magyar Állam Ft összegben támogatta Lektor: Vígné dr Lencsés Ágnes Phd Projektvezető: Dr hc Dr Szepes András A projekt szakmai vezetője: Dr Mélykúti Gábor dékán Copyright Nyugat-magyarországi Egyetem Geoinformatikai Kar 2010
3 Tartalom 4 Integrálszámítás szabályai és módszerei 41 Bevezetés 42 Határozatlan integrál 421 Alapintegrálok 422 Mintapéldák 423 Feladatok 424 Integrálási szabályok Mintapéldák és feladatok az alakú integrálok kiszámítására Mintapéldák és feladatok az alakú integrálok kiszámítására Mintapéldák és feladatok az alakú integrálok kiszámítására Mintapéldák és feladatok az alakú integrálok kiszámítására Mintapéldák és feladatok a parciális integrálásra Helyettesítéses integrál Racionális törtfüggvények integrálása MEGOLDÁSOK 17
4
5 4 fejezet - Integrálszámítás szabályai és módszerei 41 Bevezetés A feladatgyűjtemény a matematikai analízis tantárgy gyakorlatainak tananyagát öleli fel a NyME Geoinformatikai Kar mérnöki szakán A feladatgyűjtemény külön fejezetekben tárgyalja az egyes anyagrészeket Minden fejezet elején megtalálhatók a legfontosabb definíciók és tételek bizonyítás nélkül, amelyek ismerete elengedhetetlen a feladatok megoldásához Minden fejezetben találhatók részletesen kidolgozott példák, amelyek az egész tananyagot felölelik, és segítik annak megértését Minden fejezet végén feladatok találhatók, amelyeket további gyakorlás és az önálló munkára való szoktatás céljából készültek A feladatok részben saját összeállításúak, továbbá más forrásból átvettek, illetve átdolgozottak A fejezetek tananyagai egymásra épülnek, ezért érdemes a feldolgozott sorrendben haladni a tanulásban A feladatgyűjtemény célja hallgatóink munkájának, tanulásának könnyítése, matematika tanulásának elmélyítése A fokozatosság elvén alapuló feladatok pedig fejlesztik a matematikai gondolkodásukat, valamint a szaktárgyak és alapozó tárgyak elsajátításához szükséges ismeretek elmélyítését, a feladatmegoldó készséget, jártasságot A hallgatók, olyan alapokra tesznek szert, amelyek felhasználásával képessé válnak a gyakorlatban felmerülő problémák modelljeinek felállítására, és azok megoldására A feladatok megoldásával szakmájához szükséges konvertibilis és tovább építhető matematikai ismeret birtokába jut 42 Határozatlan integrál A határozatlan integrál vagy primitív függvény keresése röviden: integrálás a differenciálás fordított művelete Definíció: Legyen f valamilyen I intervallumon értelmezve Ha létezik olyan F függvény, amely ezen az intervallumon differenciálható és minden x I-re F (x) = f(x), akkor az F függvényt az f függvény I intervallumhoz tartozó primitív függvényének nevezzük Definíció: Egy f(x) függvény határozatlan integráljának nevezzük az I intervallumban az f(x) függvény primitív függvényeinek a halmazát Jelölése: Az elmondottak szerint, ha F (x) = f(x), akkor = F(x) + c
6 Matematika példatár Alapintegrálok 1, ha α R és α -1, mert 2 ha α = 1,, (x 0), mert ha x 0, akkor (ln x ) = (ln x) = ha x 0, akkor (ln x ) = (ln( x)) = 1, ha a R, mert (ax + c) = a 2, mert (ex + c) = ex 3 ) = ax, ha (a 0; a 1), mert ( 4, mert ( cos x + c) = sin x 5, mert (sin x + c) = cos x 6, mert ( ctg x + c) = 7, mert (tgx + c) = = 1 + tg2x 8, mert (arctg x + c) = 9, mert (arc sin x + c) = Az itt felsorolt elemi függvény primitív függvényeinek helyességét deriválással ellenőriztük A kapott táblázatból látható, hogy sok elemi alapfüggvény primitív függvénye nem szerepel Ez már előre vetíti, hogy függvények primitív függvényeinek a keresése nem olyan egyszerű feladat, mint a deriválás Az integrálás elsajátításához sok gyakorlásra van szükség Az integrálási feladat eredményét mindig ellenőrizhetjük, mivel az eredmény deriváltja az integrálandó függvény kell hogy legyen Integrálási szabály: Tétel: Ha f-nek és g-nek az I intervallumban léteznek a primitív függvényei, akkor cf-nek és (f + g)-nek is van primitív függvénye és MAT4-2
7 Csabina Zoltánné Integrálszámítás szabályai és módszerei a A következő példákban olyan integrálokról lesz szó, amelyek alapintegrálok, vagy egyszerű átalakításokkal közvetlenül az alapintegrálokra vezethetők vissza 422 Mintapéldák 1 Példa: Keressük az alábbi függvények határozatlan integrálját: a f1(x) = 5x7 + 3x3 + 8 a f2(x) = i f3(x) = 2ex 2x + a f4(x) = a f5(x) = MAT4-3
8 Matematika példatár a f6(x)= 423 Feladatok Integrálási szabályok Tétel: Ha az f-nek az I intervallumon F a primitív függvénye, akkor, ax + b I, ahol a, b R és a 0 Tétel: Legyen f differenciálható az I intervallumon, akkor, α 1 Tétel: Ha f differenciálható az I intervallumon és f(x) 0 (x I), akkor MAT4-4
9 Csabina Zoltánné Integrálszámítás szabályai és módszerei Tétel: Ha g függvény differenciálható az I intervallumon, és F (x) =f(x), továbbá ezen az intervallumon f[g(x)] összetett függvény létezik, akkor Helyettesítéses integrálás: Az képleten a következő formális átalakítást hajtjuk végre: Legyen t = g(x) Ekkor a Így egyenlőségből g (x)dx = dt [t = g(x)] Az így kapott képletet nevezzük a helyettesítéssel való integrálás képletének, amely a fent leírt tétel feltételei mellett alkalmazható Parciális integrálás: Tétel: Ha az u és v függvények az I intervallumon differenciálhatók, továbbá az uv és az u v szorzatoknak ugyanezen az intervallumon van határozatlan integrálja, akkor 425 Mintapéldák és feladatok az integrálok kiszámítására alakú 2 Példa: Határozzuk meg a következő függvények határozatlan integrálját! a)f(x) = (2x + 3)4 b)f(x) =57x-3 c)f(x) = sin( ) MAT4-5
10 Matematika példatár d)f(x)= sin2x Feladatok: Mintapéldák és feladatok az integrálok kiszámítására alakú 3 Példa: Határozzuk meg a következő függvények határozatlan integrálját! a) f(x) = 12x(6x2 + 5)4 MAT4-6
11 Csabina Zoltánné Integrálszámítás szabályai és módszerei b) f(x) = c) f(x)=3cos4x sin x FELADATOK: MAT4-7
12 Matematika példatár Mintapéldák és feladatok az integrálok kiszámítására alakú 4 Példa: Határozzuk meg a következő függvények határozatlan integrálját! a) b) c) d) FELADATOK: MAT
13 Csabina Zoltánné Integrálszámítás szabályai és módszerei Mintapéldák és feladatok az kú integrálok kiszámítására ala- 5 példa: Határozzuk meg a következő függvények határozatlan integrálját! a) Az első tényező összetett függvény, amelynek belső függvénye g(x) = x2 Az integrandus az f(g(x))g (x) alakú, mivel (x2) = 2x Így b) FELADATOK: MAT4-9
14 Matematika példatár Mintapéldák és feladatok a parciális integrálásra 6 Példa: Határozzuk meg a következő függvények határozatlan integrálját! a) u (x) = ex, v(x) = x u(x) = ex v (x) = 1 Ezeket helyettesítve: b) Az integrandust tekinthetjük az 1 ln x függvényszorzatnak Legyen v (x) = 1 és u(x) = ln x, ekkor v(x) = x és u (x) = Ezt felhasználva: c) u(x) = x2 v (x) = cos x u (x) = 2x v(x) = sin x MAT4-10
15 Csabina Zoltánné Integrálszámítás szabályai és módszerei Az új integrálra ismét alkalmazzuk a parciális integrálást az alábbi megfeleltetésben: u(x) = 2x v (x) = sin x u (x) = 2 v(x) = cos x d) Legyen u(x) = arc tg x v (x) = x u (x) = v(x)= ekkor e) Legyen u (x) = ex v(x) = cosx u(x) = ex v (x) = sinx Ismét parciálisan integráljuk Legyen u (x) = ex v(x) = sinx u(x) = ex v (x) = cosx Egyenletként rendezve kapjuk: MAT4-11
16 Matematika példatár FELADATOK: Helyettesítéses integrál 7 Példa: Határozzuk meg a következő függvények határozatlan integrálját! a) Legyen t =, ebből t2 = 2 + 5x és x =,, A helyettesítést elvégezve: Visszahelyettesítve: b) MAT4-12
17 Csabina Zoltánné Integrálszámítás szabályai és módszerei Legyen t = ex, ebből x = lnt, c) Legyen t =, ebből x = t2, u(x) = 6t v (x) = et u (x) = 6 v(x) = et, dx = 2tdt d) Legyen x=sint, t=arcsinx,, dx = costdt és így FELADATOK: MAT4-13
18 Matematika példatár Racionális törtfüggvények integrálása A racionális függvények két polinom hányadosaként állíthatók elő: R(x) = Ha Q(x) konstans, akkor polinomot kapunk A polinomok integrálása nem jelent különösebb gondot számunkra, tagonként integrálhatjuk őket A következőkben csak olyan esettel foglalkozunk, amikor Q(x) legalább elsőfokú polinom Ugyanakkor feltesszük P(x)-ről, hogy Q(x)-nél alacsonyabb fokú Amennyiben ugyanis P(x) nem alacsonyabb fokú Q(x)-nél, akkor elvégezhetjük az osztást, amelynek eredményeképpen hányadosként kapunk egy P1(x) polinomot és egy P2(x) maradék polinomot, amelynek fokszáma a Q(x) fokszámánál kisebb Ennek alapján R(x) előállítható ilyen alakban: R(x) = P1(x) + A racionális törtfüggvények integrálásánál követendő eljárást elsősorban a nevező zérushelyei határozzák meg 8 Példa: a) b) 9 Példa: Számítsuk ki az alábbi integrálokat! a) Az integrálandó függvény így írható fel: Parciális törtek összegére kell felbontani (A nevezőnek két különböző valós zérushelye van) MAT4-14
19 Csabina Zoltánné Integrálszámítás szabályai és módszerei A és B ismeretlen konstans Az egyenlőség csak úgy lehet igaz, ha az egyenlőség két oldalán, a számlálókban x együtthatója és a konstans egyenlők azaz A = 24, B = 31 A keresett felbontás tehát: b) = (x 1)2, ezért most a nevező egyetlen valós zérus helye x1 = x2 = 1 Fel lehet bontani egy (x 1) és egy (x 1)2 nevezőjű konstans számlálójú résztörtek összegére 1 3x = Bx + A B azaz B = 3 és A = 2 Ennek alapján az integrál: MAT4-15
20 Matematika példatár c) A nevező a következőképpen alakítható szorzattá: x4 1 = (x2 1)(x2 + 1) = (x + 1)(x 1)(x2 + 1) Az integrandus parciális törtekre bontása: Az egyenlőség csak akkor állhat fenn, ha azaz A=, B=, C=, D = 1 Ezek szerint:, Feladatok: MAT4-16
21 Csabina Zoltánné Integrálszámítás szabályai és módszerei MEGOLDÁSOK vagy: 8 9 MAT4-17
22 Matematika példatár MAT4-18
23 Csabina Zoltánné Integrálszámítás szabályai és módszerei MAT4-19
24 Matematika példatár vagy: MAT4-20
25 Csabina Zoltánné Integrálszámítás szabályai és módszerei MAT4-21
26 Matematika példatár vagy: MAT4-22
27 Csabina Zoltánné Integrálszámítás szabályai és módszerei MAT4-23
28 Matematika példatár mivel, ezért MAT4-24
29 Csabina Zoltánné Integrálszámítás szabályai és módszerei MAT4-25
30 Matematika példatár MAT4-26
31 Csabina Zoltánné Integrálszámítás szabályai és módszerei Mivel az alábbiak szerint résztörtekre bontottunk: 1 MAT4-27
32 Matematika példatár MAT4-28
33 Csabina Zoltánné Integrálszámítás szabályai és módszerei 109 Irodalomjegyzék Csabina Z-né: Matematika, NymE, Geoinformatikai Kar Jegyzetsokszorosító Részleg, Székesfehérvár, 2002 Banach, S: Differenciál- és integrálszámítás, Tankönyvkiadó, Budapest, 1975 Bay L Juhász A-Szentelekiné Páles I: Matematikai analízis példatár, Bárczy B: Differenciálszámítás, Műszaki Könyvkiadó, Budapest, 1970, Csernyák L : Analízis, Tankönyvkiadó, Budapest, 1992 Denkinger G : Analízis, Tankönyvkiadó, Budapest, 1980 Denkinger G Gyurkó L: Matematikai analízis, Feladatgyűjtemény, Kovács J Takács G Takács M: Analízis, Tankönyvkiadó, Budapest, 1986 Rejtő M Pach Zs Pálné Révész P : Matematika, Mezőgazdasági Kiadó, Budapest, 1972 Szerényi Tibor : Analízis, Tankönyvkiadó, Budapest, 1985 BPGyemidovics: Matematikai analízis, feladatgyűjtemény, Tankönyvkiadó, Budapest, 1974 Varga O-Merza J-Sebestyén L : Matematika és példatár I/2, Tankönyvkiadó, Budapest, 1966 Tóth A : Analízis feladatok, ARÉV Nyomda Kft, Székesfehérvár, 2002 Csikós Pajor G: Matematikai analízis, Műszaki Főiskola, Szabadka, 2000 Fleiner B-Makai Zs: Integrálszámítás feladatgyűjtemény, MAT4-29
34
Matematika példatár 4.
Matematika példatár 4 Integrálszámítás szabályai és Csabina, Zoltánné Created by XMLmind XSL-FO Converter Matematika példatár 4: Integrálszámítás szabályai és Csabina, Zoltánné Lektor: Vígné dr Lencsés,
Határozatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
Matematika példatár 5.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Csabina Zoltánné Matematika példatár 5 MAT5 modul Integrálszámítás alkalmazása SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999
Matematika példatár 5.
Matematika példatár 5 Integrálszámítás alkalmazása Csabina, Zoltánné Created by XMLmind XSL-FO Converter Matematika példatár 5: Integrálszámítás alkalmazása Csabina, Zoltánné Lektor: PhD Vigné dr Lencsés,
Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november
Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................
Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit
Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos
Határozatlan integrál, primitív függvény
Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,
Példatár Lineáris algebra és többváltozós függvények
Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................
Határozatlan integrál
Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás
Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány
Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
Polinomok maradékos osztása
14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik
2. hét (Ea: ): Az egyváltozós valós függvény definíciója, képe. Nevezetes tulajdonságok: monotonitás, korlátosság, határérték, folytonosság.
Ütemterv az Analízis I. c. tárgyhoz (GEMAN510B, 510-B) Járműmérnöki, logisztikai mérnöki, műszaki menedzser, villamosmérnöki, ipari termék- és formatervező mérnöki alapképzési szak 2019/20. tanév I. félév
Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása. 5), akkor
Integrálszámítás Integrálási szabályok Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása Motivációs feladat Valószínűség-számításnál találkozhatunk
Alkalmazott matematika és módszerei I Tantárgy kódja
Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve
y + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
Gazdasági matematika 1 Tantárgyi útmutató
Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése
Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
Határozatlan integral, primitívkeresés (Antiderivált). HATÁROZATLAN INTEGRÁL, PRIMITÍVKERESÉS (PRIMITÍV FÜGGVÉNY, ANTIDERIVÁLT FOGALMA)
Határozatlan integral primitívkeresés (Antiderivált). HATÁROZATLAN INTEGRÁL PRIMITÍVKERESÉS (PRIMITÍV FÜGGVÉNY ANTIDERIVÁLT FOGALMA). Definíció A differenciálszámítás egyik legfontosabb feladata az hogy
TANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
Matematikai alapok 1 Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:
TANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
IV. INTEGRÁLSZÁMÍTÁS Megoldások november
IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +
n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani
MATEMATIKA A KÖZGAZDASÁGI ALAPKÉPZÉS SZÁMÁRA SZENTELEKINÉ DR. PÁLES ILONA ANALÍZIS PÉLDATÁR
MATEMATIKA A KÖZGAZDASÁGI ALAPKÉPZÉS SZÁMÁRA SZENTELEKINÉ DR. PÁLES ILONA ANALÍZIS PÉLDATÁR Budapest, 2018 Szerző: SZENTELEKINÉ DR. PÁLES ILONA főiskolai docens 978-963-638-542-2 Kiadja a SALDO Pénzügyi
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
Fourier sorok február 19.
Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható
Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék
Differenciál - és integrálszámítás (Óraszám: 3+3) (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár Meghirdető tanszék: Analízis Tanszék Debrecen, 2005 A tárgy neve: Differenciál- és
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
Matematikai geodéziai számítások 5.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 5 MGS5 modul Hibaterjedési feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl
First Prev Next Last Go Back Full Screen Close Quit. (Derivált)
Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc
First Prev Next Last Go Back Full Screen Close Quit
Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.
First Prev Next Last Go Back Full Screen Close Quit. (L Hospital szabály, Taylor-polinom,
Valós függvények (L Hospital szabály, Taylor-polinom, függvények közelítése) . Tegyük fel, hogy f és g differenciálható az (a, p) (p, b) halmazon, ahol a < b, g-nek és g -nek nincs gyöke ebben a halmazban.
Gazdasági matematika
Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek számára 2017/18 tanév II. félév 1 Tantárgy
= x2. 3x + 4 ln x + C. 2. dx = x x2 + 25x. dx = x ln 1 + x. 3 a2 x +a 3 arctg x. 3)101 + C (2 + 3x 2 ) + C. 2. 8x C.
. Határozatlan integrál megoldások.. 5. 7 5 5. t + t 5t. 8 = 7 8 = 8 5 8 5 6. e + 5 ln + tg + 7. = 8. + 5 = 5 ln + 5 9. = + 5 + 5 5 + 5 + 5 = /5 = 5 6 6/5 + 5 5 = + ln = 5 + 5 = + ln + 0.. a +a arctg a.
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
Matematika példatár 1.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Csabina Zoltánné Matematika példatár 1 MAT1 modul Halmazelmélet sorozatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi LXXVI
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet
Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =
Gazdasági matematika
ALKALMAZOTT KVANTITATÍV MÓDSZERTAN TANSZÉK Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen
Matematikai geodéziai számítások 3.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 3 MGS3 modul Kettős vetítés és EOV szelvényszám keresése koordinátákból SZÉKESFEHÉRVÁR 2010 Jelen
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Analízis házi feladatok
Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,
Differenciálegyenletek. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex
Határozott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 4 IV HATVÁNYSOROk 1 ELmÉLETI ALAPÖSSZEFÜGGÉSEk Az olyan végtelen sort, amelynek tagjai függvények, függvénysornak nevezzük Ha a tagok hatványfüggvények, akkor a sor neve hatványsor
Függvény differenciálás összefoglalás
Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
Feladatok matematikából 3. rész
Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!
A kiadásért felel dr. Táncos László, a Semmelweis Kiadó igazgatója Nyomda alá rendezte Békésy János Borítóterv: Táncos László SKD: SKD043-e
Dr. Gergó Lajos elõadásjegyzetei alapján készítették: Dr. Gergó Lajos Dr. Meskó Attiláné Gillemotné Dr. Orbán Katalin Semmelweis Egyetem, Gyógyszerésztudományi Kar, Egyetemi Gyógyszertár, Gyógyszerügyi
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz
Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},
Függvények határértéke és folytonosság
Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,
Kurzusinformáció. Analízis II, PMB1106
Kurzusinformáció Analízis II, PMB1106 2013 Tantárgy neve: Analízis II Tantárgy kódja: PMB1106 Kreditpont: 4 Heti kontakt óraszám (elm.+gyak.): 2+2 Előfeltétel: PMB1105 Félévi követelmény: kollokvium Előadás
Integrálszámítás (Gyakorló feladatok)
Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)
Matematikai geodéziai számítások 9.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 9 MGS9 modul Szabad álláspont kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
Dierenciálhányados, derivált
9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez
Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.
Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
Matematika példatár 3.
Matematika példatár 3 Deriváltak, differenciálszámítás függvények és Csabina, Zoltánné Matematika példatár 3: Deriváltak, differenciálszámítás függvények és deriváltak alkalmazása a Csabina, Zoltánné Lektor:
A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)
Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky
Matematika I. Vektorok, egyenesek, síkok
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk
Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
Határérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11.
Határérték Thomas féle Kalkulus 1 című könyv alapján készült a könyvet használó hallgatóknak. A képek az eredeti könyv szabadon letölthető prezentációjából valók ((C)Pearson Education, Inc.) Összeállította:
Polinomok, Lagrange interpoláció
Közelítő és szimbolikus számítások 8. gyakorlat Polinomok, Lagrange interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Polinomok
Matematikai geodéziai számítások 8.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 8 MGS8 modul Szintezési hálózat kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!
. Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x
1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
A gyakorlatok anyaga
A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
1. A maradékos osztás
1. A maradékos osztás Egész számok osztása Példa 223 = 7 31+6. Visszaszorzunk Kivonunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a,b Z esetén, ahol b 0, létezik olyan q,r Z, hogy a = bq +
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
Matematikai geodéziai számítások 7.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 7. MGS7 modul Súlyozott számtani közép számítása és záróhibák elosztása SZÉKESFEHÉRVÁR 2010 Jelen
1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log
1. Fuggveny ertekek 1 Szamtsuk ki az alabbi fuggvenyek erteket a megadott helyeken! a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I b) f (x) = sin x 1 x = π 2, π 4, 3 3 2π, 10π I arcsin(x) ha 1 x 0 1 c) f
Régebbi Matek B1 és A1 zh-k. deriválás alapjaival kapcsolatos feladatai. n )
Régebbi Matek B1 és A1 zh-k Sorozatok és függvények határértékével, folytonossággal és a deriválás alapjaival kapcsolatos feladatai. 1. Számítsuk ki: (a) n ( 2n 1) n+3 1 + arccos( 2n + 1 n ) (b) n ( n
2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?
= komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve
Differenciál és integrálszámítás diszkréten
Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten
Határozatlan integrál
Határozatlan integrál 05. április.. Alapfeladatok. Feladat: Határozzuk meg az alábbi határozatlan integrált! + sin ch Megoldás: Az integrálandó függvényen belül összeadás illetve kivonás m velete szerepel,
Matematika I. NÉV:... FELADATOK:
24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n
Kalkulus 2., Matematika BSc 1. Házi feladat
. Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [
Bodó Beáta 1 FÜGGVÉNYEK 1. Határozza meg a következő összetett függvényeket! g f = g(f(x)); f g = f(g(x)) (a) B f(x) = cos x + x 2 ; g(x) = x; f(g(x)) =?; g(f(x)) =? f(g(x)) = cos( x) + ( x) 2 = cos( x)
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
2018/2019. Matematika 10.K
Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül
Dierenciálhatóság. Wettl Ferenc el adása alapján és
205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási
2012. október 2 és 4. Dr. Vincze Szilvia
2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex