Nagy méretű adathalmazok vizualizációja
|
|
- Edit Orbánné
- 5 évvel ezelőtt
- Látták:
Átírás
1 Nagy méretű adathalmazok vizualizációja Big Data elemzési módszerek Kocsis Imre, Salánki Ágnes ikocsis, Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
2 Aggregálunk n nagy mesterségesen tömörítünk
3 Bin-summarize-smooth-visualize A képernyő pixelszáma erősen véges Az előfeldogozást le kell csatolni a megjelenítésről Lehetővé teszi a o Párhuzamosítást o Out-of-memory adatok megjelenítését A fontosabb 1d és 2d statisztikai eszközök Alapvető forrás: H.Wickham: Bin-summarize-smooth: A framework for visualizing large data
4 Bin-summarize-smooth-visualize Bin Summarize Smooth Visualize
5 Condense Bin + summary: nagy adat dobozolt összefoglalók dobozolás (binning), majd néhány leíró statisztika bin-hez rendelése Binning: injektív leképezés Adatbázisban is végezhető
6 ASA Data Expo 09 Példa adatsor: flight data Változók o Year, Month, DayOfMonth, DayOfWeek o DepTime, SchDepTime, ArrTime, SchArrTime o ArrDelay, DepDelay o Origin, Dest o Distance
7 Fix szélességű dobozok Egy dimenzióban: Bin x origin width + 1 Általánosítás több dimenzióban m 1 = x 1 + x 2 n 1 + x 3 n 1 n x m = x 1 + ( x 2 + n 2 ( x 3 + x m ) i=1 n i Ritka adatok: jobb lenne a nagyobb szélesség o Pl. a variancia csökkentésére o Nehéz probléma Inkább simítás
8 Bin
9 Summarise Összefoglaló statisztikák típusai: o Disztributív egyetlen, adott méretű köztestár eredmények kombinálhatóak pl. count, sum o Algebrai disztributív statisztikák fix száma kell hozzá Pl. átlag: count + sum o Holisztikus bemenettel növekvő köztestár kell Pl. medián
10 Summarise Összefoglaló statisztikák típusai: o Disztributív egyetlen, adott méretű köztestár eredmények kombinálhatóak pl. count, sum o Algebrai disztributív statisztikák fix száma kell hozzá Pl. átlag: count + sum o Holisztikus bemenettel növekvő köztestár kell Pl. medián 1. Általában jól párhuzamosítható 2. Interaktív vizualizáció
11 Summarize
12 Túl kicsi a szélesség Smooth Inkább legyen gyors, mint robusztus
13 Túl kicsi a szélesség Smooth Inkább legyen gyors, mint robusztus
14 Smooth Kernel módszerek: o nemcsak szomszédok, o de súlyozás is j-edik bin közelítésénél az i-edik súlya: k i = K x j x i h h: sávszélesség o Szomszédság mérete K itt: triweight K x = 1 x 3 2 I x <1
15 Smooth Kernel módszerek: o nemcsak szomszédok, o de súlyozás is j-edik bin közelítésénél az i-edik súlya: k i = K x j x i h h: sávszélesség o Szomszédság mérete K itt: triweight K x = 1 x 3 2 I x <1
16 Automatikus sávszélesség választás?
17 Automatikus sávszélesség választás?
18 Automatikus sávszélesség választás? Pl. leave-one-out cross-validation (LOOCV) aktuális statisztika és a simított összeh. o root mean squared error o rmse = y i y 2 i /n o keressük a minimumhoz tartozó h-t
19 Két változó? Az egyik bin, a másik statisztika alapja o mean, median, std. dev. Mindkettő bin alapja, statisztika: count
20 Két változó? Az egyik bin, a másik statisztika alapja o mean, median, std. dev. Mindkettő bin alapja, statisztika: count
21 Két változó? Az egyik bin, a másik statisztika alapja o mean, median, std. dev. Mindkettő bin alapja, statisztika: count
22 Két változó? Az egyik bin, a másik statisztika alapja o mean, median, std. dev. Mindkettő bin alapja, statisztika: count
23 Két változó? Az egyik bin, a másik statisztika alapja o mean, median, std. dev. Mindkettő bin alapja, statisztika: count
24 (2,1)-d plot: heatmap/tile plot, contour plot Vizualizáció (n,m)-d plot: o small multiples (faceting) o Interakció Ábra forrása: [1]
25 Hivatkozások [1] H. Wickham: Bin-summarize-smooth: A framework for visualizing large data. (A cikk az IEEE Transactions on Visualization and Computer Graphics folyóiratban fog megjelenni.) [2] Bigvis-t bemutató meetup oldala: 042/
26 Előkészületek
27 Előkészületek
28 Válasszunk egy változót
29 Válasszunk egy változót
30 Binning; simítás
31 Binning; simítás
32 Másik változó
33 Két változó
34 Bizonytalanság: CLT, bootstrap Két változó
35
36 Hámozás
37 illetve kézivezérlés
Nagyméretű adathalmazok vizualizációja
Nagyméretű adathalmazok vizualizációja Big Data elemzési módszerek Salánki Ágnes, Kocsis Imre salanki, ikocsis@mit.bme.hu 2015.10.22. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs
RészletesebbenAdatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
RészletesebbenBiostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
Biostatisztika Bevezetés Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Az orvosi, biológiai kutatások egyik jellemzője, hogy a vizsgálatok eredményeként
RészletesebbenIntelligens adatelemzés
Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az
RészletesebbenIBM SPSS Modeler 18.2 Újdonságok
IBM SPSS Modeler 18.2 Újdonságok 1 2 Új, modern megjelenés Vizualizáció fejlesztése Újabb algoritmusok (Python, Spark alapú) View Data, t-sne, e-plot GMM, HDBSCAN, KDE, Isotonic-Regression 3 Új, modern
RészletesebbenRHadoop. Kocsis Imre Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
RHadoop Kocsis Imre ikocsis@mit.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Házi feladat Csapatépítés o 2 fő, tetszőleges kombinációkban http://goo.gl/m8yzwq
RészletesebbenStatisztikai szoftverek esszé
Statisztikai szoftverek esszé Csillag Renáta 2011. Helyzetfelmérés Egy internetszolgáltató egy havi adatforgalmát vizsgáltam. A táblázatok az előfizetők letöltési forgalmát tartalmazzák, napi bontásban,
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
RészletesebbenBevezetés az ökonometriába
Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október
RészletesebbenHallgatók 2011. Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011. Módszertani összefoglaló
Hallgatók 2011 Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011 Módszertani összefoglaló Készítette: Veroszta Zsuzsanna PhD 2012. március 1. Az adatfelvétel
RészletesebbenVERTESZ Elektronika Kft. REGINFO 2 VHR regisztráló berendezések adatfeldolgozó rendszere
VERTESZ Elektronika Kft. REGINFO 2 VHR regisztráló berendezések adatfeldolgozó rendszere (Bemutató) 1. dia www.vertesz.hu VERTESZ tevékenysége - REMAG (1997) - VHX regisztráló család (VHR10-14, VHR 20-21,
RészletesebbenGépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
RészletesebbenEsetelemzés az SPSS használatával
Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét
RészletesebbenBevezetés a Korreláció &
Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv
RészletesebbenParaméteres-, összesítı- és módosító lekérdezések
Paraméteres-, összesítı- és módosító lekérdezések Kifejezések lekérdezésekben mezıként és feltételként is megadhatjuk. A kifejezés tartalmazhat: adatot - állandót (pl. városlátogatás, 5000, Igen, 2002.07.31.)
RészletesebbenMit mond a XXI. század emberének a statisztika?
Mit mond a XXI. század emberének a statisztika? Rudas Tamás Magyar Tudományos Akadémia Társadalomtudományi Kutatóközpont Eötvös Loránd Tudományegyetem Statisztika Tanszék Nehéz a jövőbe látni Változik
RészletesebbenErdélyi Magyar Adatbank Biró A. Zoltán Zsigmond Csilla: Székelyföld számokban. Lakáskörülmények
Lakáskörülmények Ön jelenleg hol lakik? önálló lakása van szüleinél 19.3 71.9 házastársa szüleinél rokonoknál ismerősöknél lakást bérel szobát bérel egyéb 4.3 0.5 0.3 2 0.5 1.3 0 10 20 30 40 50 60 70 80
RészletesebbenKutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
RészletesebbenVizuális adatelemzés - Gyakorlat. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Vizuális adatelemzés - Gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Adatelemzés szerepe a rendszermodellezésben Lényeges paraméterek meghatározása
RészletesebbenA Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához
A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához Ellenőrizzük a projektből importált adatokat. Ha rendben vannak, akkor kattintsunk a Next gombra. Válasszuk a Create Design
RészletesebbenSzomszédság alapú ajánló rendszerek
Nagyméretű adathalmazok kezelése Szomszédság alapú ajánló rendszerek Készítette: Szabó Máté A rendelkezésre álló adatmennyiség növelésével egyre nehezebb kiválogatni a hasznos információkat Megoldás: ajánló
Részletesebben3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ
RészletesebbenVizuális adatelemzés
Vizuális adatelemzés Salánki Ágnes, Guta Gábor, PhD Dr. Pataricza András Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics
RészletesebbenDigitalizáció a vállalatirányításban - Milyen szerep jut a controllingnak? Budapest,
Digitalizáció a vállalatirányításban - Milyen szerep jut a controllingnak? Workshop controlling és teljesítménymenedzsment oktatóknak Budapest, 2019.05.10 MCE PROGRAM Idő Téma Előadó / moderátor 10.00-10.15
RészletesebbenA webanalitika változó világa 4 felvonásban
A webanalitika változó világa 4 felvonásban Arató Bence, BI Consulting Email: arato@bi.hu, Twitter: @aratob Traffic Meetup, 2013.02.06 1 Bemutatkozás 15 éves szakmai tapasztalat az üzleti intelligencia
RészletesebbenVizuális adatelemzés
Vizuális adatelemzés Rendszermodellezés 2017. Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Részletesebben8. Pontmegfeleltetések
8. Pontmegfeleltetések Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Példa: panoráma kép készítés 1. Jellemzőpontok detektálása mindkét
RészletesebbenMiskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.
Correlation & Linear Regression in SPSS Petra Petrovics PhD Student Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise
RészletesebbenSTATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
RészletesebbenMédia ajánlat június 1.-től érvényes árak
Média ajánlat 2009. június 1.-től érvényes árak Katalógus / Weboldal pillérei Utazás Turizmus Oktatás Kiállítás Színház Élménybeszámoló Útleírás Interjú Shopping Street Célcsoport (Katalógus, Weboldal)
RészletesebbenAdatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com
Adatelemzés SAS Enterprise Guide használatával Soltész Gábor solteszgabee[at]gmail.com Tartalom SAS Enterprise Guide bemutatása Kezelőfelület Adatbeolvasás Szűrés, rendezés Új változó létrehozása Elemzések
RészletesebbenAz OECD PISA adatbázis elemzése
Az OECD PISA adatbázis elemzése A program Emlékeztető a múlt hétről A PISA val kapcsolatos honlapok tartalma és az online elérhető dokumentáció A PISA adatbázisának felépítése A PISA makróinak használata,
RészletesebbenDr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
RészletesebbenThe nontrivial extraction of implicit, previously unknown, and potentially useful information from data.
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó
RészletesebbenBevezetés az ökonometriába
Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.
RészletesebbenDr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért november 15.
Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért 2018. november 15. PÉNZ a boldogság bitorlója? A jövedelemegyenlőtlenség természetes határa A boldog ember gondolata a
RészletesebbenModellek paraméterezése: regresszió, benchmarkok
Modellek paraméterezése: regresszió, benchmarkok Rendszermodellezés 2017. Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics
RészletesebbenOpenCL - The open standard for parallel programming of heterogeneous systems
OpenCL - The open standard for parallel programming of heterogeneous systems GPU-k általános számításokhoz GPU Graphics Processing Unit Képalkotás: sok, általában egyszerű és független művelet < 2006:
RészletesebbenSegítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
RészletesebbenVitamin D 3 (25-OH) mérése Elecsys 2010 automatán
Vitamin D 3 (25-OH) mérése Elecsys 2010 automatán Jauk Anna Baranya Megyei Kórház Klinikai és Mikrobiológiai Laboratórium Pécs MOLSZE Kongresszus 2009.08.29. PÉCS D vitamin A D vitamin a napsütésnek kitett
RészletesebbenElemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
RészletesebbenErdélyi Magyar Adatbank Biró A. Zoltán Zsigmond Csilla: Székelyföld számokban. Földtulajdon
Földtulajdon Van-e az Ön, illetve családja tulajdonában termőföld, erdő, rét? 41.1% igen 58.9% igen 133. ábra. Van-e az Ön, illetve családja tulajdonában termőföld, erdő, rét? Szántó Miként jutott hozzá
Részletesebbeny ij e ij BIOMETRIA let A variancia-anal telei Alapfogalmak 2. Alapfogalmak 1. ahol: 7. Előad Variancia-anal Lineáris modell ltozó bontását t jelenti.
Elmélet let BIOMETRIA 7. Előad adás Variancia-anal Lineáris modellek A magyarázat a függf ggő változó teljes heterogenitásának nak két k t részre r bontását t jelenti. A teljes heterogenitás s egyik része
RészletesebbenA leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
Részletesebben3. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba
Adatbányászat: Adatfeltárás 3. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Logók és támogatás A tananyag a TÁMOP-4.1.2-08/1/A-2009-0046 számú Kelet-magyarországi
RészletesebbenMetaanalízisek. Ferenci Tamás május 16. Ferenci Tamás Metaanalízisek május 16.
Metaanalízisek Ferenci Tamás tamas.ferenci@medstat.hu 2018. május 16. Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 1 / 18 A metaanalízis fogalma Több, ugyanarra a kérdésre vonatkozó
RészletesebbenRegresszió számítás az SPSSben
Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól
RészletesebbenDigitális technika VIMIAA02
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 HIRDETMÉNY 14. hét Kérjük a korábbi 11-12-13
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
RészletesebbenBevezető. Mi is az a GeoGebra? Tények
Bevezető Mi is az a GeoGebra? dinamikus matematikai szoftver könnyen használható csomagolásban az oktatás minden szintjén alkalmazható tanításhoz és tanuláshoz egyaránt egyesíti az interaktív geometriát,
RészletesebbenKorreláció számítás az SPSSben
Korreláció számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi
RészletesebbenJOURNAL CITATION REPORTS Tóth Szász Enikő Customer Education Specialist
JOURNAL CITATION REPORTS 2014 Tóth Szász Enikő Customer Education Specialist eniko.szasz@thomsonreuters.com InCites: Journal Citation Reports JCR több mint 11 000 folyóirat cikkeit 25 millió idézettségi
RészletesebbenModell alapú tesztelés: célok és lehetőségek
Szoftvertesztelés 2016 Konferencia Modell alapú tesztelés: célok és lehetőségek Dr. Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
RészletesebbenLehoczki Róbert. Szent István Egyetem Vadbiológiai és Vadgazdálkodási Tanszék 2103 Gödöllõ, Páter K. u. 1. email: leho@ns.vvt.gau.
Lehoczki Róbert Szent István Egyetem Vadbiológiai és Vadgazdálkodási Tanszék 2103 Gödöllõ, Páter K. u. 1. email: leho@ns.vvt.gau.hu +Spatial analyst $/. $/ 0$= É 6$, 7%(5#hD/ (7( %. 2UV]iJRV9DGJD]GiONRGiVL$GDWWiU
RészletesebbenHotdog. Médiaajánlat 2012 Érd el hatékonyan és olcsón!
Hotdog Médiaajánlat 2012 Érd el hatékonyan és olcsón! Elsődleges célcsoport másodlagos 15-18 célcsoport 18-25 évesek évesek fiatal aktív internetezők, speciális témák iránt érdeklődők (középiskolások)
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
RészletesebbenSTATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
RészletesebbenMicrosoft Access alapok
Microsoft Access alapok Képzési program Cím: 1027 Budapest, Csalogány utca 23. (a) A tanfolyam célja (a képzés során megszerezhető kompetencia) A tanfolyamot azoknak ajánljuk, akik már jártasságát szereztek
RészletesebbenMatematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
RészletesebbenThe modular mitmót system. DPY kijelző kártya C API
The modular mitmót system DPY kijelző kártya C API Dokumentációkód: -D 01.0.0.0 Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Beágyazott Információs Rendszerek
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
RészletesebbenBudapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók 2. Előadó: Hullám Gábor Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki
RészletesebbenFrissdiplomások 2011
Frissdiplomások 2011 Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a 2008-ban illetve 2010-ben végzettek körében Módszertani összefoglaló Készítette: Kiss László Veroszta Zsuzsanna PhD 2012 február
RészletesebbenInformációs Rendszerek Szakirány
Információs Rendszerek Szakirány Laki Sándor Kommunikációs Hálózatok Kutatócsoport ELTE IK - Információs Rendszerek Tanszék lakis@elte.hu http://lakis.web.elte.hu Információs Rendszerek szakirány Közös
RészletesebbenSTATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
RészletesebbenAlternatív zártláncú tartalomtovábbítás értékesítőhelyek számára
Alternatív zártláncú tartalomtovábbítás értékesítőhelyek számára António Felizardo Hungaro DigiTel Kft. 2015. okt. 8. Igény Kapacitás - Adatforgalom Alkalmazások Felhasználó Hálózat Egyik a másikat gerjeszti,
RészletesebbenCorrelation & Linear Regression in SPSS
Petra Petrovics Correlation & Linear Regression in SPSS 4 th seminar Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation
Részletesebbenc adatpontok és az ismeretlen pont közötti kovariancia vektora
1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )
RészletesebbenBevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
RészletesebbenErdélyi Magyar Adatbank Biró A. Zoltán Zsigmond Csilla: Székelyföld számokban. Társadalmi közérzet
Társadalmi közérzet Társadalmi közérzet Erdélyi Magyar Adatbank Vannak-e Önnek olyan személyes elképzelései, amelyeket a következő öt évben szeretne megvalósítani? igen 72.8% nem 27.2% igen nem 1. ábra.
RészletesebbenMetaanalízisek. Ferenci Tamás november 27.
Metaanalízisek Ferenci Tamás tamas.ferenci@medstat.hu 2017. november 27. A metaanalízis fogalma Több, ugyanarra a kérdésre vonatkozó vizsgálat eredményeinek bizonyos módszer szerinti aggregálása (Itt természetesen
RészletesebbenPárhuzamos programozási platformok
Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási
RészletesebbenMagas szintű optimalizálás
Magas szintű optimalizálás Soros kód párhuzamosítása Mennyi a várható teljesítmény növekedés? Erős skálázódás (Amdahl törvény) Mennyire lineáris a skálázódás a párhuzamosítás növelésével? S 1 P 1 P N GPGPU
RészletesebbenSztochasztikus kapcsolatok
Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.
RészletesebbenFIZIKAI KÉMIA II. házi dolgozat. Reakciókinetikai adatsor kiértékelése (numerikus mechanizmusvizsgálat)
FIZIKAI KÉMIA II. házi dolgozat Reakciókinetikai adatsor kiértékelése (numerikus mechanizmusvizsgálat) Készítette: () Kémia BSc 2008 évf. 2010 1 A numerikus mechanizmusvizsgálat feladatának megfogalmazása
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
RészletesebbenPárhuzamos programozási platformok
Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási
RészletesebbenBevezetés a programozásba. 5. Előadás: Tömbök
Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és
RészletesebbenEsetelemzések az SPSS használatával
Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e
Részletesebben7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba
RészletesebbenKutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József
Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken Dombi József Mesterséges intelligencia Klasszikus megközelítés (A*, kétszemélyes játékok, automatikus tételbizonyítás,
RészletesebbenÉlpont osztályozáson alapuló robusztus tekintetkövetés
KÉPFELDOLGOZÁS Élpont osztályozáson alapuló robusztus tekintetkövetés HELFENBEIN TAMÁS Ipari Kommunikációs Technológiai Intézet, Bay Zoltán Alkalmazott Kutatási Közalapítvány helfenbein@ikti.hu Lektorált
RészletesebbenCorrelation & Linear Regression in SPSS
Correlation & Linear Regression in SPSS Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise 1 - Correlation File / Open
RészletesebbenSAMSUNG SSM-8000 szoftvercsomag
SAMSUNG SSM-8000 szoftvercsomag A Samsung SSM-8000 szoftvercsomag a Samsung által forgalmazott IP kamerák, digitális rögzítők, hálózati rögzítők, encoderek közös grafikai felületen történő megjelenítését
RészletesebbenTANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve TÉRINFORMATIKAI ELEMZÉSEK 1.2 Azonosító (tantárgykód) BMEEOFTA-J1 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus előadás
RészletesebbenA glejes talajrétegek megjelenésének becslése térinformatikai módszerekkel. Dr. Dobos Endre, Vadnai Péter
A glejes talajrétegek megjelenésének becslése térinformatikai módszerekkel Dr. Dobos Endre, Vadnai Péter Miskolci Egyetem Műszaki Földtudományi Kar Földrajz Intézet VIII. Kárpát-medencei Környezettudományi
RészletesebbenSzoftver karbantartási lépések ellenőrzése
Szoftverellenőrzési technikák (vimim148) Szoftver karbantartási lépések ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/
RészletesebbenStatisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
RészletesebbenFájlszervezés. Adatbázisok tervezése, megvalósítása és menedzselése
Fájlszervezés Adatbázisok tervezése, megvalósítása és menedzselése Célok: gyors lekérdezés, gyors adatmódosítás, minél kisebb tárolási terület. Kezdetek Nincs általánosan legjobb optimalizáció. Az egyik
RészletesebbenDr. Dobos Endre, Vadnai Péter. Miskolci Egyetem Műszaki Földtudományi Kar Földrajz Intézet
Ideális interpolációs módszer keresése a talajvízszint ingadozás talajfejlődésre gyakorolt hatásának térinformatikai vizsgálatához Dr. Dobos Endre, Vadnai Péter Miskolci Egyetem Műszaki Földtudományi Kar
RészletesebbenUAV felmérés tapasztalatai
Mérnökgeodézia Konferencia 2018. UAV felmérés tapasztalatai Multikopteres térképezés kis méretű munkaterületeken Felmérések pontossága, megbízhatósága Budapest, 2018. 10. 27. Lennert József - Lehoczky
RészletesebbenDHA VÉDELMI RENDSZER EREDMÉNYEINEK STATISZTIKAI VIZSGÁLATA
DHA VÉDELMI RENDSZER EREDMÉNYEINEK STATISZTIKAI VIZSGÁLATA Laboratory of Cryptography and System Security (CrySyS) Híradástechnika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem (szabog@crysys.hu)
RészletesebbenSzámítógépes döntéstámogatás. Statisztikai elemzés
SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre
RészletesebbenNormál látók és színtévesztők szemkamerás vizsgálatainak statisztikai megközelítése
II. Magyar Szemmozgáskutatás Konferencia / II. Hungarian Conference on Eye Movements 2016. június 10. Kecskemét Cím: Normál látók és színtévesztők szemkamerás vizsgálatainak statisztikai megközelítése
RészletesebbenA pozicionális elit összetétele digitalizált választási jegyzőkönyvekben
A pozicionális elit összetétele digitalizált választási jegyzőkönyvekben BIG DATA KONFERENCIA 17. NOVEMBER. Mehring-Tóth Szilvia doktorjelölt Az előadás és kutatás alapfogalmai pozicionális elit fogalmi
RészletesebbenSTATISZTIKA PRÓBAZH 2005
STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk
RészletesebbenSTATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
RészletesebbenA Hat Szigma bevezetésének tapasztalatai a Siemens Erőműtechnika Kft-nél
A Hat Szigma bevezetésének tapasztalatai a Siemens Erőműtechnika Kft-nél Sebestyén László 2004. november 16. Rekord nyereséget jelentett a Siemens 2004. november 11. csütörtök, 16:10 Szeptemberben végződött
Részletesebben13. Túlélési analízis. SURVIVAL ANALYSIS Nyári Tibor Ph.D., Boda Krisztina Ph.D.
13. Túlélési analízis SURVIVAL ANALYSIS Nyári Tibor Ph.D., Boda Krisztina Ph.D. Túlélési analízis Eredetileg biológiai és orvosi alkalmazásoknál használták Egyéb alkalmazások pl. szociológia, ipar, közgazdaságtan
Részletesebben