1. Sorozatok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. Sorozatok 2014.03.12."

Átírás

1 1. Sorozatok Azokat a függvényeket, amelyek értelmezési tartománya a pozitív egész számok halmaza ( jelölése N ), a képhalmaz a valós számok halmaza, sorozatnak nevezzük. Az a függvény n N helyen vett helyettesítési értékét a sorozat n- edik elemének nevezzük és a(n) = a n -nel jelöljük. A sorozat megadható Képlettel: Rekurziós formulával: Felsorolással: Gazdasági Matematika 1 Monoton sorozatok Az {a n } n N sorozatot (szigorúan) monoton csökkenőnek nevezzük, ha minden n Nesetén a n a n-1 ( a n < a n-1 ). Az {a n } n N sorozatot (szigorúan) monoton növekvőnek nevezzük, ha minden n Nesetén a n a n-1 ( a n > a n-1 ). Azokat az {a n } n N sorozatokat, amelyek minden n N esetén vagy monoton nőnek vagy monoton csökkennnek, monoton sorozatnak nevezzük. Gazdasági Matematika 2 1

2 Korlátos sorozatok Az {a n } n N sorozatot felülről korlátosnak nevezzük, ha létezik olyan K R, hogy minden n Nesetén a n K. Az {a n } n N sorozatot alulról korlátosnak nevezzük, ha létezik olyan k R, hogy minden n Nesetén a n k. Az {a n } n N sorozatot korlátosnak nevezzük, ha alulról is és felülről is korlátos. Gazdasági Matematika 3 Konvergens és divergens sorozatok Az {a n } n N sorozatnak létezik az A véges határértéke, ha mindenε> 0 számhoz létezik olyan n 0 (ε) N küszöbszám (küszöbindex), amelyre igaz, hogy ha n > n 0, akkor a n A <ε. Jelölése lim ({a n } n N ) = A Ha az {a n } n N sorozatnak létezik az A véges határértéke, akkor a sorozatot konvergensnek nevezzük, egyébként a sorozat divergens. Ha lim ({a n } n N ) = 0, akkor a sorozatot zérussorozatnak nevezzük. Gazdasági Matematika 4 2

3 Tétel ( Rendőr elv ): Legyenek adottak az {a n } n N, {b n } n N, {c n } n N sorozatok, és legyen {a n } n N és {b n } n N konvergens. Ha lim {a n } n N = lim {b n } n N = A és minden n >N 0 -ra teljesül, hogy a n c n b n, akkor a {c n } n N sorozat is konvergens, és lim ({c n } n N ) = A. Gazdasági Matematika 5 Sorozatokra vonatkozó tételek Tétel : Ha az {a n } n N sorozat konvergens, akkor csak egy határértéke van, azaz a határérték egyértelmű. (Unicitás). Tétel : Ha az {a n } n N sorozat konvergens, akkor korlátos. A korlátosság szükséges, de nem elégséges feltétel. (Tekintsük a {(-1) n } n N sorozatot. Tétel: Ha az {a n } n N sorozat monoton növekvő (csökkenő) és felülről (alulról) korlátos, akkor konvergens. A feltétel csak elégséges, de nem szükséges, mert a konvergenciából nem következik a monotonitás. pl. Gazdasági Matematika 6 3

4 Műveletek véges határértékű sorozatokkal Tétel: Legyen az {a n } n N sorozat konvergens és c tetszőleges valós szám. Ekkor a c{a n } n N = {ca n } n N sorozat is konvergens, és lim {ca n } n N = c lim {a n } n N. Tétel: Legyen lim {a n } n N = A és lim {b n } n N = B, (azaz mindkét sorozat konvergens). Ekkor igazak a következő állítások: lim ({a n + b n } n N ) = lim {a n } n N + lim {b n } n N = A + B. lim ({a n b n } n N ) = lim {a n } n N lim {b n } n N = A B. lim ({a n b n } n N ) = lim {a n } n N lim {b n } n N = A B. Amennyiben véges sok elemtől eltekintve b n 0 és B 0, akkor Gazdasági Matematika 7 Végtelen határértékű sorozatok Az {a n } n N sorozatnak tágabb értelemben vett határértéke +, ha minden P R számhoz létezik olyan N 0 N küszöbszám, amelyre igaz, hogy ha n > N 0, akkor a n > P. Jelölése lim ({a n } n N ) = +. Az {a n } n N sorozatnak tágabb értelemben vett határértéke, ha minden P R számhoz létezik olyan N 0 N küszöbszám, amelyre igaz, hogy ha n > N 0, akkor a n < P. Jelölése lim ({a n } n N ) =. Gazdasági Matematika 8 4

5 Műveletek végtelen határértékű sorozatokkal Tétel: Legyen az {a n } n N sorozat határértéke +. Ekkor Tétel: Legyen az {a n } n N sorozat konvergens, és lim {a n } n N = A 0. Legyen továbbá lim {b n } n N = +. Ekkor Tétel: Legyen az {a n } n N és {b n } n N sorozat konvergens úgy, hogy lim {a n } n N = A és lim {b n } n N = 0 és b n > 0 minden n N-re. Ekkor Gazdasági Matematika 9 Tétel: Legyen az {a n } n N Ekkor sorozat korlátos, és lim {b n } n N = +. Tétel: Legyen az {a n } n N és {b n } n N két olyan sorozat, amelyre teljesül, hogy létezik olyan k > N, hogy ha n > k, akkor a n b n. Ekkor: ha lim {a n } n N = +, akkor lim {b n } n N = +. ha lim {b n } n N =, akkor lim {a n } n N =. Gazdasági Matematika 10 5

6 Nevezetes sorozatok I. Tétel: Az sorozat konvergens, és Tétel: Legyen c tetszőleges valós szám. Ekkor Gazdasági Matematika 11 Nevezetes sorozatok II. Tétel: Az sorozat konvergens, és Tétel: Tetszőleges k valós szám esetén Tétel: Tétel: Tétel:Tetszőleges a valós szám esetén Gazdasági Matematika 12 6

7 Példa: Határozzuk meg az sorozat határértékét, és adjuk megazε=10-4 hez tartozóküszöbindexet! Alakítsuk át a n -t a következőképpen: Használjuk az előző tételeket: Gazdasági Matematika 13 A második rész kiszámításához használjuk fel, hogy Helyettesítsünk be a határérték definíciójába: Tudjuk, hogy n N, ezért, ezért az egyenlőtlenség: Amiből kapjuk, hogy N 0 = Gazdasági Matematika 14 7

8 Példa: Határozzuk meg az sorozat határértékét! Alakítsák át a n -t a következőképpen: Amiből adódik, hogy Gazdasági Matematika 15 Tétel (Cauchy-féle konvergencia kritérium): Az {a n } n N sorozat akkor és csak akkor konvergens, ha bármelyε>0 hoz megadható olyan N(ε) küszöbszám, hogy ha n, m > N, akkor a n a m < ε. A tétel jelentése: a sorozat akkor és csak akkor konvergens, ha elég nagy indextől kezdve az elemei tetszőlegesen keveset térnek el egymástól. Biz.???? Gazdasági Matematika 16 8

9 Megjegyzés: Ha a sorozat polinomok hányadosa, akkor a nevező ill. a számláló fokszámától függően három esetet különböztetünk meg: Ha a számláló fokszáma nagyobb, mint a nevező fokszáma, akkor a határérték vagy + vagy, a legmagasabb fokú tagok együtthatóinak előjelétől függően. Ha a számláló fokszáma megegyezik a nevező fokszámával, akkor a határérték a legmagasabb fokú tagok együtthatóinak hányadosával egyenlő. Ha a számláló fokszáma kisebb, mint a nevező fokszáma, akkor a határérték 0. Gazdasági Matematika 17 Fogalmak Két halmaz egyértelmű hozzárendelését függvénynek nevezzük. A: B: x y = f(x) y értelmezési tartomány képhalmaz Gazdasági Matematika 18 9

10 Az A halmaz valamely eleméhez rendelt B halmazbeli elemet függvényértéknek nevezzük és f(a)-val jelöljük, ahol a A. A függvényértékek halmazát értékkészletnek nevezzük. A függvény értelmezési tartományát D f -fel, az értékkészletét pedig R f -fel jelöljük. A fentiekből következik, hogy R f B. Egy függvényt akkor tekintünk adottnak, ha adott az értelmezési tartomány és a hozzárendelési utasítás: f(x), x A. f(x) = x, g(x) = x+3, h(x) = x 2 1, x N. x R. x R. Gazdasági Matematika 19 Az f és g függvényt akkor mondjuk egyenlőknek, ha D f = D g és minden x D f esetén f(x) = g(x). Azonos-e a két kifejezés? D f = R és D g = R \ {0} Gazdasági Matematika 20 10

11 Ha az f függvény értelmezési tartománya is és értékkészlete is a valós számok halmazának részhalmaza, akkor valós-valós függvényről vagy egyváltozós valós függvényről beszélünk. Az egyváltozós valós függvény grafikonján az (x;f(x)) koordinátájú pontok halmazát értjük a Descartes-féle koordináta rendszerben, ahol x D f. Gazdasági Matematika 21 Intervallumok Legyen a,b Rés a < b. Az ezek által meghatározott nyílt intervallumon azt a számhalmazt értjük, amely (a,b) = {x R a < x < b.} Legyen a,b Rés a < b. Az ezek által meghatározott zárt intervallumon azt a számhalmazt értjük, amely [a,b] = {x R a x b.} Legyen a,b R és a < b. Az ezek által meghatározott balról zárt jobbról nyílt intervallumon azt a számhalmazt értjük, amely [a,b) = {x R a x < b.} Legyen a,b R és a < b. Az ezek által meghatározott jobbról zárt balról nyílt intervallumon azt a számhalmazt értjük, amely (a,b] = {x R a < x b.} Gazdasági Matematika 22 11

12 Intervallumnak nevezzük még az alábbi számhalmazokat is: (-,b) = {x R x < b} (-,b] = {x R x b} (a, + ) = {x R x >a} [a, + ) = {x R x a} (-, + ) = R Gazdasági Matematika 23 A környezet és a távolság kapcsolata Távolság definíciója valós számokra és n dimenzióra kiterjesztve. A távolság tulajdonságai A környezet és a távolság viszonya. Belső pont, határpont. Zárt halmaz, nyílt halmaz. Gazdasági Matematika 24 12

13 Az A és B halmazoknak az A Bszimbólummal jelölt Descartes-féle szorzatán az összes olyan rendezett (a,b) párokból álló halmazt értjük, amelyekre a A és b B. Jelölése: A B= { (a,b) a Aés b B }. Ha A = B, akkor az A Ahelyett az A 2 jelölést is használjuk. Ha A, B R, akkor rendezett számpárokról beszélünk. Pl. Legyen A= {1, 2, 3} és B= {e, f} A B= Gazdasági Matematika 25 A táblázat felfogható egy speciális szorzótáblának. A szorzathalmaz elemeinek a számát a két halmaz elemeinek szorzata adja. Tétel: A Descartes-szorzás művelete nem kommutatív. (Nem felcserélhető). A szorzathalmaz kettőnél több halmaz szorzatára is értelmezett, ekkor rendezett hármasok, négyesek, stb. lesznek a szorzathalmaz elemei. Ha az n darab halmaz mindegyike a valós számok halmazával egyenlő, akkor szokás azr n jelölést használni. A szorzathalmaz lehetővé teszi matematikai alakzatok konstrukcióját is: Gazdasági Matematika 26 13

14 N N Gazdasági Matematika 27 Az a < b valós számok távolságán a számegyenes a és b pontjainak távolságát értjük: A számsík a = (a 1, a 2 ) és b = (b 1, b 2 ) pontjainak távolságát a értékkel definiáljuk. Az a = (a 1, a 2,, a n ) és b = (b 1, b 2,, b n ) pontjainak távolságát a értékkel definiáljuk. Gazdasági Matematika 28 14

15 A fentebb definiált távolság fogalom az alábbi tulajdonságokkal rendelkezik: ρ(a, b) 0 ρ(a, b) = 0 akkor és csak akkor, ha a = b. ρ(a, b) = ρ(b, a) ρ(a, b) ρ(a, c) + ρ(c, b) Valamely x 0 R n pontnak δ > 0 sugarú környezetén R n azon x pontjainak halmazát értjük, amelyek x 0 -tól való távolsága kisebbδnál, azaz Gazdasági Matematika 29 Egy x 0 helyδsugarú környezete (másik definíció) Legyen x R ésδ R +. Az x 0 helyδsugarú környezetén az (x 0 δ, x 0 +δ) intervallumot értjük és k δ (x 0 )-al jelöljük. Ha x (x 0 δ, x 0 +δ), akkor x x 0 <δ. Az x 0 hely szigorúbb értelemben vettδsugarú környezetén az (x 0 δ, x 0 +δ) \ {x 0 } intervallumot értjük és k δ (x 0 ) \ {x 0 } -al jelöljük. Ha x (x 0 δ, x 0 +δ) \ {x 0 }, akkor a x 0 <δ. Az x 0 hely baloldali δ sugarú környezetén az (x 0 δ, x 0 ) intervallumot értjük és k δ (x 0 0)-al jelöljük. Az x 0 hely jobboldali δ sugarú környezetén az (x 0, x 0 + δ) intervallumot értjük és k δ (x 0 + 0)-al jelöljük. Gazdasági Matematika 30 15

16 Egy H Rhalmaznak a egy belső pontja, ha a-nak van olyan környezete, amely része H-nak. Egy H R halmaznak a egy határpontja, ha a-nak bármely környezetében H-nak is és H komplementerének is van pontja. Ha egy H R halmaznak minden pontja belső pont, akkor H-t nyílt halmaznak, ha minden határpontját tartalmazza, akkor zárt halmaznak nevezzük. Gazdasági Matematika 31 Függvénytulajdonságok Az f függvény zérus helyének nevezzük azt az értelmezési tartománybeli elemet, ahol a felvett függvényérték zérus, azaz a D f, f(a) = 0. Példa: Ábrázoljuk az f(x) = x 2 4 függvényt a [-3;3] intervallumon és határozzuk meg a zérus helyeit! Az egyenlet gyökei (zérus helyei): x 1 = -2 x 2 = 2. Gazdasági Matematika 32 16

17 Gazdasági Matematika 33 Függvények paritása Az f függvényt párosnak nevezzük, ha minden x D f esetén -x D f és f(-x) = f(x). Példa: Vizsgáljuk meg az f(x) = x függvényt párosság szempontjából! A függvény grafikonja tengelyesen tükrös az f(x) tengelyre. Gazdasági Matematika 34 17

18 Az f függvényt páratlannak nevezzük, ha minden x D f esetén -x D f és f(-x) = -f(x). Példa: Vizsgáljuk meg az f(x) = x 3 4x függvényt párosság szempontjából! A függvény grafikonja tükrös az origóra. Gazdasági Matematika 35 Függvények korlátossága Az f függvényt az értelmezési tartományán vagy annak valamely A részhalmazán felülről korlátosnak nevezzük, ha létezik olyan K R valós szám, hogy minden a A esetén f(a) K. Az f függvényt az értelmezési tartományán vagy annak valamely A részhalmazán alulról korlátosnak nevezzük, ha létezik olyan K R valós szám, hogy minden a A esetén f(a) K. Az f függvényt az értelmezési tartományán vagy annak valamely A részhalmazán korlátosnak nevezzük, ha a függvény alulról és felülről is korlátos. Gazdasági Matematika 36 18

19 Példa: Vizsgáljuk meg az f(x) = sin x + 2 függvényt korlátosság szempontjából! A sin x + 2 függvény értékei az [1;3] intervallumba esnek, így a függvény alulról és felülről is korlátos, azaz korlátos. Gazdasági Matematika 37 Függvények monotonitása Az f függvényt az értelmezési tartomány valamely A (A D f ) részhalmazán monoton növekvőnek nevezzük, ha tetszőleges x 1, x 2 A, x 1 < x 2 esetén f(x 1 ) f(x 2 ). Ha x 1 < x 2 esetén f(x 1 ) < f(x 2 ), akkor függvényt szigorúan monoton növekvőnek nevezzük Az f függvényt az értelmezési tartomány valamely A (A D f ) részhalmazán monoton csökkenőnek nevezzük, ha tetszőleges x 1, x 2 A, x 1 < x 2 esetén f(x 1 ) f(x 2 ). Ha x 1 < x 2 esetén f(x 1 ) > f(x 2 ), akkor függvényt szigorúan monoton csökkenőnek nevezzük Gazdasági Matematika 38 19

20 Példa: Vizsgáljuk meg az f(x) = e x függvényt monotonitás szempontjából! f(x) = e x Az egynél nagyobb alapú hatványok esetében ha a kitevőt növeljük, akkor a hatvány értéke is nő Ezért ha x 1 < x 2, akkor Tehát a függvény szigorúan monoton növekvő. Gazdasági Matematika 39 Függvények szélsőértékhelyei Legyen adott az f függvény, és legyen H az értelmezési tartomány valamely részhalmaza (H D f ). Az x 0 H az f-nek minimumhelye, ha minden x H, (x x 0 ) esetén f(x) f(x 0 ). Az x 0 H az f-nek maximumhelye, ha minden x H, (x x 0 ) esetén f(x) f(x 0 ). A minimum és maximumhelyeket együttesen szélsőértékhelyeknek nevezzük. Ha x 0 -nak van olyan K környezete (K D f ), hogy minden x D f K és x x 0 esetén f(x) f(x 0 ),(vagy f(x) f(x 0 )), akkor x 0 a függvénynek lokális szélsőértékhelye. Ha H D f, akkor x 0 a függvénynek abszolút szélsőértékhelye. Gazdasági Matematika 40 20

21 Példa: Vizsgáljuk meg az f(x) = (x+3) 2-1 függvényt a szélsőértékek szempontjából! A függvénynek az x = -3 helyen abszolút minimum helye van. Gazdasági Matematika 41 Periódikus függvények Az f függvényt periodikusnak nevezzük, ha létezik olyan p > 0 valós és k egész szám, hogy minden x D f esetén x+kp D f, és f(x+kp) = f(x). A valós p számot periódusnak nevezzük. A trigonometrikus függvények periodikusak. Pl. a sin x függvény periódusa 2π. Példa: Vizsgáljuk meg az f(x) = x [x] törtrész függvényt periodicitás szempontjából! A függvény periodikus, és a periódusa 1. Gazdasági Matematika 42 21

22 Konvex és konkáv függvények Legyen adott az f függvény és a,b D f, a < b. Legyen továbbá x 1 és x 2 az [a;b] intervallum két tetszőleges pontja (a x 1 < x 2 b). Legyen e az f(x 1 ) és f(x 2 ) pontokon áthaladó szelő. Az f függvényt az [a;b] intervallumon konvexnek nevezzük, ha bármely olyan x D f re, amelyre x 1 < x < x 2 igaz, hogy f(x) < e(x). Az f függvényt az [a;b] intervallumon konkávnak nevezzük, ha bármely olyan x D f re, amelyre x 1 < x < x 2 igaz, hogy f(x) > e(x). Ha az x 0 D f helynek van olyan jobb és baloldali környezete, hogy a függvény az egyikben konvex, a másikban konkáv, akkor az x 0 helyet inflexiós pontnak nevezzük. Gazdasági Matematika 43 Példa: konvex függvény e(x) x x 2 a x 1 b f(x) < e(x). f(x) Gazdasági Matematika 44 22

23 Példa: inflexiós pont A függvény a (- ;0] intervallumon konkáv, a [0,+ ) intervallumon konvex, ezért az x 0 = 0 pont a függvény inflexiós pontja. Gazdasági Matematika 45 Műveletek függvényekkel Legyen adott az f és g függvény D f és D g értelmezési tartománnyal, valamint egy c R konstans. Tegyük fel, hogy D f D g. Ekkor Az f függvény konstansszorosán azt a cf függvényt értjük, amelyre D cf = D f, és minden x D f -re (cf )(x) = c f(x). Két függvény összegén azt az (f+g) függvényt értjük, amelyre D f+g = D f D g, és minden x D f D g -re (f+g)(x) = f(x) + g(x). Két függvény szorzatán azt az (fg) függvényt értjük, amelyre D fg = D f D g, és minden x D f D g -re (fg)(x) = f(x) g(x). Két függvény hányadosán azt az függvényt értjük, amelyre D f/g = D f D g, és minden x D f D g -re (x) =. Gazdasági Matematika 46 23

24 Legyen adott az f és a g függvény. Tegyük fel, hogy D f R g = A, és A. Legyen D az a halmaz, amely része g értelmezési tartományának és képe az A halmaz. Tegyük fel, hogy az f függvény az A halmazt az E R f halmazra képezi le. Azt a függvényt, amely a D halmazhoz az E halmazt rendeli (értékkészletként), összetett függvénynek nevezzük és f g-vel jelöljük. Az f-t külső, a g-t pedig belső függvénynek nevezzük. (f g)(x) = f(g(x)) R g D f R f g f E D A Gazdasági Matematika 47 Példa: Határozzuk meg azt a legbővebb halmazt, amelyen az f(x) = lg (x 2 1) függvény értelmezhető. A külső függvény a logaritmus függvény, a belső függvény a hatványfüggvény. A belső függvény értelmezési tartománya a valós számok halmaza. Mivel a logaritmus függvény értelmezési tartomány a pozitív valós számok halmaza, ezért a x 2 1 > 0 nak kell teljesülni. Ezért x > 1 vagy x < -1. Ezért az f összetett függvény értelmezési tartománya D f = R \ [-1; 1]. Gazdasági Matematika 48 24

25 Inverz függvény Legyen az f függvény külcsönösen egyértelmű (x 1, x 2 D f, x 1 x 2 akkor f(x 1 ) f(x 2 ) ). Azt a függvényt, amely az f függvény értékkészletén (R f ) van értelmezve, és az y R f elemhez azt az egyetlen x D f elemet rendeli, amelyre f(x) = y, az f függvény inverzének nevezzük és f -1 gyel jelöljük: f -1 (y) = x Megjegyzések: Az értelmezési tartomány és az értékkészlet inverz képzésnél megcserélődik. ( f -1 ) -1 =f. Egy függvény és inverzének grafikonja tükrös az y = x egyenesre. Ha D f = R f, akkor f º f -1 = f -1 º f. Ha egy függvény szigorúan monoton, akkor van inverze. (Ez elegendő de nem szükséges feltétel!) Gazdasági Matematika 49 Példa 1: Adjuk meg az f(x) = 2x 3 függvény inverzét! D f = R f = R. A hozzárrendelés kölcsönösen egyértelmű, tehát létezik az inverz függvény. (Ráadásul a függvény monoton növekvő.) A definíció alapján f -1 (y) = x, ezért. Gazdasági Matematika 50 25

26 Példa 2: Adjuk meg az f(x) = e x függvény inverzét! D f = (-, ), R f = (0, ). A hozzárrendelés kölcsönösen egyértelmű, tehát létezik az inverz függvény. (Ráadásul a függvény monoton növekvő.) A definíció alapján f -1 (y) = x, ezért x = log y. f(x) = e x f(x) = log(x) Gazdasági Matematika 51 A trigonometrikus függvények inverzei (ciklometrikus függvények) Gazdasági Matematika 52 26

27 A hiperbolikus függvények és inverzeik Gazdasági Matematika 53 Külső függvénytranszformációk hatása a függvény grafikonjára A külső függvénytranszformációnál mindig a kiszámított függvényértéken hajtunk végre transzformációt. Eredménye mindig az y tengely irányába történő változás. Legyen adott az f függvény grafikonja. Az f+c, c Rfüggvény grafikonja az f függvény grafikonjának y tengely menti eltolásával nyerhető. Az eltolás nagysága c, iránya megegyezik c előjelével. A f függvény grafikonja az f nek x tengelyre vonatkozó tükörképe. A cf függvény grafikonja az f-nek y tengely menti nyújtásával (c > 1), vagy zsugorításával (0 < c < 1) kapható. Ha c negatív, akkor alkalmazzuk még az előző pontból adódó tükrözést is. Gazdasági Matematika 54 27

28 Belső függvénytranszformációk hatása a függvény grafikonjára A belső függvénytranszformációnál mindig a független változón hajtunk végre transzformációt. Eredménye mindig az x tengely irányába történő változás. Legyen adott az f függvény grafikonja. Az f(x+a), a R, a+x D f függvény grafikonja az f függvény grafikonjának x tengely menti eltolásával nyerhető. Az eltolás nagysága a, iránya ellentétes a előjelével. A f (-x) függvény grafikonja az f nek y tengelyre vonatkozó tükörképe. A f (ax) függvény grafikonja az f-nek x tengely menti zsugorításával (a > 1), vagy nyújtásával (0 < a < 1) kapható. Ha a negatív, akkor alkalmazzuk még az előző pontból adódó tükrözést is. Gazdasági Matematika 55 Példa: Ábrázoljuk az f(x) = -(x-3) 2 +4 függvényt. f(x)=x 2 f(x)=(x-3)2 f(x)=-(x-3) 2 +4 f(x)=-(x-3) 2 Gazdasági Matematika 56 28

29 Az elemi függvények halmazát alkotják a Konstansfüggvények Hatványfüggvények Exponenciális függvények Trigonometrikus függvények és az ezekből véges számú összeadással, kivonással, szorzással, osztással, összetett- és inverz-függvény képzéssel előállítható függvények. Gazdasági Matematika 57 Függvények határértéke Négy esetet különböztetünk meg attól függően, hogy hol vizsgáljuk a határértéket, és az véges vagy végtelen. Gazdasági Matematika 58 29

30 Végtelenben vett véges határérték Az f(x) függvénynek + -ben a határértéke az A R szám, ha bármely ε > 0 hoz létezik olyan K Rküszöbszám, hogy valahányszor x > K és x D f, akkor f(x) A <ε. Jelölése: Az f(x) függvénynek - -ben a határértéke az A R szám, ha bármely ε > 0 hoz létezik olyan K Rküszöbszám, hogy valahányszor x < K és x D f, akkor f(x) A <ε. Jelölése: Gazdasági Matematika 59 Példa: Ábrázolja az függvényt, és adja meg a határérkét -ben! 2 A függvény páros, ezért a grafikonja tükrös az y tengelyre. Gazdasági Matematika 60 30

31 Végtelenben vett végtelen határérték Az f(x) függvénynek + -ben a határértéke +, ha bármely P R számhoz létezik olyan K Rküszöbszám, hogy valahányszor x > K és x D f, akkor f(x) > P. Jelölése: Az f(x) függvénynek + -ben a határértéke -, ha bármely P R számhoz létezik olyan K Rküszöbszám, hogy valahányszor x > K és x D f, akkor f(x) < P. Jelölése: Gazdasági Matematika 61 Az f(x) függvénynek - -ben a határértéke +, ha bármely P R számhoz létezik olyan K Rküszöbszám, hogy valahányszor x < K és x D f, akkor f(x) > P. Jelölése: Az f(x) függvénynek - -ben a határértéke -, ha bármely P R számhoz létezik olyan K Rküszöbszám, hogy valahányszor x < K és x D f, akkor f(x) < P. Jelölése: Gazdasági Matematika 62 31

32 Példa: Ábrázolja az függvényt, és adja meg a határérkét -ben! A függvény páros, ezért a grafikonja tükrös az y tengelyre. Gazdasági Matematika 63 Példa: Ábrázolja az függvényt, és adja meg a határérkét -ben! Gazdasági Matematika 64 32

33 Véges helyen vett végtelen határérték Az f(x) függvénynek az x 0 Rahatárértéke +, ha bármely P R számhoz létezik olyanδ > 0 (δ R + ) valós szám, hogy valahányszor x k δ (x 0 )\{x 0 } és x D f, akkor f(x) > P. Jelölése: Az f(x) függvénynek az x 0 R a határértéke -, ha bármely P R számhoz létezik olyanδ > 0 (δ R +) valós szám, hogy valahányszor x k δ (x 0 )\{x 0 } és x D f, akkor f(x) < P. Jelölése: Gazdasági Matematika 65 Példa: Ábrázolja az függvényt, és adja meg a határérkét az x 0 = 0 pontban! Gazdasági Matematika 66 33

34 Véges helyen vett véges határérték Az f(x) függvénynek az x 0 Rajobboldali határértéke az A R, ha bármelyε R + számhoz létezik olyanδ R + valós szám, hogy valahányszor x k δ (x 0 +0) D f, mindannyiszor f(x) A < ε. Jelölése: Az f(x) függvénynek az x 0 Rabaloldali határértéke az A R, ha bármely ε R + számhoz létezik olyan δ R + valós szám, hogy valahányszor x k δ (x 0-0) D f, mindannyiszor f(x) A < ε. Jelölése: Gazdasági Matematika 67 Tétel: Ha az f függvénynek létezik az x 0 Rhelyen a baloldali és a jobboldali határértéke, és akkor Tétel: Ha az f függvénynek létezik az x 0 R helyen határértéke, akkor az egyértelműen meghatározott. Gazdasági Matematika 68 34

35 Példa: Ábrázolja az a határértékétaz x 0 = 5 pontban! függvényt, és adja meg -5 Gazdasági Matematika 69 Műveleti tételek Tétel: Legyen az f(x) függvénynek a + -ben a határértéke az A R és legyen c R tetszőleges. Ekkor létezik a cf függvénynek is a határértéke, és Tétel: Legyen az f(x) függvénynek a + -ben a határértéke az A R és a g(x) függvénynek a + -ben a határértéke a B R. Ekkor létezik az f±gfüggvénynek is a határértéke, és Gazdasági Matematika 70 35

36 Tétel: Legyen az f(x) függvénynek a + -ben a határértéke az A R és a g(x) függvénynek a + -ben a határértéke a B R. Ekkor létezik az fg függvénynek is a határértéke, és Tétel: Legyen az f(x) függvénynek a + -ben a határértéke az A R és a g(x) függvénynek a + -ben a határértéke a B R, ahol B 0. Ekkor létezik az f / g függvénynek is a határértéke, és Gazdasági Matematika 71 Az előző állítások igazak véges helyen vett határérték esetén is: Tétel: Legyen az f(x) függvénynek az x 0 helyen vett határértéke az A Rés legyen c Rtetszőleges. Ekkor létezik a cf függvénynek is a határértéke, és Tétel: Legyen az f(x) függvénynek az x 0 helyen vett határértéke az A R és a g(x) függvénynek az x 0 helyen vett határértéke a B R. Ekkor létezik az f±gfüggvénynek is a határértéke, és Gazdasági Matematika 72 36

37 Tétel: Legyen az f(x) függvénynek az x 0 helyen vett határértéke az A R és a g(x) függvénynek az x 0 helyen vett határértéke a B R. Ekkor létezik az fg függvénynek is a határértéke, és Tétel: Legyen az f(x) függvénynek az x 0 helyen vett határértéke az A Rés a g(x) függvénynek az x 0 helyen vett határértéke a B R, ahol B 0. Ekkor létezik az f / g függvénynek is a határértéke, és Gazdasági Matematika 73 Példa: Ábrázolja az függvényt, és adja meg a határérkét -ben és x 0 = 0 ban is! Ezért a függvénynek 0-ban nincs határértéke. Gazdasági Matematika 74 37

38 Nevezetes határértékek Tétel: Tétel: Tétel: Tétel: Tétel: Tétel: Gazdasági Matematika 75 Példa: Határozzuk meg a x 0 = 0 helyen! függvény határértékét az Alakítsuk át az f(x) függvényt: vegyük figyelembe, hogy ha x 0, akkor 2x 0. Ezért Gazdasági Matematika 76 38

39 Példa: Határozzuk meg a az x 0 = + helyen! függvény határértékét Alakítsuk át az f(x) függvényt: Ezért használva a műveletekre vonatkozó tételeket is kapjuk, hogy Gazdasági Matematika 77 Függvények folytonossága Az f függvényt az x 0 D f helyen folytonosnak nevezzük, ha létezik a függvénynek az x 0 helyen a határértéke és az egyenlő a függvény helyettesítési értékével, azaz Az f függvényt az x 0 D f helyen jobbról folytonosnak nevezzük, ha létezik a függvénynek az x 0 helyen a jobboldali határértéke és az egyenlő a függvény helyettesítési értékével, azaz Az f függvényt az x 0 D f helyen balról folytonosnak nevezzük, ha létezik a függvénynek az x 0 helyen a baloldali határértéke és az egyenlő a függvény helyettesítési értékével, azaz Gazdasági Matematika 78 39

40 Figyeljük meg, hogy a folytonosság pontbeli tulajdonság! Az f függvényt az [a,b] intervallumon folytonosnak nevezzük, ha a függvény az intervallum minden pontjában folytonos, továbbá a az intervallum bal végpontjában jobbról-, a jobb végpontjában pedig balról folytonos. Tétel: Legyen az f és a g függvény az x 0 helyen folytonos. Ekkor cf is folytonos az x 0 helyen, ahol c R. is folytonos az x 0 helyen, ahol. is folytonos az x 0 helyen, ahol. is folytonos az x 0 helyen, ahol és g(x 0 ) 0. is folytonos az x 0 helyen, ha g folytonos az x 0 helyen és f folytonos a g(x 0 ) helyen. Gazdasági Matematika 79 Differenciálszámítás Legyen adott az f(x) függvény, és legyen x 0 D f. Ekkor a függvényt az x 0 helyhez tartozó differenciahányados függvénynek nevezzük. Gazdasági Matematika 80 40

41 A differenciahányados nem más, mint az adott f(x) függvény f(x) és f(x 0 ) pontján átmenő szelő meredeksége: f(x) f(x 0 ) f(x) f(x 0 ) x 0 x x 0 x Gazdasági Matematika 81 Ha létezik az f(x) függvény x 0 helyhez tartozó differenciahányados függvényének határértéke az x 0 helyen, akkor azt az f(x) függvény differenciálhányadosának nevezzük, és a függvényt az adott pontban differenciálhatónak mondjuk. A differenciálhányados geometriai jelentése: az f(x) függvény adott pontjába húzott érintő meredeksége. (Ennek belátására vizsgáljuk meg az előző oldal ábráját! Gazdasági Matematika 82 41

42 A differenciálhatóság is pontbeli fogalom. Tekintsük az f függvény értelmezési tartományának azt a részhalmazát, amelyen a függvény differenciálható. Jelöljük ezt a halmazt A-val. Definiáljuk azt a függvényt, amelynek értelmezési tartománya A, és minden x A elemhez függvényértékként az x helyhez tartozó differenciálhányadost rendeli. Ekkor az f (x) vel jelölt függvényt az f(x) függvény differenciálhányados függvényének (deriváltjának) nevezzük. Gazdasági Matematika 83 Tétel: Az f(x) = c, c R, függvény differenciálhányadosa nulla. Biz. Induljunk ki a definícióból. Ha f(x) differenciálható az x 0 helyen, akkor Gazdasági Matematika 84 42

43 Tétel: Az f(x) = x függvény differenciálhányadosa 1. Biz. Induljunk ki a definícióból. Ha f(x) differenciálható az x 0 helyen, akkor Gazdasági Matematika 85 Tétel: Az f(x) = x 2, függvény differenciálhányadosa 2x. Biz. Induljunk ki a definícióból. Ha f(x) differenciálható az x 0 helyen, akkor Ezért Gazdasági Matematika 86 43

44 Példa: Határozzuk meg az f(x) = x 2 függvény differenciálhányados függvényének értékét az x 0 = 4 helyen! Mivel ezért Gazdasági Matematika 87 A differenciálhányados geometriai jelentése mellett van egy nagyon fontos fizikai jelentése is: Az út-idő függvény idő szerinti deriváltja a t 0 időpillanatban megegyezik a pillanatnyi sebességgel. A sebesség-idő függvény idő szerinti differenciálhányadosa adja a gyorsulást a t 0 időpontban. Gazdasági Matematika 88 44

45 A differenciálás műveleti szabályai Tétel: legyen f differenciálható az x 0 D f helyen, és legyen c R tetszőleges konstans. Ekkor cf is differenciálható az x 0 helyen, és Tétel: legyen f és g differenciálható az x 0 D f D g helyen, és legyen c Rtetszőleges konstans. Ekkor f g is differenciálható az x 0 helyen, és Tétel: legyen f és g differenciálható az x 0 D f D g helyen, és legyen c Rtetszőleges konstans. Ekkor f g is differenciálható az x 0 helyen, és Gazdasági Matematika 89 Tétel: legyen g differenciálható az x 0 D f helyen, és tegyük fel, hogy g(x 0 ) 0. Ekkor 1/g is differenciálható az x 0 helyen, és Tétel: legyen f és g differenciálható az x 0 D f D g helyen, és g(x 0 ) 0. Ekkor f /g is differenciálható az x 0 helyen, és Tétel: legyen g differenciálható az x 0 D g helyen, és f differenciálható a g(x 0 ) D f. Ekkor f g összetett függvény is differenciálható az x 0 helyen, és Gazdasági Matematika 90 45

46 Elemi függvények deriváltjai I. f(x) f (x) f(x) f (x) c c R 0 ln x x k k R kx k-1 sin x cos x a x a R a x ln a cos x -sin x e x e x tg x log a x ctg x Gazdasági Matematika 91 Elemi függvények deriváltjai II. f(x) f (x) f(x) f (x) arcsin x ch x sh x arccos x th x arctg x cth x arcctg x arsh x sh x ch x arch x Gazdasági Matematika 92 46

47 Példa-1: Differenciálja az függvényt! A műveleti tételek alapján tagonként kell differenciálni: Gazdasági Matematika 93 Példa-2: Differenciálja az függvényt! A műveleti tételek alapján tagonként kell differenciálni: Itt az első tag egy szorzat, a második tag konstans: Gazdasági Matematika 94 47

48 Példa-3: Differenciálja az függvényt! Itt egy összetett függvény van, amelyben a külső függvény a tg függvény, a belső függvény az 5x függvény. Ezért Gazdasági Matematika 95 Magasabb rendű differenciálhányadosok Ha az f és az f ' függvény is deriválható az x 0 helyen, akkor az f '' az f függvény x 0 helyen vett második deriváltjának nevezzük. Analóg módon juthatunk el az n-dik derivált fogalmához. Jelölések: f '(x), f ''(x), f '''(x), f (4) (x),, f (n) (x), Gazdasági Matematika 96 48

49 Példa-1: Adja meg az f(x) = x 4 függvény első 5 deriváltját! f '(x) = 4x 3, f ''(x) = 12x 2, f '''(x) = 24x, f (4) (x) = 24, f (5) (x) = 0 Példa-2: Adja meg az f(x) = sin x függvény első 8 deriváltját! (sin x)' = cos x, (sin x)'' = -sin x, (sin x)'''(x) = -cos x, (sin x) (4) = sin x, (sin x) (5) = cos x, (sin x) (6) = -sin x, (sin x) (7) (x) = -cos x, (sin x) (8) = sin x, Gazdasági Matematika 97 Függvényvizsgálat I. Függvények növekedése, csökkenése Tétel: Legyen az f függvény az [a,b] intervallumon folytonos és az (a,b)-n differenciálható. Legyen f (x) = 0 minden x (a,b). Ekkor az f függvény az [a,b] intervallumon állandó. Tétel: Legyen az f függvény az [a,b] intervallumon folytonos és az (a,b)-n differenciálható. Ekkor Az f függvény az [a,b] intervallumon akkor és csak akkor monoton növekvő ha f (x) 0minden x (a,b). Tétel: Legyen az f függvény az [a,b] intervallumon folytonos és az (a,b)-n differenciálható. Ekkor Az f függvény az [a,b] intervallumon akkor és csak akkor monoton csökkenő ha f (x) 0 minden x (a,b). Gazdasági Matematika 98 49

50 Tétel: Legyen az f függvény az [a,b] intervallumon folytonos és az (a,b)-n differenciálható. Ekkor az f függvény az [a,b] intervallumon akkor és csak akkor szigorúan monoton növekvő ha f (x) > 0 minden x (a,b). Tétel: Legyen az f függvény az [a,b] intervallumon folytonos és az (a,b)-n differenciálható. Ekkor az f függvény az [a,b] intervallumon akkor és csak akkor szigorúan monoton csökkenő ha f (x) < 0 minden x (a,b). Gazdasági Matematika 99 Példa: Vizsgáljuk meg az függvényt monotonitás szempontjából az értelmezési tartományán, ha D f = R. A növekedési viszonyokat az első derivált előjele határozza meg. Differenciáljuk a függvényt: A függvény szigorúan monoton növekvő, ha f' (x) > 0: A függvény szigorúan monoton csökkenő, ha Gazdasági Matematika

51 Valóban, a függvény alakja: Gazdasági Matematika 101 Függvényvizsgálat II. Szélsőérték meghatározása Tétel: Legyen az f függvény az x 0 helyen differenciálható. Ha f-nek az x 0 helyen létezik a lokális szélsőértéke, akkor f '(x 0 ) = 0. Tétel: Legyen az f függvény az x 0 helyen kétszer differenciálható. Ha f '(x 0 ) = 0 és f ''(x 0 ) > 0, akkor f-nek az x 0 helyen lokális minimuma van. Tétel: Legyen az f függvény az x 0 helyen kétszer differenciálható. Ha f '(x 0 ) = 0 és f ''(x 0 ) < 0, akkor f-nek az x 0 helyen lokális maximuma van. Gazdasági Matematika

52 Példa: Határozza meg az függvény szélsőértékeit! A szélsőérték létezésére vonatkozó tétel alapján határozzuk meg az első deriváltak zérushelyeit: amiből kapjuk, hogy Ezzel a lehetséges szélsőértékeket kaptuk meg. Vizsgáljuk most a második deriváltakat a lehetséges szélsőérték helyeken: és így A második derivált az x = 2 helyen negatív, ezért itt lokális maximuma van a függvénynek, az x = -2 helyen pedig pozitív, ezért itt lokális minimuma van a függvénynek. Gazdasági Matematika 103 Függvényvizsgálat III. Alaki viszonyok, inflexió Tétel: Legyen az f függvény az [a,b] intervallumon kétszer differenciálható. Ahhoz a függvény az intervallumon konvex (konkáv) legyen, szükséges és elegendő feltétel, hogy az f '(x) függvény az intervallumon szigorúan monoton növekvő (csökkenő) legyen, azaz f''(x) > 0, (ill. f''(x) < 0) minden x (a,b)-re. Tétel (az inflexiós hely létezésének szükséges feltétele): Legyen az f függvény az x 0 helyen kétszer differenciálható, és itt a függvénynek inflexiója van, akkor f''(x 0 ) = 0. Tétel (az inflexiós hely létezésének elégséges feltétele): Legyen az f függvény az x 0 helyen kétszer differenciálható, és legyen f''(x 0 ) = 0. Ekkor az f függvénynek az x 0 helyen inflexiója van. Gazdasági Matematika

53 Példa: Határozzuk meg az, D f =Rfüggvény inflexióshelyét, és állapítsa meg, mely intervallumon konvex és konkáv a függvény. Az inflexióshely létezésére vonatkozó tétel alapján keressük meg a második derivált zérushelyeit: A második derivált sosem nulla, így nincs inflexiós hely. Vizsgáljuk meg a második derivált előjelét: ez a kifejezés akkor negatív, ha x < 0, és akkor pozitív, ha x > 0. A függvény értelmezési tartománya a pozitív valós számok halmaza, tehát a függvény mindenütt konvex. Gazdasági Matematika 105 A függvényvizsgálat lépései Az értelmezési tartomány megállapítása Zérushelyek meghatározása Szimmetriatulajdonságok: párosság, páratlanság, periodicitás Folytonosság, szakadási helyek meghatározása. Határértékek meghatározása a szakadási helyek jobb ill. baloldalán, valamint az intervallum végpontjaiban. Monotonitás, szélsőérték vizsgálat. Alaki viszonyok: konvex, konkáv tartományok, inflexiós pontok meghatározása. A függvény grafikonjának megrajzolása. Értékkészlet meghatározása. Gazdasági Matematika

54 Példa: Végezzen el teljeskörű függvényvizsgálatot az függvényen! 1. A függvény értelmezési tartománya: D f =R. 2. A zérushelyek meghatározása:? Gazdasági Matematika Szimmetriatulajdonságok. A függvény páros, mert A hatványfüggvények nem periodikusak, így a különbségük sem az. 4. Folytonosság, szakadási helyek, határérték: a hatványfüggvények folytonosak minden x D f helyen, szakadási hely nincs. 5.Monotonitás, szélsőérték: szélsőérték ott lehet, ahol a függvény differenciálhányadosa nulla. Gazdasági Matematika

55 Az első derivált előjele adja a tényleges monotonitást: Ezeken az intervallumokon a függvény szigorúan monoton csökkenő. Ezeken az intervallumokon a függvény szigorúan monoton növekvő. A második derivált előjele a szélsőérték helyeken szolgáltatja a szélsőértékeket: Amiből adódik, hogy Ezért a függvénynek minimumhelye van +1-ben és -1-ben, és maximumhelye van 0-ban. Gazdasági Matematika Alaki viszonyok: ha Amiből kapjuk, hogy Ezeken az intervallumokon a függvény konvex. Hasonlóan: Amiből: ha Itt a függvény konkáv. Gazdasági Matematika

56 Ahol a függvény konvexből konkávba megy át inflexiós pontja van. Ezek a pontok: ott a függvénynek Gazdasági Matematika Az függvény grafikonja Gazdasági Matematika

57 Integrálszámítás és alkalmazásai A primitív függvény, a határozatlan integrál Elemi függvények határozatlan integrálja Integrálási szabályok A határozott integrál fogalma és tulajdonságai A Newton-Leibniz szabály Az integrálszámítás alkalmazásai Gazdasági Matematika 113 A primitív függvény A differenciálszámítás során megismertük azt, hogy egy f(x) függvény f (x) deriváltját hogyan lehet megadni a függvény ismeretében. A kérdés az, hogy a differenciálhányados ismeretében hogyan lehet meghatározni az f(x) függvényt? Erre a kérdésre ad választ az integrálszámítás. Akkor mondjuk, hogy az F(x) függvény primitív függvénye az f(x) függvénynek az I R intervallumban, ha F folytonos az I-n és minden belső pontjában F (x) = f(x). Gazdasági Matematika

58 Példa: Vegyük észre, hogy az f(x) = x 2 függvény primitív függvénye a számegyenesen az függvény, mert F (x) = x 2 = f(x). Hasonló megfontolás alapján látható az is, hogy a és Függvények ugyancsak primitív függvényei az f(x) függvénynek. (Ez egyszerűen adódik abból, hogy a konstans differenciálhányadosa 0.) Tétel: Ha f-nek az I intervallumban van primitív függvénye, akkor végtelen sok primitív függvénye van, amelyek csak egy additív konstansban térnek el egymástól. Gazdasági Matematika 115 Egy f függvény határozatlan integráljának mondjuk az I R intervallumban az f függvény primitív függvényeinek halmazát. Jele Az integrál mögötti részt integrandusnak, az x változót integrációs együtthatónak nevezzük. A határozatlan integrál definíciójából következik, hogy Egy függvény határozatlan integrálját megadni azt jelenti, hogy megkeressük a hozzá tartozó összes primitív függvényt. Gazdasági Matematika

59 Példa: Határozzuk meg f primitív függvényeit, ha Megoldás: A korábbi tétel miatt, ha grafikusan akarjuk ábrázolni a különböző primitív függvényeket, akkor azok olyan párhuzamos görbesereget alkotnak, amelyek az y tengely mentén vannak eltolva. (Ld. A következő oldalt.) Gazdasági Matematika 117 f(x) = x 2 Gazdasági Matematika

60 Az elemi függvények határozatlan integráljai n -1, n R Gazdasági Matematika 119 Integrálási szabályok Tétel: Tegyük fel, hogy f-nek és g-nek létezik a primitív függvénye az I intervallumban. Akkor cf-nek és (f + g)-nek is van primitív függvénye, és Gazdasági Matematika

61 Példa: keressük az f(x) = 3x 4 + 2x 3 5x +2 függvény határozatlan integrálját! függvény határozatlan integ- Példa: keressük az rálját! Gazdasági Matematika 121 Tétel: Tegyük fel, hogy f(x)-nek F a primitív függvénye az I intervallumban, és ax+b I. Akkor Biz. Gazdasági Matematika

62 Példa: keressük az f(x) = (2x+4) 3 függvény határozatlan integrálját! Példa: keressük az f(x) = cos(3x+3) függvény határozatlan integrálját! Gazdasági Matematika 123 Tétel: Tegyük fel, hogy f(x) differenciálható és F a primitív függvénye az I intervallumban, és n -1. Akkor Biz. Figyeljük meg, hogy változtattunk a jelölésen! Gazdasági Matematika

63 Példa: keressük az f = 2(2x+4) 3 függvény határozatlan integrálját! Példa: keressük az függvény határozatlan integrálját! Gazdasági Matematika 125 Tétel: Tegyük fel, hogy f differenciálható az I intervallumban, és f(x) 0, x I. Akkor Példa: keressük az függvény határozatlan integrálját! Gazdasági Matematika

64 Parciális integrálás A szorzatfüggvény differenciálási szabályának megfordításából adódó integrálási szabályt parciális integrálásnak nevezzük. Tétel: Tegyük fel, hogy f és g folytonos és differenciálható az I intervallumban. Akkor Biz. Integráljuk mindkét oldalt: Amiből átrendezéssel megkapjuk a tétel állítását. Gazdasági Matematika 127 Példa: keressük az határozatlan integrál értékét! Legyen f(x) = x és gʹ(x) = e x. Ekkor fʹ(x) = 1 és g(x) = e x. Így Gazdasági Matematika

65 Integrálás helyettesítéssel A helyettesítéses integráláshoz lényegében az összetett függvény differenciálási szabályának megfordításával juthatunk el. Tétel: Tegyük fel, hogy a g függvény differenciálható az I intervallumban, és F (x) =f(x), ahol x g(i). Akkor Példa: keressük az határozatlan integrál értékét! Az első tényező egy összetett függvény, amelynek belső függvénye g: g(x) = x 2. Az integrandus nem a megfelelő - - alakú, ha szorozzuk és osztjuk is 2-vel, akkor a kívánt forma elérhető: VIG Gazdasági BSc Matematika II. 129 A határozott integrál fogalma Keressük annak a síkidomnak a területét, amelyet az f(x) = x 2 görbe, az x tengely és az x = b egyenes határol. Jelöljük a fenti parabolikus háromszög területét T-vel, és osszuk fel a [0,b] intervallumot n egyenlő hosszúságú ekvidisztans részintervallumra. Legyenek az osztópontok: ahol A T területnek egy alsó becslését kapjuk, ha minden részintevallumon egy olyan téglalapnak a területét számítjuk ki, amelynek alapja a részintervallum hossza, magassága a részintervallum bal végpontjában felvett függvényérték. Gazdasági Matematika

66 Így a parabolikus háromszög területét alulról egy törtvonallal határolt sokszög területével közelítjük meg: x 0 x 1 x 2 x i x n-2 x n-1 x n =b 131 Gazdasági Matematika 131 Jelöljük az összterületet s n -nel és számítsuk ki az alsó közelítő területek összegét: Hasonlóan számítható ki a felső közelítő összeg, de most a részintervallumokon a jobb oldali végponthoz tartozó függvényérték adja a magasságot. Gazdasági Matematika

67 Jelöljük az összterületet S n -nel és számítsuk ki az felső közelítő területek összegét: Az nyílvánvaló, hogy Gazdasági Matematika 133 Most n-et növelve osszuk a [0,b] intervallumot egyre több részre. Ekkor Ezért Gazdasági Matematika

68 Monoton függvények határozott integrálja A fentiekben alkalmazott technikát változtatás nélkül használhatjuk monoton növekvő függvények esetére. Legyen f az [a,b] intervallumon értelmezett monoton növekvő korlátos függvény, és legyen f 0. Határozzuk meg a görbe vonalú trapéz területét, ha azt az x tengely, az f függvény grafikonja és az x = a, valamint az x = b egyenesek határolják. Eddig egyenlő hosszúságú részintervallumokra osztottuk az adott szakaszt. Mivel ez nem kötelező előírás, és a következőkben általánosabban akarjuk kezelni a problémát, be kell vezetnünk a következő definíciót: Gazdasági Matematika 135 f(x) f(a) T f(b) a b Gazdasági Matematika

69 Legyen Az [a,b] intervallum felosztása n nem feltétlenül egyenlő részre. A felosztás finomságán a számot értjük. jelöli. A δ n tehát a leghosszabb részintervallum hosszát Minden olyan felosztást, amelyet egy adott felosztásból úgy kapunk, hogy újabb osztópontokat veszünk fel, és eközben δ n csökken, az adott felosztás finomításának nevezzük. Gazdasági Matematika 137 Ha f monoton növekvő és korlátos az [a,b] intervallumon, akkor az felosztáshoz tartozó alsó összegen (a beírt téglalapok területösszegén) az összeget értjük. Gazdasági Matematika

70 Ha f monoton növekvő és korlátos az [a,b] intervallumon, akkor az felosztáshoz tartozó felső összegen (a beírt téglalapok területösszegén) az összeget értjük. Monoton csökkenő függvények esetén az alsó és feslő összegek értelemszerűen definiálhatók. A fenti definíciókból egyértelműen adódik, hogy az f(x) görbe alatti T terület az [a,b] intervallumon: Gazdasági Matematika 139 Tétel: Legyen f(x) egy monoton növekvő, korlátos függvény az [a,b] intervallumon. Tekintsük az [a,b] intervallumnak egy felosztását, és a felosztást finomítsuk minden határon túl, azazδ n 0. Ekkor a {s n } és a {S n } sorozatok konvergálnak, és A tétel analóg módon kimondható monoton csökkenő korlátos függvényekre is. A következőkben megmutatjuk, hogy a függvényértékek választásánál nem kell ragaszkodnunk a részintervallumok végpontjaihoz. Gazdasági Matematika

71 Tétel: Legyen f az [a,b] intervallumon monoton és korlátos. Legyen Az [a,b] intervallum egy felosztása, és legyenek Tetszés szerinti valós számok. Legyen továbbá Ekkor A σ n értéket az adott beosztáshoz tartozó közelítő összegnek nevezzük. Gazdasági Matematika 141 Az f függvényt az [a,b] intervallumban integrálhatónak nevezzük, ha a felosztások minden határon túli finomításával keletkező σ n közelítő összegek sorozatának létezik a (beosztástól és aξ n közbülső pontoktól független) határértéke. A határértéket az f függvény [a,b] intervallumon vett integráljának vagy határozott integráljának (vagy Riemann-integráljának) nevezzük. Jele: A fenti definíció ismeretében az előző oldali tétel átfogalmazható: az [a,b] intervallumon monoton korlátos függvény integrálható. Gazdasági Matematika

72 Az f függvényt az (a,b) intervallumban szakaszonként monoton függvénynek nevezzük, ha van az [a,b] intervallumnak olyan véges felosztása, hogy minden részintervallumban f monoton. Tétel: Szakaszonként monoton függvények integrálját a monoton szakaszokon vett integrálok összege szolgáltatja. Tétel: Ha az [a,b] intervallumnak van olyan felosztása, hogy minden nyitott részintervallumon az f függvény folytonos, és f az [a,b]-n korlátos, akkor az f függvény az [a,b]-n integrálható. Gazdasági Matematika 143 A határozott integrál tulajdonságai Tétel: Ha az f és a g függvény integrálható az [a,b] intervallumon, és α R, akkor és Továbbá, ha a < c < b, akkor (A két utolsó állítás más szóval: a határozott integrál mind függvény, mind intervallum szerint additív.) Gazdasági Matematika

73 Ha f integrálható az [a,b] intervallumon, akkor Tétel: Ha f integrálható és folytonos az [a,b] intervallumban, akkor létezik olyan valós szám, amelyre Tétel: Ha egy f függvény integrálható az [a,b] intervallumon, akkor integrálható annak minden részintervallumán is. Gazdasági Matematika 145 A Newton-Leibniz szabály Ha az előző oldali utolsó tételét, akkor az intervallum alsó határát rögzítve az intervallumon vett integrál egy függvény, amelynek értéke a részintervallum felső határának értékétől függ. Más szóval minden x [a,b] számhoz egy valós szám rendelhető. Jelöljük ezt a függvényt G-vel: Ezt G függvényt az f függvény integrálfüggvényének nevezzük. Az integrálfüggvény jól használható a határozott integrál kiszámításakor, hiszen Gazdasági Matematika

74 Már a definícióból két dolog is látszik: Egyrészt azonnal adódik, hogy G(a) = 0, másrészt lehet látni,hogy a G függvénynek köze van a primitív függvényhez. Valóban, igaz a következő tétel: Tétel: ha G az f-nek integrálfüggvénye, és f folytonos az [a,b] intervallumon, akkor Azaz G az f-nek egy primitív függvénye. A fenti tétel következménye az, hogy ha F(x) is primitív függvénye f(x)-nek, akkor Ezért Mivel G(a) = 0, ezért Gazdasági Matematika Meghatározva C-t, azt kapjuk, hogy És ezért Ezt a képletet szokás Newton-Leibniz formulának is nevezni. A határozott integrál értékét tehát úgy számítjuk ki, hogy megkeressük f egy primitív függvényét (F-et), és a felső határon vett helyettesítési értékéből kivonjuk az alsó határon vett helyettesítési értékét. Gazdasági Matematika

75 Példa. Számítsuk ki az határozott integrál értékét a Newton-Leibniz formula segítségével! A megoldás helyességét egyszerű geometriai eszközökkel is ellenőrizhetjük: 2 4 Gazdasági Matematika 149 Az integrálszámítás alkalmazásai Az integrál geometriai értelmezésének a következménye, hogy ha f korlátos és integrálható az [a,b] intervallumon, akkor az annak a síkidomnak a területét adja, amelyet az f függvény, az x = a, az x = b egyenesek és az x tengely határolnak, feltéve, ha f(x) 0. Ha a függvényre nem érvényes a nem-negativitás, akkor a negatív szakaszon külön számítjuk ki a függvényhez tartozó terület értékét, és annak az abszolút értékével számolunk. Gazdasági Matematika

76 Példa. Számítsuk ki az határozott integrál értékét a Newton-Leibniz formula segítségével! Az ellenőrzéshez rajzoljuk fel az (x-3) függvény grafikonját! Gazdasági Matematika 151 Példa: bizonyos esetekben érdemes kihasználni a szimmetriát. Számítsuk ki, hogy mekkora területet zár be az x tengellyel az y = sinx függvény a [0,2π] intervallumon! Ha egyszerűen alkalmazzuk a Newton-Leibniz formulát, akkor: Ami nyílván hibás eredmény. Használjuk ki a szimmetrát! Ekkor Ez így már a helyes eredmény! Gazdasági Matematika

77 Két vagy több függvénygörbe által határolt síkidom területének mérőszáma a két (vagy több) függvény által határolt területek különbségéből határozható meg. Példa: határozzuk meg az f(x) = x 2 és a által bezárt síkidom területét! egyenletű görbék Először határozzuk meg a két görbe metszéspontjait: x 1 = 0 és x 2 = 1. Ezért Gazdasági Matematika 153 Kombinatorika Permutációk Variációk Kombinációk Valószínűségszámítás Valószínűségszámítás Eseményalgebra Valószínűségszámítás axiómái (Kolmogorov axiómák) Klasszikus valószínűség, Feltételes valószínűség, függetlenség, A valószínűségi változó és jellemzői (eloszlásfüggvény, sűrűségfüggvény, várható érték és szórás) Gazdasági Matematika

78 Nevezetes diszkrét eloszlások Egyenletes eloszlás Binomiális eloszlás Geometriai eloszlás Hipergeometrikus eloszlás Poisson eloszlás Nevezetes folytonos eloszlás Egyenletes eloszlás Exponenciális eloszlás Normális eloszlás Gazdasági Matematika 155 Kombinatorika A kombinatorika egy adott véges halmaz elemeinek adott feltételek szerinti csoportosításával foglalkozik. Aszerint, hogy a csoportosítás milyen feltételek mellett történik, permutációról variációról kombinációról beszélünk. A véges halmaz elemei lehetnek számok, betűk, tárgyak, személyek, stb. Gazdasági Matematika

79 Permutáció Egy n elemű véges halmaz elemeinek meghatározott sorrendbe történő elhelyezését permutációnak nevezzük. Ha a halmaz elemei különbözőek, akkor ismétlés nélküli permutációról, ha a halmaz elemei között vannak egyenlők is, akkor ismétléses permutációról beszélünk. Legtöbbször a feladat értelmezéséből megadható egy alapsorrend, (pl. nagyság szerinti vagy alfabetikus rendezés), de feladattól függően bármely sorrend tekinthető alapsorrendnek. A leggyakrabban feltett kérdés: hányféle sorrendben lehet n elemet egymás mellé rendezni, azaz n elemnek hány permutációja van? Gazdasági Matematika 157 Vezessük be a következő jelölést: n = n!. Az n! elnevezése: n faktoriális. Tétel: n elem ismétlés nélküli permutációinak a száma P n = n!. Biz. Az első helyre n féleképpen választhatunk elemet. A második helyre a megmaradó n 1 elemből választhatunk minden egyes első helyre történt választáshoz. Ezért az első két helyre összesen n (n 1) különböző választás lehetséges. A harmadik helyre a megmaradó n 2 elemből választhatunk minden az első két helyre történt választáshoz. Ezért az első három helyre összesen n (n 1)(n 2) különböző választás lehetséges. Ezt a gondolatmenetet folytatva az (n 1). pozícióra 2-féleképpen választhatunk minden rögzített (n 2)-eshez. Az utolsó pozícióba beírva a megmaradt elemet, megkapjuk a tétel állítását. Gazdasági Matematika