Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató
|
|
- Aurél Lukács
- 7 évvel ezelőtt
- Látták:
Átírás
1 Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDK112E, INDK112G Félév: 2016/2017-II. Előadó: Boros Zoltán Óraszám: (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele: Kalkulus 1 (INDK111) előadás vagy vizsgakurzus sikeres teljesítése Az előadások részletes tematikája: Az előadás dátuma (2017) időpont: hétfő , helyszín: IK-F01 tanterem február 20. február 27. március 6. március 13. március 20. március 27. április 3. április 10. április 17. április 24. május 1. május 8. május 15. május 22. Az előadás tartalmi vázlata Primitív függvény, határozatlan integrál, alapintegrálok, az integrál linearitása és alkalmazásai. Integrálási szabályok (parciális és helyettesítéses integrálás) és módszerek (az integrálási szabályok tipikus alkalmazásai, a helyettesítés speciális esetei), racionális törtek integrálása, racionalizáló helyettesítések. A Riemann-integrál fogalma. Közbeeső integrálközelítő összegek. Az integrál kiszámítása: Newton Leibniz-formula. Riemann-kritérium; a Riemann-integrálhatóság elegendő feltételei (folytonosság, monotonitás). Műveletek Riemannintegrálható függvényekkel (folytonos függvény módosítása egy [vég]pontban, intervallum-additivitás, linearitás). Az integrál, mint a felső határ függvénye. Integrálási szabályok Riemann-integrálra. Improprius integrálok értelmezése, létezése. Az integrál alkalmazásai. Az 1. zárthelyi gyakorlati dolgozat megírása. Szeparábilis differenciálegyenlet. Elsőrendű lineáris differenciálegyenlet. Másodrendű állandó együtthatós homogén lineáris differenciálegyenletek; inhomogén egyenlet megoldása próbafüggvénnyel. Tavaszi szünet (Szakmai Napok). Húsvét Hétfő: ezen a napon nincsenek tanórák. Távolság és topológiai alapfogalmak R n -ben. Többváltozós függvények folytonossága, határértéke. Derivált-fogalmak többváltozós függvényekre. Munka ünnepe: ezen a napon nincsenek tanórák. Magasabb rendű parciális deriváltak. Magasabb rendben folytonosan differenciálható függvények. Young és Taylor tételei kétszer folytonosan differenciálható függvényekre. Többváltozós függvények lokális szélsőérték-helyei. Riemann-integrál téglán és korlátos tartományokon. Integráltranszformáció; polárkoordináták alkalmazása. A 2. zárthelyi gyakorlati dolgozat megírása. 1
2 A gyakorlatok órarendi időpontjai: A gyakorlatvezető neve: Nap Óra Tanterem Boros Zoltán hétfő IK-F02 Szabó Tímea hétfő IK-202 Kosztur Judit kedd IK-F08 Kosztur Judit kedd IK-F02 Nagy Gergő péntek IK-108 Nagy Gergő péntek IK-108 A táblázatban feltüntetett kétórás intervallumok tartalmazzák a 2-szer 50 perces gyakorlati óra és a 2-szer 10 perces szünet időtartamát. A gyakorlatvezető határozza meg (a gyakorlatra járó hallgatókkal szóban egyeztetve) a tényleges időbeosztást (például lehet az előadás mintájára szünet nélkül 100 perces gyakorlatot tartani vagy 50 perc gyakorlat után 10 perc szünet és újabb 50 perc gyakorlat). A gyakorlatok tematikája az előadást követi. Célszerű a mellékletben közzétett gyakorló feladatsorok használata otthoni felkészülésre és ugyanezen feladatsor feladatainak (vagy az ajánlott példatárakban található további hasonló feladatok) megoldása a gyakorlatokon. Alapvető feladat-típusok: Határozatlan és határozott integrálok kiszámítása (alapintegrálok, linearitás alkalmazása; a parciális és a helyettesítéses integrálás tipikus esetei; racionális törtfüggvények integrálása, egyszerűbb racionalizáló helyettesítések). Terület-számítás integrálással. Improprius-integrálok meghatározása definíció alapján. Elemi úton megoldható (szétválasztható változójú, elsőrendű lineáris) differenciálegyenletek és azokra vonatkozó kezdetiérték-feladatok megoldása. Másodrendű állandó együtthatós homogén lineáris differenciálegyenletek megoldása. Az inhomogén egyenlet partikuláris megoldásának keresése próbafüggvénnyel és az általános megoldás felírása. Pontok euklideszi távolságának meghatározása (síkban, térben). Többváltozós függvények parciális deriváltjainak meghatározása. Többváltozós függvények lokális szélsőérték-helyeinek meghatározása. Integrálás téglán, háromszög-tartományon, körlapon, félkörön és negyed-körön. 2
3 A gyakorlat számonkérése és teljesítése: A gyakorlat teljesítését a gyakorlatvezető aláírással igazolja. A gyakorlati aláírás feltétele a gyakorlatokon való részvétel és a gyakorlati számonkérés során elért legalább 50 %-os eredmény. A szorgalmi időszakban két zárthelyi gyakorlati dolgozatot kell írni az előadás helyén és időpontjában. A felkészülést a gyakorló feladatsorok mellett a két mellékelt gyakorlati mintadolgozat is elősegíti. A dolgozatok feladatainak helyes megoldásával dolgozatonként maximum 30 pont, a gyakorlat során tehát összesen maximum 60 pont szerezhető. A gyakorlatokon aktív hallgatók szorgalmi pontokat szerezhetnek; egy-egy zárthelyi dolgozat előtt legfeljebb 10 pontot. Az így kapott szorgalmi pontszám (a NEPTUN-ban kiegészítő pontszámként rögzítve) hozzáadódik a soron következő dolgozatban elért pontszámhoz (de abban az esetben, ha ez az összeg meghaladná a 30 pontot, csak 30 pont vehető figyelembe az összeg helyett; tehát a szorgalmi pontok figyelembe vételével is összesen legfeljebb 60 gyakorlati pont szerezhető). Ha a hallgató összesített gyakorlati pontszáma (a továbbiakban: GyP) eléri vagy meghaladja a 30 pontot, a gyakorlatvezető aláírja a gyakorlat teljesítését. Egyéni tanrend engedélyezése esetén a hallgató nem köteles gyakorlatra járni, de a dolgozatok megírása (az eredeti vagy a pótlásra kijelölt időpontban) és legalább 30 gyakorlati pont elérése ilyen esetben is kötelező. Dolgozatok (és konzultációk) ütemezése: március 22. (szerda) 18:00, M 426: Konzultáció (az 1. dolgozathoz) március 27. (hétfő) 12:00, IK-F01: 1. gyakorlati dolgozat április 19. (szerda) 18:00, M 426: (1.) javító ill. pót-dolgozat. május 17. (szerda) 18:00, M 426: Konzultáció (a 2. dolgozathoz) május 22. (hétfő) 12:00, IK-F01: 2. gyakorlati dolgozat június 7. (szerda) 10:00: központi javító ill. pót-dolgozat (az 1. vagy 2. dolgozat a kettő közül az egyik újraírható). Amennyiben egy hallgató javító dolgozatot ad be, a dolgozat eredeti pontszáma törlődik, és helyette a javító dolgozat pontszáma veendő figyelembe (akkor is, ha az kisebb). A gyakorlatvezető a gyakorlatok idejében nem tud dolgozat-javítási illetve -pótlási lehetőséget biztosítani, és külön időpontban sem kötelezhető erre. Az április 19-i vagy a június 7-i alkalommal biztosítunk lehetőséget az egyik dolgozat újraírására vagy pótlására. A gyakorlati pontszám teljes mértékben beszámításra kerül a kurzuson szerzett vizsgajegy megállapításakor. 3
4 A vizsga lebonyolítása és értékelése: A szorgalmi időszakban gyakorlati aláírást szerző hallgatók az általuk az előadó által meghirdetett időpontok közül választott vizsganapon írásbeli vizsgát tehetnek. Aki május 26-án vagy azt megelőző vizsgaidőpontban teszi le a vizsgáját, azt úgy kell tekinteni, hogy nem kíván élni a május 26-i gyakorlati dolgozat újraírás lehetőségével. A vizsga sikeres teljesítéséhez szükséges a beugró részben a maximális 10 pontból legalább 6 pont megszerzése. A vizsgadolgozatban túlnyomórészt elméleti kérdésekből, kis mértékben pedig azokhoz kapcsolódó konkrét példákra vonatkozó feladatok megoldásával összesen 40 pont szerezhető (illetve bizonyítások leírásáért ehhez többletpontok is adhatók). Amennyiben a vizsgázó sikeresen teljesíti a beugró részt, a féléves összteljesítményét a gyakorlatokon szerzett (max. 60) pontszámának és a vizsgadolgozat (max többlet) pontszámának összege határozza meg az alábbi táblázatok alapján: Megnevezés (leírás) Szerezhető pontszám Beugró (alapvető definíciók illetve alaptételek) (BP). min. 6 (!), max. 10 További elméleti kérdések (definíciók, tételek); példák (TEK). A tételek bizonyítása nem elvárás, de egyes tételek bizonyításának a leírásával további többletpontok szerezhetők. Vizsgadolgozat összpontszáma (VDP = BP + TEK) max. 30 (+ bizonyításokért többletpontok) max. 40 (+ bizonyításokért többletpontok) + Gyakorlati eredményért kapott pontszám beszámítása (GyP) max. +60 Összesített vizsga-pontszám (ÖVP = GyP + VDP) max. 100 (+ biz.) Az így kialakított összesített vizsga-pontszám alapján a következő táblázat szerint kerül beírásra a vizsgajegy (az egy sorba írt feltételek között és kapcsolat értendő): Beugró pontszám (BP): Összesített vizsga pontszám (ÖVP): Vizsgajegy BP < 6 elégtelen (1) 6 BP 36 ÖVP 44 elégtelen (1) 6 BP 45 ÖVP 54 elégséges (2) 6 BP 55 ÖVP 69 közepes (3) 6 BP 70 ÖVP 84 jó (4) 6 BP 85 ÖVP 100 (+ többlet) jeles (5) A vizsga rendjére vonatkozóan a Tanulmányi és Vizsgaszabályzat rendelkezései az irányadóak. A hallgatók csak fényképes igazolvánnyal vehetnek részt a vizsgán. A vizsga során tankönyv, jegyzet, telekommunikációs eszköz vagy adatolvasásra alkalmas berendezés nem használható. A hallgató saját vizsgadolgozatának értékelését a vizsganapot követő munkanapon 18:00-tól 19:30 óráig megtekintheti a Matematikai Épület M 326 irodájában. Értékelés után a vizsgadolgozatok pontszámai és az érdemjegyek rögzítésre kerülnek a Tanulmányi Rendszerben. 4
5 A vizsgadolgozat beugró kérdései Alapvető definíciók: primitív függvény; korlátos függvény adott beosztáshoz tartozó alsó/felső integrálközelítő összege, alsó/felső Darboux-integrálja, Riemannintegrálhatósága (és integrálja); elsőrendű lineáris differenciálegyenlet; pontok euklideszi távolsága; halmaz belső pontja, határpontja; nyílt halmaz; (többváltozós, vektor értékű) függvény folytonossága, iránymenti deriváltja, parciális deriváltja, lokális minimum/maximum-helye. Alaptételek: Newton Leibniz-formula; a parciális integrálás tétele Riemann-integrálra, a helyettesítéses integrálás tétele Riemann-integrálra; a lokális szélsőérték szükséges feltétele (többváltozós függvényekre); Young tétele (a vegyes parciális deriváltakra); Fubini tétele (speciális eset: folytonos függvény integrálása téglalapon). A vizsgadolgozatban feltehető további elméleti kérdések (az előbbiek, valamint) Definíciók: beosztás finomítása, szelekciója, közbeeső integrálközelítő összeg; improprius-integrálok; másodrendű állandó együtthatós homogén lineáris differenciálegyenlet karakterisztikus polinomja; (többváltozós, vektor értékű) függvény határértéke, differenciálhatósága, deriváltja; kétszer folytonosan differenciálható (többváltozós) függvény; Riemann-integrál korlátos tartományon. Tételek: adott függvény primitív függvényeinek kapcsolata intervallumon; a Riemannintegrálhatóság Riemann-kritériuma és elegendő feltételei; linearitás és intervallumadditivitás Riemann-integrálra; az integrálfüggvény (mint a felső határ függvénye) differenciálhatósága; az integrál, mint terület; forgástest térfogata és felszíne; inhomogén és homogén lineáris differenciál-egyenletek megoldásainak kapcsolata; másodrendű állandó együtthatós homogén lineáris differenciálegyenlet általános megoldása; (többváltozós, vektor értékű) függvény differenciálhatóságának elegendő feltétele, a derivált-mátrix elemei; Taylor tétele (kétszer differenciálható többváltozós függvényekre); a lokális szélsőérték létezésének elegendő feltétele; integráltranszformáció és alkalmazása síkbeli polár-koordinátákra. Vizsgadolgozatban előforduló feladatok: adott egyváltozós függvény adott beosztáshoz (illetve adott szelekcióhoz) tartozó alsó, felső (illetve közbeeső) integrálközelítő összegének meghatározása, valamint az integrál értékének meghatározása a Newton Leibniz-formula segítségével; síkbeli illetve térbeli pontok euklideszi távolságának meghatározása; adott többváltozós (vektor értékű) függvény adott pontbeli deriváltmátrixának meghatározása. 5
6 A felkészüléshez ajánlott irodalom Bárczy Barnabás, Integrálszámítás Példatár, Műszaki Könyvkiadó, Fekete Zoltán, Zalay Miklós, Többváltozós függvények analízise Példatár, Műszaki Könyvkiadó, Gselmann Eszter: Kalkulus II. (előadást követő jegyzet), DE TTK Matematikai Intézet, Debrecen, Gselmann Eszter: Kalkulus II. példatár, DE TTK Matematikai Intézet, Debrecen, B. P. Gyemidovics, Matematikai analízis feladatgyűjtemény, Tankönyvkiadó, Lajkó Károly, Kalkulus II. (egyetemi jegyzet, 1 2. kötet), DE Matematikai és Informatikai Intézet, Debrecen, Lajkó Károly, Kalkulus II. példatár (1 2. kötet), DE Matematikai és Informatikai Intézet, Debrecen, Rimán János, Matematikai analízis I., EKTF, Líceum Kiadó, Eger, Rimán János, Matematikai analízis feladatgyűjtemény I.-II., EKTF, Líceum Kiadó, Eger, W. Rudin, A matematikai analízis alapjai, Műszaki Könyvkiadó, Budapest, Scharnitzky Viktor, Differenciálegyenletek Példatár, Műszaki Könyvkiadó, Az előadáson Dr. Novák-Gselmann Eszter: Kalkulus II. jegyzetét is követjük, amely letölthető a internet címről. Dr. Lajkó Károly jegyzete és példatára jelenleg a web-oldalról tölthető le (pdf formátumban). A példatárban a gyakorló feladatsorok előtt számos kidolgozott megoldás is található. Elérhetőségek Az előadó címe: zboros@science.unideb.hu honlapja: irodája: Matematikai Épület M 326 fogadóórái: szerda 14 15, csütörtök A tájékoztató mellékletei 4 gyakorló feladatsor: Kalk2-p1a.pdf, Kalk2-p2a.pdf, Kalk2-p3a.pdf, Kalk2-p4a.pdf; 2 gyakorlati dolgozat minta: Kalk2zh1m.pdf, Kalk2zh2m.pdf; 1 vizsgadolgozat minta: Kalk2vd-m.pdf. Debrecen, február 24. Boros Zoltán 6
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató
Kalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDK112E, INDK112G Félév: 2015/2016-II. Előadó: Boros Zoltán Óraszám: 2 + 2 (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele:
RészletesebbenKalkulus 2 (Informatika BSc PTI) tantárgyi tájékoztató
Kalkulus (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDKE, INDKG Félév: 04/05-II. Előadó: Boros Zoltán Óraszám: + (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele: Kalkulus
RészletesebbenKalkulus 1 (Informatika BSc PTI) tantárgyi tájékoztató
Kalkulus 1 (Informatika BSc PTI) tantárgyi tájékoztató Tárgykód(ok): INDK111E, INDK111G Félév: 2015/2016-I. Előadó: Boros Zoltán Óraszám: 2 + 2 (előadás + tantermi gyakorlat) Kredit: 5 (kötelező) Előfeltétele:
RészletesebbenDifferenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék
Differenciál - és integrálszámítás (Óraszám: 3+3) (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár Meghirdető tanszék: Analízis Tanszék Debrecen, 2005 A tárgy neve: Differenciál- és
RészletesebbenMatematika G1 és A1a-Analízis tárgyak (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar
Matematika G1 és A1a-Analízis tárgyak (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Tárgykódok: BMETE93BG01, BMETE94BG01, BMETE90AX00 Kurzuskódok: G00, G01, G02, H0, H1, HV Követelmény: 4/2/0/V/6;
RészletesebbenKurzusinformáció. Analízis II, PMB1106
Kurzusinformáció Analízis II, PMB1106 2013 Tantárgy neve: Analízis II Tantárgy kódja: PMB1106 Kreditpont: 4 Heti kontakt óraszám (elm.+gyak.): 2+2 Előfeltétel: PMB1105 Félévi követelmény: kollokvium Előadás
RészletesebbenMatematika A1a-Analízis (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar
Matematika A1a-Analízis (keresztfélév) TÁRGYKÖVETELMÉNY Gépészmérnöki Kar Kód: BMETE90AX00; Követelmény: 4/2/0/V/6; Félév: 2016/17/2; Nyelv: magyar; Előadó: Dr. Fülöp Ottilia Gyakorlatvezető: Dr. Fülöp
RészletesebbenAlkalmazott matematika és módszerei I Tantárgy kódja
Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve
RészletesebbenTANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
RészletesebbenGazdasági matematika 1 Tantárgyi útmutató
Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése
RészletesebbenTANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani
RészletesebbenRészletes tantárgyprogram és követelményrendszer
Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Mikroelektronikai és Technológia Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Matematika II. KMEMA21TND Kreditérték:
RészletesebbenGazdasági matematika
Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek számára 2017/18 tanév II. félév 1 Tantárgy
RészletesebbenMatematikai alapok 1 Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:
RészletesebbenTANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
Részletesebben2. hét (Ea: ): Az egyváltozós valós függvény definíciója, képe. Nevezetes tulajdonságok: monotonitás, korlátosság, határérték, folytonosság.
Ütemterv az Analízis I. c. tárgyhoz (GEMAN510B, 510-B) Járműmérnöki, logisztikai mérnöki, műszaki menedzser, villamosmérnöki, ipari termék- és formatervező mérnöki alapképzési szak 2019/20. tanév I. félév
RészletesebbenAnalízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév
Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?
RészletesebbenGazdasági matematika
ALKALMAZOTT KVANTITATÍV MÓDSZERTAN TANSZÉK Gazdasági matematika Tantárgyi útmutató Pénzügy és számvitel, Gazdálkodási és menedzsment, Emberi erőforrások alapképzési szakok nappali tagozat új tanrendűek
RészletesebbenMATEMATIKA 2. TANTÁRGYLEÍRÁS. 1.2 Azonosító (tantárgykód) GKNB_MSTM Kurzustípusok és óraszámok (heti/féléves)
TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve MATEMATIKA 2. 1.2 Azonosító (tantárgykód) GKNB_MSTM008 1.3 Kurzustípusok és óraszámok (heti/féléves) kurzustípus óraszám (heti) előadás (elmélet) 2 gyakorlat
RészletesebbenTöbbváltozós Függvények Analízise; Differenciálegyenletek Tantárgyi tájékoztató, 2014/2015 tavaszi félév
Többváltozós Függvények Analízise; Differenciálegyenletek Tantárgyi tájékoztató, 214/215 tavaszi félév Kurzus adatai: Tárgy előadója: Gyakorlatvezető: Kurzus neve: Kurzus típusa: Kurzus kódja: Bessenyei
RészletesebbenAz előadások és gyakorlatok időpontja, tematikája
Tájékoztató a Differenciál- integrálszámítás tárgy 28/29. tanév I. félévi kurzusairól számonkéréről Az előadások gyakorlatok időpontja, tematikája Az előadás kódja(i): TTMBE23, TMOE27, TTMBE83; heti óraszáma:
RészletesebbenHatározatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
Részletesebben12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?
Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!
RészletesebbenJPTE PMMFK Levelező-távoktatás, villamosmérnök szak
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.
RészletesebbenYBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Részletesebben2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?
= komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve
RészletesebbenMATEMATIKA 1. TANTÁRGYLEÍRÁS. 1.2 Azonosító (tantárgykód) GKNB_MSTM Kurzustípusok és óraszámok (heti/féléves)
TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve MATEMATIKA 1. 1.2 Azonosító (tantárgykód) GKNB_MSTM001 1.3 Kurzustípusok és óraszámok (heti/féléves) kurzustípus óraszám (heti) előadás (elmélet) 4 gyakorlat
Részletesebben0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
RészletesebbenPPKE ITK, 2014/2015 tanév. I. félév. Tantárgyi adatok és követelmények
PPKE ITK, 2014/2015 tanév I. félév Tantárgyi adatok és követelmények Tantárgy neve: Óraszám: Lineáris algebra 2 óra előadás, kedd, 8-10, Simonyi terem 2 óra gyakorlat Honlap: digitus.itk.ppke.hu/~b_novak
RészletesebbenTartalomjegyzék. 1. Előszó 1
Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............
RészletesebbenPTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky
RészletesebbenPTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben
RészletesebbenMATEMATIKA A KÖZGAZDASÁGI ALAPKÉPZÉS SZÁMÁRA SZENTELEKINÉ DR. PÁLES ILONA ANALÍZIS PÉLDATÁR
MATEMATIKA A KÖZGAZDASÁGI ALAPKÉPZÉS SZÁMÁRA SZENTELEKINÉ DR. PÁLES ILONA ANALÍZIS PÉLDATÁR Budapest, 2018 Szerző: SZENTELEKINÉ DR. PÁLES ILONA főiskolai docens 978-963-638-542-2 Kiadja a SALDO Pénzügyi
RészletesebbenPPKE ITK, 2015/2016tanév. I.félév. Tantárgyi adatok és követelmények
PPKE ITK, 2015/2016tanév I.félév Tantárgyi adatok és követelmények Tantárgy neve: Óraszám: Lineáris algebra 2 óra előadás, kedd, 8-10, Simonyi terem 2 óra gyakorlat Honlap: digitus.itk.ppke.hu/~b_novak
RészletesebbenNumerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.
YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
RészletesebbenMatematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
RészletesebbenTANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
RészletesebbenAnalízis szigorlat informatikusoknak (BMETE90AX20) tárgykövetelmény és tételsor
Analízis szigorlat informatikusoknak (BMETE90AX20) tárgykövetelmény és tételsor Bodrogné Réffy Júlia, Horváth Róbert 2018/19. II. félévtől Tantárgykód: BMETE90AX20 Félév: 2018/19. tavasz Nyelv: magyar
Részletesebbensin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
RészletesebbenMatematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.
Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)
Részletesebben6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények
6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai
RészletesebbenRészletes tantárgyprogram és követelményrendszer
Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Mikroelektronikai és Technológia Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Matematika III. KMEMA31TND Kreditérték:
RészletesebbenFÉLÉVI KÖVETELMÉNYEK 2010/2011. tanév II. félév INFORMATIKA SZAK
FÉLÉVI KÖVETELMÉNYEK INFORMATIKA SZAK Tantárgy Tagozat Heti óraszám Követelmény Ea. Lab. Gy. VILLAMOSSÁGTAN. Nappali 3 0 1 aláírás+vizsga Az aláírás megszerzésének feltételei: - A hiányzás nem haladhatja
RészletesebbenSzámítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája
Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája Tasnádi Tamás 2014. szeptember 11. Kivonat A tárgy a BME Fizika BSc szak kötelező, alapozó tárgya a képzés 1. félévében. A tárgy
RészletesebbenTANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
RészletesebbenDEBRECENI EGYETEM TERMÉSZETTUDOMÁNYI ÉS TECHNOLÓGIAI KAR MATEMATIKAI INTÉZET
DEBRECENI EGYETEM TERMÉSZETTUDOMÁNYI ÉS TECHNOLÓGIAI KAR MATEMATIKAI INTÉZET A matematika tanár szakos levelező képzés konzultációinak beosztása a 2017/2018-as tanév I. félévében Az alábbi órarendben elkülönítve
Részletesebbenx 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx
Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos
RészletesebbenTANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve ÉPÍTŐMÉRNÖKI INFORMATIKA 1.2 Azonosító (tantárgykód) BMEEOFTAT42 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus óraszám
Részletesebben1. TÁRGYKÖVETELMÉNYEK
Állománynév: aramkorok 01kovetelmenyek bevezetes33.pdf Tankönyvek: [1] R. J. Smith & R. C. Dorf, Circuits, Devices and Systems, Wiley, (5 th Edition). [2] Haizmann J., Varga S. és Zoltai J., Elektronikus
RészletesebbenStratégiai és Üzleti Tervezés
Számvitel Intézeti Tanszék /fax: 06-1-383-8480 Cím: Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT Stratégiai és Üzleti Tervezés c. tárgy tanulmányozásához 2013/2014.tanév I. félév 1 A tantárgy
RészletesebbenA TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
Részletesebben1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis
RészletesebbenElhangzott gyakorlati tananyag óránkénti bontásban. Mindkét csoport. Rövidítve.
TTK, Matematikus alapszak Differenciálegyenletek 1 (BMETE93AM15) Elhangzott gyakorlati tananyag óránkénti bontásban Mindkét csoport Rövidítve 1 gyakorlat 017 szeptember 7 T01 csoport Elsőrendű közönséges
RészletesebbenMatematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév
Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen
RészletesebbenMatematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
RészletesebbenStratégiai és Üzleti Tervezés
Számvitel Intézeti Tanszék /fax: 06-1-383-8480 Cím: Budapest 72. Pf.: 35. 1426 TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT Stratégiai és Üzleti Tervezés c. tárgy tanulmányozásához 2014/2015.tanév II. félév 1 A
RészletesebbenPénzügyi számvitel 1.
TANTÁRGYI ÚTMUTATÓ Pénzügyi számvitel 1. Pénzügyi és számviteli felsőoktatási szakképzés Államháztartási szakirány Nonprofit szakirány Pénzintézeti szakirány Vállalkozási szakirány Nappali tagozat 2015/2016.
Részletesebben8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,
3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5
Részletesebbenn 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,
205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:
RészletesebbenKalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt
27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,
RészletesebbenStatisztika 1. Tantárgyi útmutató
Módszertani Intézeti Tanszék Nappali tagozat Statisztika 1. Tantárgyi útmutató 2015/16 tanév II. félév 1/6 Tantárgy megnevezése: Statisztika 1. Tantárgy kódja: STAT1KAMEMM Tanterv szerinti óraszám: 2+2
Részletesebbencos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4
Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos
RészletesebbenTANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet. címe:
Tantárgy rövid neve (Matematika II.) Tantárgy teljes neve (Matematika II.) Tantárgy neve angolul (Mathematics II.) Neptun kódja (SGYMMAT2012XA) Szak (Építőmérnöki szak, Menedzser szak) Tagozat (Nappali
RészletesebbenÉrtelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,
25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit
RészletesebbenDifferenciálegyenletek. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:
RészletesebbenA gyakorlatok anyaga
A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így
Részletesebben1. BEVEZETÉS ÉS TÁRGYKÖVETELMÉNYEK
Állománynév: aramkorok 01bevez kovetelmenyek23.pdf Tankönyvek: [1] R. J. Smith & R. C. Dorf, Circuits, Devices and Systems, Wiley, (5 th Edition). [2] Haizmann J., Varga S. és Zoltai J., Elektronikus áramkörök,
RészletesebbenA TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény 1.2 Kar 1.3 Intézet 1.4 Szakterület 1.5 Képzési szint 1.6 Szak / Képesítés Babeș-Bolyai Tudományegyetem Matematika és Informatika
RészletesebbenMatematika I. Vektorok, egyenesek, síkok
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk
RészletesebbenDIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet
RészletesebbenBoros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
RészletesebbenIntegrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november
Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................
RészletesebbenKÖVETELMÉNYEK 2017/ félév. Informatika II.
Tantárgy neve Informatika II. Tantárgy kódja TAB1110 Meghirdetés féléve 4. Kreditpont 1 Heti kontakt óraszám (elm. + gyak.) 0 + 1 Félévi követelmény Előfeltétel (tantárgyi kód) TAB1109 Tantárgyfelelős
RészletesebbenSZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ. Komplex elemzés. Pénzügy és számvitel alapszak Nappali tagozat 2015/2016. tanév II.
TANTÁRGYI ÚTMUTATÓ Komplex elemzés Pénzügy és számvitel alapszak Nappali tagozat 2015/2016. tanév II. félév A tantárgy rövid bemutatása: A Budapesti Gazdasági Egyetem Pénzügyi és Számviteli Karán meghatározó
RészletesebbenHÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok
Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás
RészletesebbenSzámítástechnika I. 0. Ea: Infó Mátrix (2018)
Számítástechnika I. 0. Ea: Infó Mátrix (2018) 1/39 B ITv: MAN 2018.09.10 Info Mátrix 2/39 Rólam 3/39 Szűcs Miklós Alias: BitMan Mesteroktató Informatika épület, 108-as szoba szucs@iit.uni-miskolc.hu +36
RészletesebbenOperációkutatás II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2015/16 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:
RészletesebbenANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
RészletesebbenTANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet. OKTATÓ, ELŐADÓ címe: fogadóórája a szorgalmi időszakban:
Mechanika 1 Mechanika I. (Statika) Mechanika I. (Statika) Neptun kódja: SGYMMET2001XA Neptun kódja: SGYMMET201XXX Tantárgy neve angolul: Mechanics 1 Építészmérnöki szak, Építőmérnöki szak Nappali tagozat
RészletesebbenMatematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.
Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:
RészletesebbenKÖVETELMÉNYRENDSZER NÖVÉNYTERMESZTÉSTANBÓL 2013/2014. tanév 1. félévében
KÖVETELMÉNYRENDSZER NÖVÉNYTERMESZTÉSTANBÓL 201/2014. tanév 1. félévében Oktatott tantárgyak: kredit SMKNZ201AN Takarmánynövény termesztés 2+ óra 5 BSc Állattenyésztő Mérnöki Szak II. SMKNZ202XN Növénytermesztéstani
RészletesebbenN Ö V É N Y É L E T T A N tantárgy programja az 2015/2016. tanév II. félévére nappali és levelező tagozatos hallgatók részére
N Ö V É N Y É L E T T A N tantárgy programja az 2015/2016. tanév II. félévére nappali és levelező tagozatos hallgatók részére NAPPALI TAGOZAT I. ÉVFOLYAM (NEPTUN tantárgykódok: MANABNN2723, MKNABNN2825,
RészletesebbenKalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
RészletesebbenÚTMUTATÓ. I. évfolyam Üzleti szakügyintéző szakképesítés Államháztartási szakügyintéző szakképesítés. 2012/2013 I. félév
PÉNZÜGYI ÉS SZÁMVITELI KAR COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. I. évfolyam Üzleti szakügyintéző szakképesítés Államháztartási szakügyintéző szakképesítés ÚTMUTATÓ Számvitel
RészletesebbenA TAkTÁodv lhtatápákah CÉigA okíaíásának célja A íaníáröónak náncs Élőíanulmánóá félíéíéléi dé a féldolöozásáí méökönnóííá méöalaéozzák
TANSZÉKI TÁJÉKOZTATÓ az ÜZLETI TERVEZÉS tantárgyhoz Nappali tagozat Pénzügy és számvitel szak Budapest, 2014. szeptember 2 A TANTÁRGY OKTATÁSÁNAK CÉLJA Az üzleti tervezés című tantárgy oktatásának célja,
RészletesebbenTANSZÉKI TÁJÉKOZTATÓ az ÜZLETI TERVEZÉS tantárgyhoz
Számvitel Intézeti Tanszék /fax: 06-1-383-8480 Cím: Budapest 72. Pf.: 35. 1426 TANSZÉKI TÁJÉKOZTATÓ az ÜZLETI TERVEZÉS tantárgyhoz Nappali tagozat Pénzügy és számvitel szak Budapest, 2013. szeptember 1
RészletesebbenElhangzott tananyag óránkénti bontásban
TTK, Matematikus alapszak Differenciálegyenletek (Előadás BMETE93AM03; Gyakorlat BME TE93AM04) Elhangzott tananyag óránkénti bontásban 2016. február 15. 1. előadás. Közönséges differenciálegyenlet fogalma.
RészletesebbenA TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Matematika és Informatika 1.4 Szakterület Matematika
RészletesebbenAz előadásokon ténylegesen elhangzottak rövid leírása
TTK, Matematikus alapszak, Differenciálegyenletek (előadás, gyakorlat) Előadás BMETE93AM03; Gyakorlat BME TE93AM04. Követelmény: Előadás 4/0/0/v/4; Gyakorlat 0/020/f/2 Tananyag (általános megjegyzések).
RészletesebbenDöntési módszerek Tantárgyi útmutató
Gazdálkodási és menedzsment alapszak Nappali tagozat Döntési módszerek Tantárgyi útmutató 2018/19. tanév II. félév 1 Tantárgy megnevezése Tantárgy jellege/típusa: Döntési módszerek. D Kontaktórák száma/hét:
RészletesebbenA TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
RészletesebbenBEVEZETŐ Tantárgyi követelmények
BEVEZETŐ Tantárgyi követelmények BSC KÉPZÉSI SZINT 2018-2019. tanév I. (őszi) félév SZÉCHENYI ISTVÁN EGYETEM AUDI Hungaria Járműmérnöki Kar Járműgyártási Tanszék Gépészmérnöki szak Gépgyártástechnológiai
RészletesebbenTANTÁRGYI ÚTMUTATÓ. Számvitel alapjai. című tárgy tanulmányozásához
SZÁMVITEL INTÉZETI TANSZÉK TANTÁRGYI ÚTMUTATÓ Számvitel alapjai című tárgy tanulmányozásához Felsőoktatási szakképzés Pénzügy és számvitel; Emberi erőforrás; Gazdálkodási és menedzsment szakon Nappali
RészletesebbenPÉNZÜGYI ÉS SZÁMVITELI KAR- FELSŐOKTATÁSI SZAKKÉPZÉS COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. TANTÁRGYI ÚTMUTATÓ
PÉNZÜGYI ÉS SZÁMVITELI KAR- FELSŐOKTATÁSI SZAKKÉPZÉS COLLEGE OF FINANCE AND ACCOUNTANCY 1149 BUDAPEST, BUZOGÁNY U. 10-12. I. évfolyam Pénzügyi és számviteli felsőoktatási szakképzés Államháztartási szakirány
RészletesebbenMatematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
RészletesebbenAz európai integráció gazdaságtana
Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Közgazdaságtan Tanszék TANTÁRGY ADATLAP és tantárgykövetelmények Az európai integráció gazdaságtana The Economics of
RészletesebbenIntegrálszámítás (Gyakorló feladatok)
Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)
RészletesebbenSzámítástechnika I. 0. Ea: Infó Mátrix (2016)
Számítástechnika I. 0. Ea: Infó Mátrix (2016) 35/1 B ITv: MAN 2016.09.03 A tárgyról 35/2 Tárgykód: GEIAL664B Előfeltétel: nincs Szakok: MFK, BSc, 1. évfolyam A tárgy értéke: 4 kredit Lezárás: aláírás +
RészletesebbenTANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet OKTATÓK, ELŐADÓK címe: fogadóórája a szorgalmi időszakban:
Mechanika 1 Mechanika I. (Statika) Mechanika I. (Statika) Neptun kódja: SGYMMET2001XA Neptun kódja: SGYMMET201XXX Tantárgy neve angolul: Mechanics 1 Építészmérnöki szak, Építőmérnöki szak Nappali tagozat
Részletesebben