Matematikai alapok 1 Tantárgyi útmutató
|
|
- Regina Bognárné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5
2 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa: Módszertani alapozó Kontaktórák száma: Elmélet: 2 Gyakorlat: 2 Összesen 4 Vizsgajelleg: Kollokvium A tantárgy kreditértéke: 5 A tantárgy előtanulmányi rendje: Nincs feltétel. A tantárgy képzési célja: A logikus gondolkodás fejlesztése. Olyan szemlélet kialakítása, amely képessé teszi a hallgatót olyan fontos közgazdasági, pénzügyi és informatikai fogalmak megértésére, melyekre a tanulmányai során szükség lesz. Olyan matematikai fogalmak és módszerek elsajátítása, amelyek elengedhetetlenül szükségesek a valószínűségszámítás, a statisztika, a számítástechnika, a közgazdaságtan, a pénzügy és más szaktárgyak oktatásához. Képes legyen a hallgató a probléma felismerésére, a megfelelő matematikai eszköz kiválasztására, alkalmazására és az eredmény értékelésére. A tananyag tartalma részletesen: 1. hét II hét II hét II hét II hét II hét III hét III. 14. Regisztrációs hét. Számfogalom, a valós és komplex számok műveleti tulajdonságai. Függvény fogalma, valós függvények, természetes értelmezési tartomány. A középiskolából ismert elemi függvények. Trigonometrikus függvények. Szakaszonként lineáris függvények. A függvények tulajdonságai: zérushely, szélsőérték, monotonitás, paritás, korlátosság. Függvénytranszformációk. Műveletek függvényekkel. Összetett függvény, inverz függvény. Sorozat fogalma, megadási módjai. A sorozatok tulajdonságai (monotonitás, korlátosság). Sorozat határértékének fogalma. Műveletek konvergens sorozatokkal. Speciális divergens sorozatok. Végtelen sorok; végtelen mértani sor összege. Hányadoskritérium és abszolút konvergencia. Hatványsorok. Függvények határértéke, jobb és bal oldali határérték. Folytonosság. Műveleti tételek. Függvények határértéke végtelenben. Tágabb értelemben vett határérték. Differenciálhányados fogalma, deriváltfüggvény. Differenciálhatóság és folytonosság kapcsolata. Elemi függvények deriváltja. Differenciálási szabályok. Differenciálható függvények vizsgálata. A szélsőérték létezésének szükséges feltétele, monotonitás. A szélsőérték létezésének elégséges feltételei. 2/5
3 8. hét III hét III hét IV hét IV hét IV hét IV hét V hét V. 9. Szünet. Beszámoló hét. Konvex, konkáv függvények. Függvényvizsgálat. Gazdasági alkalmazások. Primitív függvény, határozatlan integrál. Alapintegrálok, alapműveletek integrálokkal. Az integrálás egyszerű módszerei. Integrálás helyettesítéssel. Parciális integrálás. A határozott integrál fogalma. A határozott integrál tulajdonságai. Newton Leibnizformula. Területszámítás. Improprius integrál. Többváltozós függvény fogalma, szintvonalak. Parciális derivált. Kétváltozós függvények szélsőértéke. A kettős integrál fogalma. Beszámoló hét. A félév során elsajátítandó kulcsfogalmak: Halmazok: fogalma, műveletek halmazokkal; Descartes-féle szorzat. Valós számok: axiómái; intervallum, környezet; megszámlálható halmazok, számosság. Komplex számok fogalma, műveletek komplex számokkal. Függvények: fogalma, műveletek függvényekkel; összetett- és inverz függvény; függvénytulajdonságok. Számsorozatok: monotonitás; korlátosság; konvergencia, divergencia; műveletek konvergens sorozatokkal. Végtelen sor: fogalma; végtelen mértani sor; hányadoskritérium. Függvények határértéke: határérték a végesben és végtelenben. Függvények folytonossága: folytonosság fogalma; műveletek folytonos függvényekkel; elemi függvények folytonossága. Differenciálszámítás: differenciálhányados, differenciálhatóság és folytonosság kapcsolata; összeg, szorzat és hányados deriváltja; összetett függvény deriváltja. Elemi függvények deriváltjának kiszámítása (trigonometrikus is). Magasabbrendű deriváltak; Taylor-sor. Függvénytulajdonságok: monotonitás; szélsőérték; konvex, konkáv függvények. Függvényvizsgálat. Határozatlan integrál: primitív függvény; integrálási szabályok; parciális integrálás; integrálás helyettesítéssel. Határozott integrál: fogalma; tulajdonságai, Newton Leibniz-formula; alkalmazások. Többváltozós függvények: szintvonalak; parciális derivált; szélsőérték. A kettős integrál fogalma. 3/5
4 A tananyag feldolgozásához szükséges irodalom: Kötelező irodalom: Dr. Csernyák László: Matematika a közgazdasági alapképzés számára: Analízis, Nemzeti Tankönyvkiadó, Bp., R. sz.: Szentelekiné dr. Páles Ilona: Matematika a közgazdasági alapképzés számára, Analízis példatár, Nemzeti Tankönyvkiadó, Bp., Ajánlott irodalom: Denkinger-Gyurkó: Analízis: Gyakorlatok. Nemzeti Tankönyvkiadó, Bp., Bárczy Barnabás: Differenciálszámítás (Példatár), Bolyai-könyvek, Műszaki Kvk., Bp., Bárczy Barnabás: Integrálszámítás (Példatár), Bolyai-könyvek, Műszaki Kvk., Bp., Az ismeretek értékelése, minősítése: A szorgalmi időszak alatt a hallgatók két félévközi kisdolgozat formájában adnak számot ismereteikről. 1. félévközi kisdolgozat (45 perc) - időpontja: 9. (beszámoló) hét Komplex számok. Valós függvények. Számsorozatok, sorok. Függvények határértéke és folytonossága. Egyváltozós függvények deriválása. - pontszáma: 30 pont 2. félévközi kisdolgozat (45 perc) - időpontja: 15. hét Differenciálható függvények vizsgálata. Határozatlan integrál. Határozott integrál. Többváltozós függvény deriválása. A kettős integrál. - pontszáma: 30 pont A félévközi kisdolgozatok nem pótolhatók! Az aláírás feltétele: - A TVSZ-nek megfelelően a szemináriumokon való részvétel (maximum 3 hiányzás). Ha valaki a dolgozatíráson nem vesz részt, az hiányzásnak számít. - A két kisdolgozatból legalább 10 pont megszerzése. - Azoknak a hallgatóknak, akiknek a Matematikai alapok 1. tárgyuk a szintrehozó kurzus nem teljesítése miatt aláírás megtagadással végződött, a következő tárgyfelvételnél a szintrehozó kurzus felvétele nélkül, a félév során két kisdolgozatot kötelező írniuk a felzárkóztató anyagából. A Matematikai alapok 1. tantárgyból csak akkor kaphatnak aláírást, ha a két kisdolgozatból megszerzik az előírt pontszámot. Az évközi dolgozatok nem pótolhatók és nem javíthatók. 4/5
5 A félév kollokviummal zárul. A kollokvium jellege írásbeli vizsga, melynek időtartama 90 perc. A kollokviumi dolgozat pontszáma 100 pont. A félévközi kisdolgozatok során az új anyag feldolgozásához feltétlenül szükséges definíciók, tételek megfogalmazásaira (10-10 pont) és egyszerű feladatok megoldásaira (20-20 pont) kerül sor. A kollokviumi dolgozat összetettebb feladatok megoldása mellett az elméleti részben az egyik tétel kimondását és bizonyítását is számon kéri. A vizsgán az elért pontszám függvényében az alábbi érdemjegyeket adjuk: pontszám érdemjegy A félévközi kisdolgozatok jó színvonalú megírása előnyt jelenthet a vizsgákon. Ha a hallgató a két félévközi kisdolgozatból legalább 15 pontot ér el, akkor az alábbi táblázat szerint vizsgapontokat kap, amelyeket az első vizsgáján elért pontszámához hozzáadunk. Pontszám: Vizsgapont: Pontszám: Vizsgapont: A dolgozatok megírásánál érvényes ülésrend a tanszéki hirdetőtáblán tekinthető meg. Konzultációs lehetőségek a tananyag feldolgozáshoz: Heti két, egyéni konzultációs óra. Az oktatók konzultációs ideje a Kar honlapján tekinthető meg. Konzultációra a tárgyat oktatók bármelyikénél lehet jelentkezni, továbbá egyéni időpontot is lehet kérni. 5/5
TANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
TANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
Gazdasági matematika 1 Tantárgyi útmutató
Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése
TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani
TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
Gazdasági matematika
ALKALMAZOTT KVANTITATÍV MÓDSZERTAN TANSZÉK Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek
Gazdasági matematika
Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek számára 2017/18 tanév II. félév 1 Tantárgy
MATEMATIKA A KÖZGAZDASÁGI ALAPKÉPZÉS SZÁMÁRA SZENTELEKINÉ DR. PÁLES ILONA ANALÍZIS PÉLDATÁR
MATEMATIKA A KÖZGAZDASÁGI ALAPKÉPZÉS SZÁMÁRA SZENTELEKINÉ DR. PÁLES ILONA ANALÍZIS PÉLDATÁR Budapest, 2018 Szerző: SZENTELEKINÉ DR. PÁLES ILONA főiskolai docens 978-963-638-542-2 Kiadja a SALDO Pénzügyi
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
Matematika G1 és A1a-Analízis tárgyak (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar
Matematika G1 és A1a-Analízis tárgyak (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Tárgykódok: BMETE93BG01, BMETE94BG01, BMETE90AX00 Kurzuskódok: G00, G01, G02, H0, H1, HV Követelmény: 4/2/0/V/6;
Tartalomjegyzék. 1. Előszó 1
Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............
Alkalmazott matematika és módszerei I Tantárgy kódja
Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve
2. hét (Ea: ): Az egyváltozós valós függvény definíciója, képe. Nevezetes tulajdonságok: monotonitás, korlátosság, határérték, folytonosság.
Ütemterv az Analízis I. c. tárgyhoz (GEMAN510B, 510-B) Járműmérnöki, logisztikai mérnöki, műszaki menedzser, villamosmérnöki, ipari termék- és formatervező mérnöki alapképzési szak 2019/20. tanév I. félév
Matematika A1a-Analízis (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar
Matematika A1a-Analízis (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Kód: BMETE90AX00; Követelmény: 4/2/0/V/6; Félév: 2016/17/2; Nyelv: magyar; Előadó: Dr. Fülöp Ottilia Gyakorlatvezető: Dr. Fülöp
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
Gazdasági matematika II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdálkodási és menedzsment, pénzügy és számvitel szakok távoktatás tagozat Gazdasági matematika II. Tantárgyi útmutató 2016/17 tanév II. félév 1/6 A KURZUS ALAPADATAI Tárgy
Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék
Differenciál - és integrálszámítás (Óraszám: 3+3) (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár Meghirdető tanszék: Analízis Tanszék Debrecen, 2005 A tárgy neve: Differenciál- és
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky
Kurzusinformáció. Analízis II, PMB1106
Kurzusinformáció Analízis II, PMB1106 2013 Tantárgy neve: Analízis II Tantárgy kódja: PMB1106 Kreditpont: 4 Heti kontakt óraszám (elm.+gyak.): 2+2 Előfeltétel: PMB1105 Félévi követelmény: kollokvium Előadás
Részletes tantárgyprogram és követelményrendszer
Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Mikroelektronikai és Technológia Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Matematika II. KMEMA21TND Kreditérték:
A Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt
MATEMATIKA 1. TANTÁRGYLEÍRÁS. 1.2 Azonosító (tantárgykód) GKNB_MSTM Kurzustípusok és óraszámok (heti/féléves)
TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve MATEMATIKA 1. 1.2 Azonosító (tantárgykód) GKNB_MSTM001 1.3 Kurzustípusok és óraszámok (heti/féléves) kurzustípus óraszám (heti) előadás (elmélet) 4 gyakorlat
Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév
Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?
Döntési módszerek Tantárgyi útmutató
Gazdálkodási és menedzsment alapszak Nappali tagozat Döntési módszerek Tantárgyi útmutató 2015/16 tanév II. félév 1 Tantárgy megnevezése Tantárgy jellege/típusa: Döntési módszerek. D Kontaktórák száma/hét:
MATEMATIKA 2. TANTÁRGYLEÍRÁS. 1.2 Azonosító (tantárgykód) GKNB_MSTM Kurzustípusok és óraszámok (heti/féléves)
TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve MATEMATIKA 2. 1.2 Azonosító (tantárgykód) GKNB_MSTM008 1.3 Kurzustípusok és óraszámok (heti/féléves) kurzustípus óraszám (heti) előadás (elmélet) 2 gyakorlat
Döntési módszerek Tantárgyi útmutató
Gazdálkodási és menedzsment alapszak Nappali tagozat Döntési módszerek Tantárgyi útmutató 2018/19. tanév II. félév 1 Tantárgy megnevezése Tantárgy jellege/típusa: Döntési módszerek. D Kontaktórák száma/hét:
12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?
Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!
Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.
Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)
A kiadásért felel dr. Táncos László, a Semmelweis Kiadó igazgatója Nyomda alá rendezte Békésy János Borítóterv: Táncos László SKD: SKD043-e
Dr. Gergó Lajos elõadásjegyzetei alapján készítették: Dr. Gergó Lajos Dr. Meskó Attiláné Gillemotné Dr. Orbán Katalin Semmelweis Egyetem, Gyógyszerésztudományi Kar, Egyetemi Gyógyszertár, Gyógyszerügyi
Bevezetés a számvitelbe
SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ Bevezetés a számvitelbe Pénzügy számvitel alapszak Gazdálkodás-menedzsment alapszak Távoktatás tagozat 2016/2017. tanév I. félév 1 Tantárgy megnevezése Bevezetés
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben
Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet
Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =
Az előadások és gyakorlatok időpontja, tematikája
Tájékoztató a Differenciál- integrálszámítás tárgy 28/29. tanév I. félévi kurzusairól számonkéréről Az előadások gyakorlatok időpontja, tematikája Az előadás kódja(i): TTMBE23, TMOE27, TTMBE83; heti óraszáma:
Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész
Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Mintakérdések a 2. ZH elméleti részéhez. Nem csak ezek a kérdések szerepelhetnek az elméleti részben, de azért hasonló típusú kérdések
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?
= komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve
Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév
Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen
6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények
6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai
A gyakorlatok anyaga
A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így
ÚTMUTATÓ. I. évfolyam. Felsőoktatási szakképzés Gazdaságinformatikus szakon. 2016/2017 I. félév
PÉNZÜGYI ÉS SZÁMVITELI KAR COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. I. évfolyam Felsőoktatási szakképzés Gazdaságinformatikus szakon ÚTMUTATÓ Számvitel alapjai 2016/2017 I.
Operációkutatás II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2015/16 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDK112E, INDK112G Félév: 2016/2017-II. Előadó: Boros Zoltán Óraszám: 2 + 2 (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele:
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005
2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus
SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ. Komplex elemzés. Pénzügy és számvitel alapszak Nappali tagozat 2015/2016. tanév II.
TANTÁRGYI ÚTMUTATÓ Komplex elemzés Pénzügy és számvitel alapszak Nappali tagozat 2015/2016. tanév II. félév A tantárgy rövid bemutatása: A Budapesti Gazdasági Egyetem Pénzügyi és Számviteli Karán meghatározó
Tanulás- és kutatásmódszertan
PSZK Távoktatási Központ / H-1149 Budapest, Buzogány utca 10-12. / 1426 Budapest Pf.:35 I. évfolyam TANTÁRGYI ÚTMUTATÓ Tanulás- és kutatásmódszertan 2010/2011. II. félév Tantárgyi útmutató Tantárgy megnevezése
Kalkulus 1 (Informatika BSc PTI) tantárgyi tájékoztató
Kalkulus 1 (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDK111E, INDK111G Félév: 2015/2016-I. Előadó: Boros Zoltán Óraszám: 2 + 2 (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele:
Tantárgyi útmutató. Gazdasági matematika II.
Módszertani Intézeti Tanszék Tantárgyi útmutató Gazdasági matematika II. Nappali Tagozat 2015/16 tanév II. félév 1/5 Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa: Gazdasági matematika
10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK
MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
Stratégiai és Üzleti Tervezés
Számvitel Intézeti Tanszék /fax: 06-1-383-8480 Cím: Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT Stratégiai és Üzleti Tervezés c. tárgy tanulmányozásához 2013/2014.tanév I. félév 1 A tantárgy
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató
Kalkulus (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDKE, INDKG Félév: 04/05-II. Előadó: Boros Zoltán Óraszám: + (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele: Kalkulus
Részletes tantárgyprogram és követelményrendszer
Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Mikroelektronikai és Technológia Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Matematika III. KMEMA31TND Kreditérték:
Operációkutatás II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2016/17 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDK112E, INDK112G Félév: 2015/2016-II. Előadó: Boros Zoltán Óraszám: 2 + 2 (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele:
TANTÁRGYI ÚTMUTATÓ. Operációkutatás. tanulmányokhoz
II. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Operációkutatás tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Operációkutatás Tanszék: BGF Módszertani Intézeti
YBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Statisztika 1. Tantárgyi útmutató
Módszertani Intézeti Tanszék Nappali tagozat Statisztika 1. Tantárgyi útmutató 2015/16 tanév II. félév 1/6 Tantárgy megnevezése: Statisztika 1. Tantárgy kódja: STAT1KAMEMM Tanterv szerinti óraszám: 2+2
Bevezetés a számvitelbe
II. évfolyam BA TANTÁRGYI ÚTMUTATÓ Bevezetés a számvitelbe 2013/2014 I. félév Tantárgyi útmutató Tantárgy megnevezése Bevezetés a számvitelbe Tantárgy kódja: Tantárgy jellege/típusa: Üzleti alapozó modul
Analízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
Operációkutatás I. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdinfo nappali tagozat Operációkutatás I. Tantárgyi útmutató 2017/18 tanév 1. félév 1/4 Tantárgy megnevezése: Operációkutatás Tantárgy kódja: OPKU1KOMEMM Tanterv szerinti
TANTÁRGYI ÚTMUTATÓ. Gazdasági jog alapjai
III. évfolyam II. félév TANTÁRGYI ÚTMUTATÓ Gazdasági jog alapjai (Gazdaságinformatikus szak) 2016/2017. II. félév 1 Tantárgyi útmutató Tantárgy megnevezése Tantárgy jellege/típusa: Gazdasági jog alapjai
TANTÁRGYI ÚTMUTATÓ. Számvitel alapjai. c. tárgy tanulmányozásához
SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ Számvitel alapjai c. tárgy tanulmányozásához Felsőoktatási szakképzés Gazdaságinformatikus szak Levelező tagozat 2016/2017. tanév I. félév A tantárgy rövid
TANTÁRGYI ÚTMUTATÓ. Pénzügyi számvitel 2. Pénzügy és számvitel alapszak Nappali tagozat 2016/2017. tanév I. félév
TANTÁRGYI ÚTMUTATÓ Pénzügyi számvitel 2 Pénzügy és számvitel alapszak Nappali tagozat 2016/2017. tanév I. félév SZÁMVITEL INTÉZETI TANSZÉK A tantárgy rövid bemutatása: A Budapesti Gazdasági Főiskola Pénzügyi
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012
2012 2. Számhalmazok (a valós számok halmaza és részhalmazai), oszthatósággal kapcsolatos problémák, számrendszerek. 4. Hatványozás, hatványfogalom kiterjesztése, azonosságok. Gyökvonás és azonosságai,
II. évfolyam BA TANTÁRGYI ÚTMUTATÓ. Számvitel alapjai. 2012/2013 I. félév
II. évfolyam BA TANTÁRGYI ÚTMUTATÓ Számvitel alapjai 2012/2013 I. félév Tantárgyi útmutató Tantárgy megnevezése Számvitel alapjai Tantárgy kódja: Tantárgy jellege/típusa: Üzleti alapozó modul része Kontaktórák
Stratégiai és Üzleti Tervezés
Számvitel Intézeti Tanszék /fax: 06-1-383-8480 Cím: Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT Stratégiai és Üzleti Tervezés c. tárgy tanulmányozásához 2014/2015.tanév II. félév 1 A
PPKE ITK, 2014/2015 tanév. I. félév. Tantárgyi adatok és követelmények
PPKE ITK, 2014/2015 tanév I. félév Tantárgyi adatok és követelmények Tantárgy neve: Óraszám: Lineáris algebra 2 óra előadás, kedd, 8-10, Simonyi terem 2 óra gyakorlat Honlap: digitus.itk.ppke.hu/~b_novak
KÖVETELMÉNYEK 2017/ félév. Informatika II.
Tantárgy neve Informatika II. Tantárgy kódja TAB1110 Meghirdetés féléve 4. Kreditpont 1 Heti kontakt óraszám (elm. + gyak.) 0 + 1 Félévi követelmény Előfeltétel (tantárgyi kód) TAB1109 Tantárgyfelelős
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Matematika és Informatika 1.4 Szakterület Matematika
PÉNZÜGYI ÉS SZÁMVITELI KAR ALKALMAZOTT TUDOMÁNYOK EGYETE SZÁMVITEL INTÉZETI TANSZÉK. MESTER PÉNZÜGY és SZÁMVITEL (VEZETŐI SZÁMVITEL) SZAK
PÉNZÜGYI ÉS SZÁMVITELI KAR ALKALMAZOTT TUDOMÁNYOK EGYETE SZÁMVITEL INTÉZETI TANSZÉK MESTER PÉNZÜGY és SZÁMVITEL (VEZETŐI SZÁMVITEL) SZAK LEVELEZŐ TAGOZAT Tantárgyi útmutató 2016/2017. I. félév Tantárgyi
TANTÁRGYI ÚTMUTATÓ. Vállalkozások pénzügyi alapjai
PÉNZÜGYI ÉS SZÁMVITELI FŐISKOLAI KAR PÉNZÜGYI TANSZÉK TANTÁRGYI ÚTMUTATÓ Vállalkozások pénzügyi alapjai Akkreditált Iskolarendszerű Felsőfokú Szakképzés Minden szakügyintéző szakirány számára 2011/2012.
Differenciál és integrálszámítás diszkréten
Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten
MÉRLEG- ÉS EREDMÉNYELEMZÉS c. tárgy tanulmányozásához
Számvitel Intézeti Tanszék /fax: 469-6798 Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT MÉRLEG- ÉS EREDMÉNYELEMZÉS c. tárgy tanulmányozásához Gazdálkodási és menedzsment szak Statisztikus
Teljesítmény és erőforrás controlling
IV. évfolyam GM szak TANTÁRGYI ÚTMUTATÓ Teljesítmény és erőforrás controlling 2012/2013 2. félév Tantárgyi útmutató Tantárgy megnevezése Tantárgy kódja: Tantárgy jellege/típusa: Kontaktórák száma: Teljesítmény
FÉLÉVI KÖVETELMÉNYEK 2010/2011. tanév II. félév INFORMATIKA SZAK
FÉLÉVI KÖVETELMÉNYEK INFORMATIKA SZAK Tantárgy Tagozat Heti óraszám Követelmény Ea. Lab. Gy. VILLAMOSSÁGTAN. Nappali 3 0 1 aláírás+vizsga Az aláírás megszerzésének feltételei: - A hiányzás nem haladhatja
Analízis szigorlat informatikusoknak (BMETE90AX20) tárgykövetelmény és tételsor
Analízis szigorlat informatikusoknak (BMETE90AX20) tárgykövetelmény és tételsor Bodrogné Réffy Júlia, Horváth Róbert 2018/19. II. félévtől Tantárgykód: BMETE90AX20 Félév: 2018/19. tavasz Nyelv: magyar
TANTÁRGYI ÚTMUTATÓ. Gazdasági jog alapjai II.
TÁVOKTATÁS I. évfolyam II. félév TANTÁRGYI ÚTMUTATÓ Gazdasági jog alapjai II. 2015/2016. II. félév 1 Tantárgyi útmutató Tantárgy megnevezése Gazdasági jog alapjai II. Tantárgyat tanszék gondozó Közgazdasági
ÚTMUTATÓ. I. évfolyam Üzleti szakügyintéző szakképesítés Államháztartási szakügyintéző szakképesítés. 2012/2013 I. félév
PÉNZÜGYI ÉS SZÁMVITELI KAR COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. I. évfolyam Üzleti szakügyintéző szakképesítés Államháztartási szakügyintéző szakképesítés ÚTMUTATÓ Számvitel
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
PÉNZÜGYI ÉS SZÁMVITELI KAR- FELSŐOKTATÁSI SZAKKÉPZÉS COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. TANTÁRGYI ÚTMUTATÓ
PÉNZÜGYI ÉS SZÁMVITELI KAR- FELSŐOKTATÁSI SZAKKÉPZÉS COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. I. évfolyam Pénzügyi és számviteli felsőoktatási szakképzés Államháztartási szakirány
Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához
ciklus óra óra anyaga, tartalma 1 1. Év eleji szervezési feladatok, bemutatkozás Hatvány, gyök, logaritmus (40 óra) 2. Ismétlés: hatványozás 3. Ismétlés: gyökvonás 4. Értelmezési tartomány vizsgálata 2
1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények
1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási
1. Sorozatok. A sorozat megadható. Képlettel: Rekurziós formulával: Felsorolással: Gazdasági Matematika
1. Sorozatok Azokat a függvényeket, amelyek értelmezési tartománya a pozitív egész számok halmaza ( jelölése N ), a képhalmaz a valós számok halmaza, sorozatnak nevezzük. Az a függvény n N helyen vett
Tantárgyi útmutató 2016/2017. I. félév
Budapesti Gazdasági Főiskola Pénzügyi és Számviteli Kar Vállalkozás és Emberi Erőforrások Intézeti Tanszék Tantárgyi útmutató 2016/2017. I. félév Tantárgy megnevezése Tantárgy kódja: Prezentációs- és íráskészség
Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,
25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit
1. Sorozatok 2014.03.12.
1. Sorozatok Azokat a függvényeket, amelyek értelmezési tartománya a pozitív egész számok halmaza ( jelölése N ), a képhalmaz a valós számok halmaza, sorozatnak nevezzük. Az a függvény n N helyen vett
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
TANTÁRGYI ÚTMUTATÓ. Logisztika. tanulmányokhoz
IV. évfolyam Gazdálkodási és Menedzsment Szak BA TANTÁRGYI ÚTMUTATÓ Logisztika tanulmányokhoz TÁVOKTATÁS 2015/2016 Tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Logisztika Tárgy Neptun kódja: LOGI1K0MPZC
TANTÁRGYI ÚTMUTATÓ. Vállalati gazdaságtan. tanulmányokhoz
I. évfolyam Pénzügy-Számvitel Szak, Gazdálkodási és Menedzsment Szak BA TANTÁRGYI ÚTMUTATÓ Vállalati gazdaságtan tanulmányokhoz TÁVOKTATÁS 2014/2015 Tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése:
Tanulás- és kutatásmódszertan
PSZK Mesterképzési és Távoktatási Központ / H-1149 Budapest, Buzogány utca 10-12. / 1426 Budapest Pf.:35 I. évfolyam TANTÁRGYI ÚTMUTATÓ Tanulás- és kutatásmódszertan 2012/2013. II. félév Tantárgyi útmutató
Számvitel 1. c. tárgy tanulmányozásához TANTÁRGYI ÚTMUTATÓ. Gazdaságinformatikus alapszak Levelező tagozat 2016/2017. tanév I.
SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ Számvitel 1 c. tárgy tanulmányozásához Gazdaságinformatikus alapszak Levelező tagozat 2016/2017. tanév I. félév SZÁMVITEL INTÉZETI TANSZÉK A tárgy oktatásának
Elérhető maximális pontszám: 70+30=100 pont
Villamosmérnök Szak Távoktatás 2. félév Matematika kollokvium 2008. dec. 20. Név: Neptun Kód: Tanár: Fel.: Elm.: Hf.: Össz.: Oszt.: Vajda István Rendelkezésre álló idő: 105 perc Elérhető maximális pontszám:
2014. november Dr. Vincze Szilvia
24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata
TANTÁRGYI ÚTMUTATÓ. Számvitel alapjai. című tárgy tanulmányozásához
SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ Számvitel alapjai című tárgy tanulmányozásához Felsőoktatási szakképzés Pénzügy és számvitel; Emberi erőforrás; Gazdálkodási és menedzsment szakon Nappali
Tantárgyi program. Kontaktórák száma: Elmélet: 1 Gyakorlat: 1 Összesen 2
Budapesti Gazdasági Fıiskola Pénzügyi és Számviteli Fıiskolai Kar Vállalkozás és Emberi Erıforrások Intézeti Tanszék Tantárgyi program Tantárgy megnevezése Tantárgy kódja: Tantárgy jellege/típusa: Prezentációs
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Matematika és Informatika 1.4 Szakterület Matematika