Részletes tantárgyprogram és követelményrendszer
|
|
- Rezső Farkas
- 6 évvel ezelőtt
- Látták:
Átírás
1 Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Mikroelektronikai és Technológia Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Matematika III. KMEMA31TND Kreditérték: 3 KMEMA31OND Nappali tagozat: 2017/2018. tanév 2. félév Szakok melyeken a tárgyat oktatják: villamosmérnök Bsc Tantárgyfelelős oktató: Dr. Kovács Judit Oktató: Dr. Baróti György Előtanulmányi feltételek: (kóddal) Matematika II. KMEMA21TND vagy KMEMA21OND Heti óraszámok: Előadás: 3 Tantermi gyak.: 0 Laborgyakorlat: 0 Konzultáció: 0 Számonkérés módja (s,v,f): v A tananyag Oktatási cél: A tárgy oktatásának célja, hogy a mérnöki matematika néhány fontos fejezetéhez tartozó legfontosabb alapfogalmakat, módszereket és eljárásokat megismertesse a hallgatókkal. A tárgy oktatása során fontos feladatunknak tartjuk a mérnöki és matematikai szemlélet összehangolását is. Tematika: Vektor fogalma, alkalmazásai. Vektor-skalár függvény. Kétváltozós vektor-skalár függvény. Skalár-vektor függvény. Vektor-vektor függvény. Eseményalgebra. Valószínűségszámítás. A matematikai statisztika alapjai. Vektoralgebra. Témakör: Hét Óra Vektor fogalma, műveletek vektorokkal (skalárral való szorzás, összeadás, kivonás, skaláris és vektoriális szorzat). A vektor koordinátái. Vektorok alkalmazásai (egyenes és sík egyenlete) Vektor-skalár függvények. Vektor-skalár függvény fogalma. Vektorsorozat határértéke. Vektor-skalár függvény határértéke, folytonossága, differenciálhatósága. Az előbbi fogalmak kapcsolata a koordináta-függvényekkel. Térgörbe, mint a skalár-vektor függvény képe. Kísérő triéder, egyeneseinek és síkjainak egyenlete. Vektor-skalár függvénnyel adott görbeív ívhossza, természetes paraméter. Görbület, torzió, simulókör és simulógömb
2 Kétváltozós vektor-skalár függvények. Kétváltozós vektor-skalár függvény fogalma. Kétváltozós vektor-skalár függvény határértéke, folytonossága, differenciálhatósága. Az előbbi fogalmak kapcsolata a koordináta-függvényekkel. A felület, mint a kétváltozós vektor-skalár függvény képe. Érintősík és egyenlete. Kétváltozós vektor-skalár függvénnyel adott felületdarab felszíne. Skalár-vektor függvények Skalár-vektor függvény fogalma, kapcsolata a háromváltozós valós függvényekkel. Skalár-vektor függvény határértéke, folytonossága, differenciálhatósága. A gradiens és tulajdonságai. Iránymenti derivált. Differenciál. Nabla operátor. Szintfelületek. Vektor-vektor függvények I. Vektor-vektor függvény fogalma. Vektor-vektor függvény határértéke, folytonossága, differenciálhatósága. A deriválttenzor és mátrixa. A deriválttenzor két fontos invariánsa, a rotáció és a divergencia. Vonalintegrálok és felületi integrálok fogalma, tulajdonságai, kiszámítása. Hármas integrál fogalma és tulajdonságai Vektor-vektor függvények II. Potenciálos vektorterek, potenciálfüggvény és meghatározása. Vektorpotenciál. Integrál-átalakító tételek (Gauss-Osztrogradszkij- és Stokes-tétel) Valószínűsészámítás I. Esemény fogalma. Az eseményalgebra és a halmazalgebra kapcsolata. Műveletek eseményekkel (összeadás, szorzás, kivonás). Esemény ellentettje, a biztos- és a lehetetlen esemény. Eseményalgebra kapcsolata logikai áramkörökkel. A valószínűség fogalma és Kolmogorov-féle axiómái. A valószínűség legfontosabb tulajdonságai. A kombinatorika alapfogalmainak ismétlése (permutáció, variáció, kombináció) Valószínűsészámítás II. Klasszikus valószínűségi mező. A valószínűség kombinatorikus kiszámítási módja. A visszatevéses és a visszatevés nélküli mintavétel képlete. Nevezetes diszkrét valószínűség eloszlások (a binomiális, és a hipergeometrikus eloszlás, a Poisson-eloszlás). Munkaszüneti nap. Valószínűsészámítás III. Feltételes valószínűség, független események. Valószínűségi változó fogalma. Diszkrét valószínűségi változó várható értéke, szórása és generátorfüggvénye
3 Valószínűsészámítás IV. Folytonos valószínűségi változók. Eloszlásfüggvény és sűrűség függvény. Folytonos valószínűségi változó várható értéke és szórása, Nevezetes folytonos eloszlások I. (az egyenletes és az exponenciális eloszlás) Valószínűsészámítás V. Nevezetes folytonos eloszlások II. A normális eloszlás legfontosabb tulajdonságai. 10 (12.) 3+0 Zárthelyi dolgozat. 11. Munkaszüneti nap. Valószínűsészámítás VI. A valószínűségi változó karakterisztikus függvénye. A nagy számok törvényei és a centrális határeloszlás-tétel. Matematikai statisztika I. A matematikai statisztika alapfogalmai (átlag, tapasztalati szórás, hisztogram stb.) Konfidencia intervallumok Matematikai statisztika II. 2 Statisztikai próbák (u-, t-, χ - próba) Félévközi követelmények Az előadásokon a részvétel kötelező. Az a hallgató, aki túllépte a TVSZ-ben megengedett hiányzások számát, a félévi követelményeket nem teljesítette, ezért nem kap aláírást. A hallgató az aláírást csak abban az esetben kaphatja meg, ha a megszerezhető 100 pontból legalább 50 pontot elért. A zárthelyi dolgozatot (kivéve a pót zárthelyit) az előadáson íratjuk. Az ütemezés az alábbi: Időpont Időtartam Szerezhető max. pontszám zh. ápr perc 100 pont Témák Vektoralgebra. Vektoranalízis. Diszkrét valószínűségszámítás. A pótlás módja: pótzh. máj perc 100 pont ugyanaz Pótolni csak az a hallgató pótolhat, akit nem tiltottak le. Bármely hallgató a pót zárthelyi időpontjában írhat pót zárthelyit és ekkor csak a pót zárthelyi eredménye számít. Az a hallgató, aki a szorgalmi időszakban nem szerzett aláírást, a vizsgaidőszak első tíz munkanapjának egyikében egy alkalommal és egy előre megadott időpontban kísérletet tehet a javításra (aláírás pótló vizsga). Ekkor újra írhat egy zárthelyi dolgozatot.
4 A vizsga módja: írásbeli A hallgató csak akkor vizsgázhat, ha az aláírást megszerezte. A vizsgadolgozat feladatokat (50 pont) és elméleti kérdéseket (20 pont) tartalmaz. A feladatokra 60 perc, az elméleti kérdésekre 15 perc áll rendelkezésre. Az a hallgató, aki a vizsgadolgozatának megírásakor 35 pontnál kevesebbet ér el, elégtelen (1) érdemjegyet kap. Aki a vizsgán legalább 35 pontot ér el és az aláírást nem az aláírás pótló vizsgán szerezte meg, annak a vizsgán szerzett pontszámához hozzáadjuk a zárthelyi dolgozattal szerzett pontszámának 30%-át, ha az aláírást az aláírás pótló vizsgán szerezte meg, akkor 15 pontot. Az így kialakuló pontszámból a hallgatók az alábbi táblázat szerint kapják a vizsgajegyet: Pontszám Vizsgajegy jeles (5) jó (4) közepes (3) elégséges (2) 0-49 elégtelen (1) Ha a hallgató a zh-n (ha igazoltan nem írt, akkor a pótzh-n) legalább 74 pontot ér el, akkor megajánlott vizsgajegyet kaphat. Egyéb: A zárthelyiken és a vizsgán semmilyen elektronikus segédeszköz (számológép, mobiltelefon stb.) nem használható. A zárthelyiken és a vizsgán (kivéve a vizsga elméleti kérdéseket tartalmazó részét) használható táblázat, de csak az előadó honlapjáról letöltött táblázat engedélyezett ( users/barotig/tablamatiii-d.pdf ). Irodalom Kötelező: Tankönyv: 1. Scharnitzky V.: Vektorgeometria és lineáris algebra. NTK Reimann J. - Tóth J. : Valószínűségszámítás és matematikai statisztika NTK 1998 Példatár: Dr. Baróti Gy.-Kis M. -Schmidt E. - Sréterné dr. Lukács Zs.: Matematika Feladatgyűjtemény BMF KKVFK 1190, Bp. 2005
5 Ajánlott: Tankönyv: Szász Gábor: Matematika I-II-III., NTK 1995 Példatár: Scharnitzky V.: Matematikai feladatok, NTK 1996 Budapest, jan. 1. Dr. Baróti György a tárgy előadója
Részletes tantárgyprogram és követelményrendszer
Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Mikroelektronikai és Technológia Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Matematika II. KMEMA21TND Kreditérték:
Részletes tantárgyprogram és követelményrendszer
Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Tárgy neve és kódja: Távközlési informatika II. KHWTI3TBNE Kreditérték: 5 Nappali
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
Gazdasági matematika II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdálkodási és menedzsment, pénzügy és számvitel szakok távoktatás tagozat Gazdasági matematika II. Tantárgyi útmutató 2016/17 tanév II. félév 1/6 A KURZUS ALAPADATAI Tárgy
YBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.
YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
TANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet. címe:
Tantárgy rövid neve (Matematika II.) Tantárgy teljes neve (Matematika II.) Tantárgy neve angolul (Mathematics II.) Neptun kódja (SGYMMAT2012XA) Szak (Építőmérnöki szak, Menedzser szak) Tagozat (Nappali
FÉLÉVI KÖVETELMÉNYEK 2010/2011. tanév II. félév INFORMATIKA SZAK
FÉLÉVI KÖVETELMÉNYEK INFORMATIKA SZAK Tantárgy Tagozat Heti óraszám Követelmény Ea. Lab. Gy. VILLAMOSSÁGTAN. Nappali 3 0 1 aláírás+vizsga Az aláírás megszerzésének feltételei: - A hiányzás nem haladhatja
Gazdasági matematika II. tanmenet
Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):
Gazdasági matematika 1 Tantárgyi útmutató
Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése
TANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
Matematikai alapok 1 Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:
Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2
Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős
TANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
Stratégiai és Üzleti Tervezés
Számvitel Intézeti Tanszék /fax: 06-1-383-8480 Cím: Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT Stratégiai és Üzleti Tervezés c. tárgy tanulmányozásához 2013/2014.tanév I. félév 1 A tantárgy
Biomatematikai Tanszék
BIOSTATISZTIKA DENTISTRY Biomatematikai Tanszék Tantárgy: BIOSTATISZTIKA Év, szemeszter: 1. évfolyam - 1. félév Óraszám: Szeminárium: 28 Kód: FOBST03F1 ECTS Kredit: 2 A tárgyat oktató intézet: Biofizikai
Gazdasági matematika
Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek számára 2017/18 tanév II. félév 1 Tantárgy
KÖVETELMÉNYRENDSZER NÖVÉNYTERMESZTÉSTANBÓL 2013/2014. tanév 1. félévében
KÖVETELMÉNYRENDSZER NÖVÉNYTERMESZTÉSTANBÓL 201/2014. tanév 1. félévében Oktatott tantárgyak: kredit SMKNZ201AN Takarmánynövény termesztés 2+ óra 5 BSc Állattenyésztő Mérnöki Szak II. SMKNZ202XN Növénytermesztéstani
KÖVETELMÉNYEK 2017/ félév. Informatika II.
Tantárgy neve Informatika II. Tantárgy kódja TAB1110 Meghirdetés féléve 4. Kreditpont 1 Heti kontakt óraszám (elm. + gyak.) 0 + 1 Félévi követelmény Előfeltétel (tantárgyi kód) TAB1109 Tantárgyfelelős
2. hét (Ea: ): Az egyváltozós valós függvény definíciója, képe. Nevezetes tulajdonságok: monotonitás, korlátosság, határérték, folytonosság.
Ütemterv az Analízis I. c. tárgyhoz (GEMAN510B, 510-B) Járműmérnöki, logisztikai mérnöki, műszaki menedzser, villamosmérnöki, ipari termék- és formatervező mérnöki alapképzési szak 2019/20. tanév I. félév
Statisztika 1. Tantárgyi útmutató
Módszertani Intézeti Tanszék Nappali tagozat Statisztika 1. Tantárgyi útmutató 2015/16 tanév II. félév 1/6 Tantárgy megnevezése: Statisztika 1. Tantárgy kódja: STAT1KAMEMM Tanterv szerinti óraszám: 2+2
MATEMATIKA 1. TANTÁRGYLEÍRÁS. 1.2 Azonosító (tantárgykód) GKNB_MSTM Kurzustípusok és óraszámok (heti/féléves)
TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve MATEMATIKA 1. 1.2 Azonosító (tantárgykód) GKNB_MSTM001 1.3 Kurzustípusok és óraszámok (heti/féléves) kurzustípus óraszám (heti) előadás (elmélet) 4 gyakorlat
TANSZÉKI TÁJÉKOZTATÓ az ÜZLETI TERVEZÉS tantárgyhoz
Számvitel Intézeti Tanszék /fax: 06-1-383-8480 Cím: Budapest 72. Pf.: 35. 1426 TANSZÉKI TÁJÉKOZTATÓ az ÜZLETI TERVEZÉS tantárgyhoz Nappali tagozat Pénzügy és számvitel szak Budapest, 2013. szeptember 1
BEVEZETŐ Tantárgyi követelmények
BEVEZETŐ Tantárgyi követelmények BSC KÉPZÉSI SZINT 2018-2019. tanév I. (őszi) félév SZÉCHENYI ISTVÁN EGYETEM AUDI Hungaria Járműmérnöki Kar Járműgyártási Tanszék Gépészmérnöki szak Gépgyártástechnológiai
PPKE ITK, 2014/2015 tanév. I. félév. Tantárgyi adatok és követelmények
PPKE ITK, 2014/2015 tanév I. félév Tantárgyi adatok és követelmények Tantárgy neve: Óraszám: Lineáris algebra 2 óra előadás, kedd, 8-10, Simonyi terem 2 óra gyakorlat Honlap: digitus.itk.ppke.hu/~b_novak
Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.
Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)
Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája
Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Tasnádi Tamás 2014. szeptember 11. Kivonat A tárgy a BME Fizika BSc szak kötelező, alapozó tárgya a képzés 1. félévében. A tárgy
Tantárgyi útmutató. Gazdasági matematika II.
Módszertani Intézeti Tanszék Tantárgyi útmutató Gazdasági matematika II. Nappali Tagozat 2015/16 tanév II. félév 1/5 Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa: Gazdasági matematika
Stratégiai és Üzleti Tervezés
Számvitel Intézeti Tanszék /fax: 06-1-383-8480 Cím: Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT Stratégiai és Üzleti Tervezés c. tárgy tanulmányozásához 2014/2015.tanév II. félév 1 A
TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Gépipari Technológiai Intézet
Szent István Egyetem Gépészmérnöki Kar Gépipari Technológiai Intézet FOGLALKOZTATÁSI TERV ÉS TANTÁRGYI ISMERTETŐ Egyszerűsített értékelésű tantárgyakhoz Tartalom 1. Általános adatok...1 1.1. A tantárgy
Matematika A1a-Analízis (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar
Matematika A1a-Analízis (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Kód: BMETE90AX00; Követelmény: 4/2/0/V/6; Félév: 2016/17/2; Nyelv: magyar; Előadó: Dr. Fülöp Ottilia Gyakorlatvezető: Dr. Fülöp
KÖVETELMÉNYEK 2018/ FÉLÉV. 1. hét Szervezési feladatok. Tematika, követelmények.
KÖVETELMÉNYEK 2018/19. 1. FÉLÉV A tantárgy kódja: BOV1114 A tantárgy neve: Matematikai nevelés és módszertana II. Kredit: 3 Kontakt óraszám: 2 óra/hét Féléves tematika: 1. hét Szervezési feladatok. Tematika,
KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA. Anyagmérnök BSc Szak Évfolyamszintű tárgy. Miskolci Egyetem. Gépészmérnöki és Informatikai Kar
KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA Anyagmérnök BSc Szak Évfolyamszintű tárgy Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet 1. Tantárgyleírás Tantárgy neve: Mechanika Tantárgy
MÉRLEG- ÉS EREDMÉNYELEMZÉS c. tárgy tanulmányozásához
Számvitel Intézeti Tanszék /fax: 469-6798 Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT MÉRLEG- ÉS EREDMÉNYELEMZÉS c. tárgy tanulmányozásához Gazdálkodási és menedzsment szak Statisztikus
KOMPLEX ELEMZÉS c. tárgy tanulmányozásához
Számvitel Intézeti Tanszék /fax: 469-6683 Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT KOMPLEX ELEMZÉS c. tárgy tanulmányozásához PÉNZÜGY ÉS SZÁMVITEL szak hallgatói részére 2014/2015.tanév
MATEMATIKA 2. TANTÁRGYLEÍRÁS. 1.2 Azonosító (tantárgykód) GKNB_MSTM Kurzustípusok és óraszámok (heti/féléves)
TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve MATEMATIKA 2. 1.2 Azonosító (tantárgykód) GKNB_MSTM008 1.3 Kurzustípusok és óraszámok (heti/féléves) kurzustípus óraszám (heti) előadás (elmélet) 2 gyakorlat
A TAkTÁodv lhtatápákah CÉigA okíaíásának célja A íaníáröónak náncs Élőíanulmánóá félíéíéléi dé a féldolöozásáí méökönnóííá méöalaéozzák
TANSZÉKI TÁJÉKOZTATÓ az ÜZLETI TERVEZÉS tantárgyhoz Nappali tagozat Pénzügy és számvitel szak Budapest, 2014. szeptember 2 A TANTÁRGY OKTATÁSÁNAK CÉLJA Az üzleti tervezés című tantárgy oktatásának célja,
Villamosenergetikai Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Energiagazdálkodás KVEEG11ONC Kreditérték: 6
Óbudai Egyetem Villamosenergetikai Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Energiagazdálkodás KVEEGONC Kreditérték: 6 nappali 6. félév Szakok melyeken a tárgyat oktatják: Villamosmérnöki
PPKE ITK, 2015/2016tanév. I.félév. Tantárgyi adatok és követelmények
PPKE ITK, 2015/2016tanév I.félév Tantárgyi adatok és követelmények Tantárgy neve: Óraszám: Lineáris algebra 2 óra előadás, kedd, 8-10, Simonyi terem 2 óra gyakorlat Honlap: digitus.itk.ppke.hu/~b_novak
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 7 VII VEkTORANALÍZIS 1 ELmÉLETI ALAPOk Az u függvényt skalár-vektor függvénynek nevezzük, ha értelmezési tartománya a háromdimenziós tér vektorainak halmaza, a függvényértékek
Matematika G1 és A1a-Analízis tárgyak (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar
Matematika G1 és A1a-Analízis tárgyak (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Tárgykódok: BMETE93BG01, BMETE94BG01, BMETE90AX00 Kurzuskódok: G00, G01, G02, H0, H1, HV Követelmény: 4/2/0/V/6;
Matematika tanmenet 11. évfolyam (középszintű csoport)
Matematika tanmenet 11. évfolyam (középszintű csoport) Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 11.A, 11.B, 11.D (alap) Tantárgy: MATEMATIKA Heti óraszám: 4 óra Készítették:
SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ. Üzleti tervezés. Pénzügy és számvitel alapszak Nappali tagozat 2016/2017. tanév I.
SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ Üzleti tervezés Pénzügy és számvitel alapszak Nappali tagozat 2016/2017. tanév I. félév A TANTÁRGY OKTATÁSÁNAK CÉLJA Az üzleti tervezés című tantárgy oktatásának
Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)
Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.
Gazdasági matematika
ALKALMAZOTT KVANTITATÍV MÓDSZERTAN TANSZÉK Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény
N Ö V É N Y É L E T T A N tantárgy programja az 2015/2016. tanév II. félévére nappali és levelező tagozatos hallgatók részére
N Ö V É N Y É L E T T A N tantárgy programja az 2015/2016. tanév II. félévére nappali és levelező tagozatos hallgatók részére NAPPALI TAGOZAT I. ÉVFOLYAM (NEPTUN tantárgykódok: MANABNN2723, MKNABNN2825,
TANTÁRGY ADATLAP és tantárgykövetelmények Cím: Épületszerkezettan I.
TANTÁRGY ADATLAP és tantárgykövetelmények Cím: Épületszerkezettan I. Tárgykód: PMRESNE037B, PMRESNE037P Heti óraszám: 3/4/0, Kreditpont: 7 Szak(ok)/ típus: Tagozat: Követelmény: Meghirdetés féléve: Nyelve:
SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ. Komplex elemzés. Pénzügy és számvitel alapszak Nappali tagozat 2015/2016. tanév II.
TANTÁRGYI ÚTMUTATÓ Komplex elemzés Pénzügy és számvitel alapszak Nappali tagozat 2015/2016. tanév II. félév A tantárgy rövid bemutatása: A Budapesti Gazdasági Egyetem Pénzügyi és Számviteli Karán meghatározó
Matematika 11. évfolyam
Matematika 11. évfolyam Tanmenet Másodfokúra visszavezethető magasabb rendű egyenletek, másodfokú egyenletrendszerek 1. Másodfokú egyenletek (ismétlés) 2. Másodfokú egyenletrendszerek (behelyettesítő módszer)
N Ö V É N Y É L E T T A N tantárgy programja az 2014/2015. tanév II. félévére nappali és levelező tagozatos hallgatók részére
N Ö V É N Y É L E T T A N tantárgy programja az 2014/2015. tanév II. félévére nappali és levelező tagozatos hallgatók részére NAPPALI TAGOZAT I. ÉVFOLYAM (NEPTUN tantárgykódok: MANABNN2723, MKNABNN2825,
Osztályozó- és javítóvizsga. Matematika tantárgyból
Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,
Nyíregyháza, február 1.
Nyíregyházi Egyetem Óvó- és Tanítóképző Intézet T A N T Á R G Y I T E M A T I K A É S F É L É V I K Ö V E T E L M É N Y R E N D S Z E R 2018/2019. tanév 2. félév Készítette: főiskolai docens tantárgyfelelős
ÚTMUTATÓ. I. évfolyam. Felsőoktatási szakképzés Gazdaságinformatikus szakon. 2016/2017 I. félév
PÉNZÜGYI ÉS SZÁMVITELI KAR COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. I. évfolyam Felsőoktatási szakképzés Gazdaságinformatikus szakon ÚTMUTATÓ Számvitel alapjai 2016/2017 I.
Az osztályozóvizsgák követelményrendszere MATEMATIKA
Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom
MATEMATIKA tanterv emelt szint 11-12. évfolyam
MATEMATIKA tanterv emelt szint 11-12. évfolyam Batthyány Kázmér Gimnázium, 2004. 1 TARTALOM 11.osztály (222 óra)... 3 1. Gondolkodási műveletek (35 óra)... 3 2. Számelmélet, algebra (64 óra)... 3 3. Függvények,
TANTÁRGYI ÚTMUTATÓ. Számvitel alapjai. című tárgy tanulmányozásához
SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ Számvitel alapjai című tárgy tanulmányozásához Felsőoktatási szakképzés Pénzügy és számvitel; Emberi erőforrás; Gazdálkodási és menedzsment szakon Nappali
TANTÁRGYI ÚTMUTATÓ. Teljesítmény és erőforrás elemzés
TEEL1K0MPZC BsC III. évfolyam Pénzügy és számvitel szak Számviteli szakirány TANTÁRGYI ÚTMUTATÓ Teljesítmény és erőforrás elemzés 2016/2017 I. félév A tantárgy oktatásának célja A Budapesti Gazdasági Egyetem
Operációkutatás I. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdinfo nappali tagozat Operációkutatás I. Tantárgyi útmutató 2017/18 tanév 1. félév 1/4 Tantárgy megnevezése: Operációkutatás Tantárgy kódja: OPKU1KOMEMM Tanterv szerinti
1. Bevezetés A félév anyaga. Lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció
TANTÁRGYI ÚTMUTATÓ. Operációkutatás. tanulmányokhoz
II. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Operációkutatás tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Operációkutatás Tanszék: BGF Módszertani Intézeti
Döntési módszerek Tantárgyi útmutató
Gazdálkodási és menedzsment alapszak Nappali tagozat Döntési módszerek Tantárgyi útmutató 2018/19. tanév II. félév 1 Tantárgy megnevezése Tantárgy jellege/típusa: Döntési módszerek. D Kontaktórák száma/hét:
TANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet. OKTATÓ, ELŐADÓ címe: fogadóórája a szorgalmi időszakban:
Mechanika 1 Mechanika I. (Statika) Mechanika I. (Statika) Neptun kódja: SGYMMET2001XA Neptun kódja: SGYMMET201XXX Tantárgy neve angolul: Mechanics 1 Építészmérnöki szak, Építőmérnöki szak Nappali tagozat
Adatbázis rendszerek Info MÁTRIX
Adatbázis rendszerek 2. 0. Info MÁTRIX 28/1 B IT v: 2019.02.01 MAN Info Mátrix 28/2 Szándék nyilatkozat Nem akarom megtölteni a koponyákat fölösleges adatokkal, célom az ott ébredező gondolatok helyes
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve Építőipari anyagminőség 1.2 Azonosító (tantárgykód) BMEEMEMAV11 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok (heti/féléves)
Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához
ciklus óra óra anyaga, tartalma 1 1. Év eleji szervezési feladatok, bemutatkozás Hatvány, gyök, logaritmus (40 óra) 2. Ismétlés: hatványozás 3. Ismétlés: gyökvonás 4. Értelmezési tartomány vizsgálata 2
BEVEZETŐ Tantárgyi követelmények
BEVEZETŐ Tantárgyi követelmények BSC KÉPZÉSI SZINT 2016-2017. tanév I. (őszi) félév SZÉCHENYI ISTVÁN EGYETEM AUDI Hungaria Járműmérnöki Kar Járműgyártási Tanszék Gépészmérnöki szak Gépgyártástechnológiai
Neptun kódja: J30301M NEMZETKÖZI KÖZJOG 1. Előfeltétele: 20302M Helye a mintatantervben: 3. szemeszter Meghirdetés: őszi szemeszter
TANTÁRGY NEVE: Neptun kódja: J30301M NEMZETKÖZI KÖZJOG 1. Előfeltétele: 20302M Helye a mintatantervben: 3. szemeszter Meghirdetés: őszi szemeszter Szak: JOGÁSZ Oktatás nyelve: magyar Tárgy besorolása:
TANTÁRGYPROGRAM 2015/16. ŐSZI FÉLÉV
TANTÁRGYPROGRAM 2015/16. ŐSZI FÉLÉV A tantárgy neve: Közgazdasági Elmélettörténet/History of Economic Thought A tantárgy kódja: BMEGT30MN09 Heti tanóraszám (Előadás/Gyakorlat): 2/2 Tantárgy teljesítésértékelésének
Döntési módszerek Tantárgyi útmutató
Gazdálkodási és menedzsment alapszak Nappali tagozat Döntési módszerek Tantárgyi útmutató 2015/16 tanév II. félév 1 Tantárgy megnevezése Tantárgy jellege/típusa: Döntési módszerek. D Kontaktórák száma/hét:
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
BEVEZETŐ Tantárgyi követelmények
BEVEZETŐ Tantárgyi követelmények BSC KÉPZÉSI SZINT 2017-2018. tavaszi II. félév SZÉCHENYI ISTVÁN EGYETEM AUDI Hungaria Járműmérnöki Kar Járműgyártási Tanszék Gépészmérnöki szak Járműgyártási (Automobil
Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél
Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,
TANSZÉKI TÁJÉKOZTATÓ. a STRATÉGIAI ÉS ÜZLETI TERVEZÉS tantárgyról
BUDAPESTI GAZDASÁGI FŐISKOLA PÉNZÜGYI ÉS SZÁMVITELI FŐISKOLAI KAR KONTROLLING-ELLENŐRZÉS INTÉZETI TANSZÉK TANSZÉKI TÁJÉKOZTATÓ a STRATÉGIAI ÉS ÜZLETI TERVEZÉS tantárgyról Budapest, 2012. Összeállította:
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
MINŐSÉGÜGY. ANYAGMÉRNÖK BSC KÉPZÉS SZAKMAI TÖRZSANYAG (nappali munkarendben) TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
MINŐSÉGÜGY ANYAGMÉRNÖK BSC KÉPZÉS SZAKMAI TÖRZSANYAG (nappali munkarendben) TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR ENERGIA- ÉS MINŐSÉGÜGYI INTÉZET Miskolc, 2017/18.
Operációkutatás II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2015/16 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:
1. A témakörök heti bontás (Ütemezés)
Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyag- és Gyártástudományi Intézet Anyagtechnológiai Intézeti Tanszék Tantárgy neve és kódja: Anyagok és technológiák II. BAXAN23BNE
Bevezetés a számvitelbe
SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ Bevezetés a számvitelbe Pénzügy számvitel alapszak Gazdálkodás-menedzsment alapszak Távoktatás tagozat 2016/2017. tanév I. félév 1 Tantárgy megnevezése Bevezetés
PÉNZÜGYI ÉS SZÁMVITELI KAR- FELSŐOKTATÁSI SZAKKÉPZÉS COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. TANTÁRGYI ÚTMUTATÓ
PÉNZÜGYI ÉS SZÁMVITELI KAR- FELSŐOKTATÁSI SZAKKÉPZÉS COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. I. évfolyam Pénzügyi és számviteli felsőoktatási szakképzés Államháztartási szakirány
Záróvizsga tételek matematikából osztatlan tanárszak
Záróvizsga tételek matematikából osztatlan tanárszak A: szakmai ismeretek; B: szakmódszertani ismeretek Középiskolai specializáció 1. Lineáris algebra A: Lineáris egyenletrendszerek, mátrixok. A valós
Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!
MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:
Pénzügyi számvitel 1.
TANTÁRGYI ÚTMUTATÓ Pénzügyi számvitel 1. Pénzügyi és számviteli felsőoktatási szakképzés Államháztartási szakirány Nonprofit szakirány Pénzintézeti szakirány Vállalkozási szakirány Nappali tagozat 2015/2016.
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév
9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek
Pénzügyi instrumentumok számvitele
Budapesti Gazdasági Főiskola Pénzügyi és Számviteli Főiskolai Kar Budapest Nappali tagozat MESTERSZAK Pénzügyi instrumentumok számvitele Tantárgyi útmutató 2014/2015 tanév tavaszi félév 1 Tantárgy megnevezése:
TANSZÉKI TÁJÉKOZTATÓ a KONTROLLING tantárgyhoz
TANSZÉKI TÁJÉKOZTATÓ a KONTROLLING tantárgyhoz Nappali tagozat Pénzügy és számvitel szak Budapest, 2015. február A TANTÁRGY OKTATÁSÁNAK CÉLJA A tantárgy oktatásának célja az alkalmazott számviteli eljárásokból
Operációkutatás II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2016/17 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:
TANTÁRGYI ÚTMUTATÓ a
Számvitel Intézeti Tanszék /fax: 383-8480 Budapest 72. Pf.: 35. 1426 III. évfolyam Pénzügy és Számvitel Szak, Számvitel szakirány TANTÁRGYI ÚTMUTATÓ a Számviteli sajátosságok tantárgy tanulmányozásához
TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA
TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA GEMET001-B Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet MM/37/2018. Miskolc, 2018. február 5. HIRDETMÉNY Statika(GEMET201NB és GEMET001-B)
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDK112E, INDK112G Félév: 2016/2017-II. Előadó: Boros Zoltán Óraszám: 2 + 2 (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele:
Konszern számvitel alapjai
SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ Konszern számvitel alapjai Pénzügy-számvitel alapszak Nappali tagozat 2016/2017. tanév II. félév 1 A tárgy oktatásának célja: A világgazdaságban és ebből következően
ÚTMUTATÓ. I. évfolyam Üzleti szakügyintéző szakképesítés Államháztartási szakügyintéző szakképesítés. 2012/2013 I. félév
PÉNZÜGYI ÉS SZÁMVITELI KAR COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. I. évfolyam Üzleti szakügyintéző szakképesítés Államháztartási szakügyintéző szakképesítés ÚTMUTATÓ Számvitel
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.