Nagy méretű adathalmazok vizualizációja

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Nagy méretű adathalmazok vizualizációja"

Átírás

1 Nagy méretű adathalmazok vizualizációja Big Data elemzési módszerek Kocsis Imre, Salánki Ágnes ikocsis, Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

2 Aggregálunk n nagy mesterségesen tömörítünk

3 Bin-summarize-smooth-visualize A képernyő pixelszáma erősen véges Az előfeldogozást le kell csatolni a megjelenítésről Lehetővé teszi a o Párhuzamosítást o Out-of-memory adatok megjelenítését A fontosabb 1d és 2d statisztikai eszközök Alapvető forrás: H.Wickham: Bin-summarize-smooth: A framework for visualizing large data

4 Bin-summarize-smooth-visualize Bin Summarize Smooth Visualize

5 Condense Bin + summary: nagy adat dobozolt összefoglalók dobozolás (binning), majd néhány leíró statisztika bin-hez rendelése Binning: injektív leképezés Adatbázisban is végezhető

6 ASA Data Expo 09 Példa adatsor: flight data Változók o Year, Month, DayOfMonth, DayOfWeek o DepTime, SchDepTime, ArrTime, SchArrTime o ArrDelay, DepDelay o Origin, Dest o Distance

7 Fix szélességű dobozok Egy dimenzióban: Bin x origin width + 1 Általánosítás több dimenzióban m 1 = x 1 + x 2 n 1 + x 3 n 1 n x m = x 1 + ( x 2 + n 2 ( x 3 + x m ) i=1 n i Ritka adatok: jobb lenne a nagyobb szélesség o Pl. a variancia csökkentésére o Nehéz probléma Inkább simítás

8 Bin

9 Summarise Összefoglaló statisztikák típusai: o Disztributív egyetlen, adott méretű köztestár eredmények kombinálhatóak pl. count, sum o Algebrai disztributív statisztikák fix száma kell hozzá Pl. átlag: count + sum o Holisztikus bemenettel növekvő köztestár kell Pl. medián

10 Summarise Összefoglaló statisztikák típusai: o Disztributív egyetlen, adott méretű köztestár eredmények kombinálhatóak pl. count, sum o Algebrai disztributív statisztikák fix száma kell hozzá Pl. átlag: count + sum o Holisztikus bemenettel növekvő köztestár kell Pl. medián 1. Általában jól párhuzamosítható 2. Interaktív vizualizáció

11 Summarize

12 Túl kicsi a szélesség Smooth Inkább legyen gyors, mint robusztus

13 Túl kicsi a szélesség Smooth Inkább legyen gyors, mint robusztus

14 Smooth Kernel módszerek: o nemcsak szomszédok, o de súlyozás is j-edik bin közelítésénél az i-edik súlya: k i = K x j x i h h: sávszélesség o Szomszédság mérete K itt: triweight K x = 1 x 3 2 I x <1

15 Smooth Kernel módszerek: o nemcsak szomszédok, o de súlyozás is j-edik bin közelítésénél az i-edik súlya: k i = K x j x i h h: sávszélesség o Szomszédság mérete K itt: triweight K x = 1 x 3 2 I x <1

16 Automatikus sávszélesség választás?

17 Automatikus sávszélesség választás?

18 Automatikus sávszélesség választás? Pl. leave-one-out cross-validation (LOOCV) aktuális statisztika és a simított összeh. o root mean squared error o rmse = y i y 2 i /n o keressük a minimumhoz tartozó h-t

19 Két változó? Az egyik bin, a másik statisztika alapja o mean, median, std. dev. Mindkettő bin alapja, statisztika: count

20 Két változó? Az egyik bin, a másik statisztika alapja o mean, median, std. dev. Mindkettő bin alapja, statisztika: count

21 Két változó? Az egyik bin, a másik statisztika alapja o mean, median, std. dev. Mindkettő bin alapja, statisztika: count

22 Két változó? Az egyik bin, a másik statisztika alapja o mean, median, std. dev. Mindkettő bin alapja, statisztika: count

23 Két változó? Az egyik bin, a másik statisztika alapja o mean, median, std. dev. Mindkettő bin alapja, statisztika: count

24 (2,1)-d plot: heatmap/tile plot, contour plot Vizualizáció (n,m)-d plot: o small multiples (faceting) o Interakció Ábra forrása: [1]

25 Hivatkozások [1] H. Wickham: Bin-summarize-smooth: A framework for visualizing large data. (A cikk az IEEE Transactions on Visualization and Computer Graphics folyóiratban fog megjelenni.) [2] Bigvis-t bemutató meetup oldala: 042/

26 Előkészületek

27 Előkészületek

28 Válasszunk egy változót

29 Válasszunk egy változót

30 Binning; simítás

31 Binning; simítás

32 Másik változó

33 Két változó

34 Bizonytalanság: CLT, bootstrap Két változó

35

36 Hámozás

37 illetve kézivezérlés

Nagyméretű adathalmazok vizualizációja

Nagyméretű adathalmazok vizualizációja Nagyméretű adathalmazok vizualizációja Big Data elemzési módszerek Salánki Ágnes, Kocsis Imre salanki, ikocsis@mit.bme.hu 2015.10.22. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

Adatbányászati szemelvények MapReduce környezetben

Adatbányászati szemelvények MapReduce környezetben Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt

Részletesebben

Biostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Biostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Biostatisztika Bevezetés Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Az orvosi, biológiai kutatások egyik jellemzője, hogy a vizsgálatok eredményeként

Részletesebben

Intelligens adatelemzés

Intelligens adatelemzés Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az

Részletesebben

IBM SPSS Modeler 18.2 Újdonságok

IBM SPSS Modeler 18.2 Újdonságok IBM SPSS Modeler 18.2 Újdonságok 1 2 Új, modern megjelenés Vizualizáció fejlesztése Újabb algoritmusok (Python, Spark alapú) View Data, t-sne, e-plot GMM, HDBSCAN, KDE, Isotonic-Regression 3 Új, modern

Részletesebben

RHadoop. Kocsis Imre Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

RHadoop. Kocsis Imre Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék RHadoop Kocsis Imre ikocsis@mit.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Házi feladat Csapatépítés o 2 fő, tetszőleges kombinációkban http://goo.gl/m8yzwq

Részletesebben

Statisztikai szoftverek esszé

Statisztikai szoftverek esszé Statisztikai szoftverek esszé Csillag Renáta 2011. Helyzetfelmérés Egy internetszolgáltató egy havi adatforgalmát vizsgáltam. A táblázatok az előfizetők letöltési forgalmát tartalmazzák, napi bontásban,

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október

Részletesebben

Hallgatók 2011. Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011. Módszertani összefoglaló

Hallgatók 2011. Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011. Módszertani összefoglaló Hallgatók 2011 Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a felsőoktatási hallgatók körében - 2011 Módszertani összefoglaló Készítette: Veroszta Zsuzsanna PhD 2012. március 1. Az adatfelvétel

Részletesebben

VERTESZ Elektronika Kft. REGINFO 2 VHR regisztráló berendezések adatfeldolgozó rendszere

VERTESZ Elektronika Kft. REGINFO 2 VHR regisztráló berendezések adatfeldolgozó rendszere VERTESZ Elektronika Kft. REGINFO 2 VHR regisztráló berendezések adatfeldolgozó rendszere (Bemutató) 1. dia www.vertesz.hu VERTESZ tevékenysége - REMAG (1997) - VHX regisztráló család (VHR10-14, VHR 20-21,

Részletesebben

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük

Részletesebben

Esetelemzés az SPSS használatával

Esetelemzés az SPSS használatával Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét

Részletesebben

Bevezetés a Korreláció &

Bevezetés a Korreláció & Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv

Részletesebben

Paraméteres-, összesítı- és módosító lekérdezések

Paraméteres-, összesítı- és módosító lekérdezések Paraméteres-, összesítı- és módosító lekérdezések Kifejezések lekérdezésekben mezıként és feltételként is megadhatjuk. A kifejezés tartalmazhat: adatot - állandót (pl. városlátogatás, 5000, Igen, 2002.07.31.)

Részletesebben

Mit mond a XXI. század emberének a statisztika?

Mit mond a XXI. század emberének a statisztika? Mit mond a XXI. század emberének a statisztika? Rudas Tamás Magyar Tudományos Akadémia Társadalomtudományi Kutatóközpont Eötvös Loránd Tudományegyetem Statisztika Tanszék Nehéz a jövőbe látni Változik

Részletesebben

Erdélyi Magyar Adatbank Biró A. Zoltán Zsigmond Csilla: Székelyföld számokban. Lakáskörülmények

Erdélyi Magyar Adatbank Biró A. Zoltán Zsigmond Csilla: Székelyföld számokban. Lakáskörülmények Lakáskörülmények Ön jelenleg hol lakik? önálló lakása van szüleinél 19.3 71.9 házastársa szüleinél rokonoknál ismerősöknél lakást bérel szobát bérel egyéb 4.3 0.5 0.3 2 0.5 1.3 0 10 20 30 40 50 60 70 80

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Vizuális adatelemzés - Gyakorlat. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Vizuális adatelemzés - Gyakorlat. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Vizuális adatelemzés - Gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Adatelemzés szerepe a rendszermodellezésben Lényeges paraméterek meghatározása

Részletesebben

A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához

A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához A Memory Interface Generator (MIG) beállítása a Logsys Kintex-7 FPGA kártyához Ellenőrizzük a projektből importált adatokat. Ha rendben vannak, akkor kattintsunk a Next gombra. Válasszuk a Create Design

Részletesebben

Szomszédság alapú ajánló rendszerek

Szomszédság alapú ajánló rendszerek Nagyméretű adathalmazok kezelése Szomszédság alapú ajánló rendszerek Készítette: Szabó Máté A rendelkezésre álló adatmennyiség növelésével egyre nehezebb kiválogatni a hasznos információkat Megoldás: ajánló

Részletesebben

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ

Részletesebben

Vizuális adatelemzés

Vizuális adatelemzés Vizuális adatelemzés Salánki Ágnes, Guta Gábor, PhD Dr. Pataricza András Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics

Részletesebben

Digitalizáció a vállalatirányításban - Milyen szerep jut a controllingnak? Budapest,

Digitalizáció a vállalatirányításban - Milyen szerep jut a controllingnak? Budapest, Digitalizáció a vállalatirányításban - Milyen szerep jut a controllingnak? Workshop controlling és teljesítménymenedzsment oktatóknak Budapest, 2019.05.10 MCE PROGRAM Idő Téma Előadó / moderátor 10.00-10.15

Részletesebben

A webanalitika változó világa 4 felvonásban

A webanalitika változó világa 4 felvonásban A webanalitika változó világa 4 felvonásban Arató Bence, BI Consulting Email: arato@bi.hu, Twitter: @aratob Traffic Meetup, 2013.02.06 1 Bemutatkozás 15 éves szakmai tapasztalat az üzleti intelligencia

Részletesebben

Vizuális adatelemzés

Vizuális adatelemzés Vizuális adatelemzés Rendszermodellezés 2017. Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement

Részletesebben

8. Pontmegfeleltetések

8. Pontmegfeleltetések 8. Pontmegfeleltetések Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Példa: panoráma kép készítés 1. Jellemzőpontok detektálása mindkét

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics. Correlation & Linear Regression in SPSS Petra Petrovics PhD Student Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Média ajánlat június 1.-től érvényes árak

Média ajánlat június 1.-től érvényes árak Média ajánlat 2009. június 1.-től érvényes árak Katalógus / Weboldal pillérei Utazás Turizmus Oktatás Kiállítás Színház Élménybeszámoló Útleírás Interjú Shopping Street Célcsoport (Katalógus, Weboldal)

Részletesebben

Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com

Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com Adatelemzés SAS Enterprise Guide használatával Soltész Gábor solteszgabee[at]gmail.com Tartalom SAS Enterprise Guide bemutatása Kezelőfelület Adatbeolvasás Szűrés, rendezés Új változó létrehozása Elemzések

Részletesebben

Az OECD PISA adatbázis elemzése

Az OECD PISA adatbázis elemzése Az OECD PISA adatbázis elemzése A program Emlékeztető a múlt hétről A PISA val kapcsolatos honlapok tartalma és az online elérhető dokumentáció A PISA adatbázisának felépítése A PISA makróinak használata,

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.

Részletesebben

Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért november 15.

Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért november 15. Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért 2018. november 15. PÉNZ a boldogság bitorlója? A jövedelemegyenlőtlenség természetes határa A boldog ember gondolata a

Részletesebben

Modellek paraméterezése: regresszió, benchmarkok

Modellek paraméterezése: regresszió, benchmarkok Modellek paraméterezése: regresszió, benchmarkok Rendszermodellezés 2017. Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics

Részletesebben

OpenCL - The open standard for parallel programming of heterogeneous systems

OpenCL - The open standard for parallel programming of heterogeneous systems OpenCL - The open standard for parallel programming of heterogeneous systems GPU-k általános számításokhoz GPU Graphics Processing Unit Képalkotás: sok, általában egyszerű és független művelet < 2006:

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Vitamin D 3 (25-OH) mérése Elecsys 2010 automatán

Vitamin D 3 (25-OH) mérése Elecsys 2010 automatán Vitamin D 3 (25-OH) mérése Elecsys 2010 automatán Jauk Anna Baranya Megyei Kórház Klinikai és Mikrobiológiai Laboratórium Pécs MOLSZE Kongresszus 2009.08.29. PÉCS D vitamin A D vitamin a napsütésnek kitett

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak 1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok

Részletesebben

Erdélyi Magyar Adatbank Biró A. Zoltán Zsigmond Csilla: Székelyföld számokban. Földtulajdon

Erdélyi Magyar Adatbank Biró A. Zoltán Zsigmond Csilla: Székelyföld számokban. Földtulajdon Földtulajdon Van-e az Ön, illetve családja tulajdonában termőföld, erdő, rét? 41.1% igen 58.9% igen 133. ábra. Van-e az Ön, illetve családja tulajdonában termőföld, erdő, rét? Szántó Miként jutott hozzá

Részletesebben

y ij e ij BIOMETRIA let A variancia-anal telei Alapfogalmak 2. Alapfogalmak 1. ahol: 7. Előad Variancia-anal Lineáris modell ltozó bontását t jelenti.

y ij e ij BIOMETRIA let A variancia-anal telei Alapfogalmak 2. Alapfogalmak 1. ahol: 7. Előad Variancia-anal Lineáris modell ltozó bontását t jelenti. Elmélet let BIOMETRIA 7. Előad adás Variancia-anal Lineáris modellek A magyarázat a függf ggő változó teljes heterogenitásának nak két k t részre r bontását t jelenti. A teljes heterogenitás s egyik része

Részletesebben

A leíró statisztikák

A leíró statisztikák A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az

Részletesebben

3. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba

3. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba Adatbányászat: Adatfeltárás 3. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Logók és támogatás A tananyag a TÁMOP-4.1.2-08/1/A-2009-0046 számú Kelet-magyarországi

Részletesebben

Metaanalízisek. Ferenci Tamás május 16. Ferenci Tamás Metaanalízisek május 16.

Metaanalízisek. Ferenci Tamás május 16. Ferenci Tamás Metaanalízisek május 16. Metaanalízisek Ferenci Tamás tamas.ferenci@medstat.hu 2018. május 16. Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 1 / 18 A metaanalízis fogalma Több, ugyanarra a kérdésre vonatkozó

Részletesebben

Regresszió számítás az SPSSben

Regresszió számítás az SPSSben Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól

Részletesebben

Digitális technika VIMIAA02

Digitális technika VIMIAA02 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 HIRDETMÉNY 14. hét Kérjük a korábbi 11-12-13

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Bevezető. Mi is az a GeoGebra? Tények

Bevezető. Mi is az a GeoGebra? Tények Bevezető Mi is az a GeoGebra? dinamikus matematikai szoftver könnyen használható csomagolásban az oktatás minden szintjén alkalmazható tanításhoz és tanuláshoz egyaránt egyesíti az interaktív geometriát,

Részletesebben

Korreláció számítás az SPSSben

Korreláció számítás az SPSSben Korreláció számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi

Részletesebben

JOURNAL CITATION REPORTS Tóth Szász Enikő Customer Education Specialist

JOURNAL CITATION REPORTS Tóth Szász Enikő Customer Education Specialist JOURNAL CITATION REPORTS 2014 Tóth Szász Enikő Customer Education Specialist eniko.szasz@thomsonreuters.com InCites: Journal Citation Reports JCR több mint 11 000 folyóirat cikkeit 25 millió idézettségi

Részletesebben

Modell alapú tesztelés: célok és lehetőségek

Modell alapú tesztelés: célok és lehetőségek Szoftvertesztelés 2016 Konferencia Modell alapú tesztelés: célok és lehetőségek Dr. Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika

Részletesebben

Lehoczki Róbert. Szent István Egyetem Vadbiológiai és Vadgazdálkodási Tanszék 2103 Gödöllõ, Páter K. u. 1. email: leho@ns.vvt.gau.

Lehoczki Róbert. Szent István Egyetem Vadbiológiai és Vadgazdálkodási Tanszék 2103 Gödöllõ, Páter K. u. 1. email: leho@ns.vvt.gau. Lehoczki Róbert Szent István Egyetem Vadbiológiai és Vadgazdálkodási Tanszék 2103 Gödöllõ, Páter K. u. 1. email: leho@ns.vvt.gau.hu +Spatial analyst $/. $/ 0$= É 6$, 7%(5#hD/ (7( %. 2UV]iJRV9DGJD]GiONRGiVL$GDWWiU

Részletesebben

Hotdog. Médiaajánlat 2012 Érd el hatékonyan és olcsón!

Hotdog. Médiaajánlat 2012 Érd el hatékonyan és olcsón! Hotdog Médiaajánlat 2012 Érd el hatékonyan és olcsón! Elsődleges célcsoport másodlagos 15-18 célcsoport 18-25 évesek évesek fiatal aktív internetezők, speciális témák iránt érdeklődők (középiskolások)

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Microsoft Access alapok

Microsoft Access alapok Microsoft Access alapok Képzési program Cím: 1027 Budapest, Csalogány utca 23. (a) A tanfolyam célja (a képzés során megszerezhető kompetencia) A tanfolyamot azoknak ajánljuk, akik már jártasságát szereztek

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

The modular mitmót system. DPY kijelző kártya C API

The modular mitmót system. DPY kijelző kártya C API The modular mitmót system DPY kijelző kártya C API Dokumentációkód: -D 01.0.0.0 Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Beágyazott Információs Rendszerek

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók 2. Előadó: Hullám Gábor Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki

Részletesebben

Frissdiplomások 2011

Frissdiplomások 2011 Frissdiplomások 2011 Diplomás Pályakövetési Rendszer Intézményi adatfelvétel a 2008-ban illetve 2010-ben végzettek körében Módszertani összefoglaló Készítette: Kiss László Veroszta Zsuzsanna PhD 2012 február

Részletesebben

Információs Rendszerek Szakirány

Információs Rendszerek Szakirány Információs Rendszerek Szakirány Laki Sándor Kommunikációs Hálózatok Kutatócsoport ELTE IK - Információs Rendszerek Tanszék lakis@elte.hu http://lakis.web.elte.hu Információs Rendszerek szakirány Közös

Részletesebben

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687) STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

Részletesebben

Alternatív zártláncú tartalomtovábbítás értékesítőhelyek számára

Alternatív zártláncú tartalomtovábbítás értékesítőhelyek számára Alternatív zártláncú tartalomtovábbítás értékesítőhelyek számára António Felizardo Hungaro DigiTel Kft. 2015. okt. 8. Igény Kapacitás - Adatforgalom Alkalmazások Felhasználó Hálózat Egyik a másikat gerjeszti,

Részletesebben

Correlation & Linear Regression in SPSS

Correlation & Linear Regression in SPSS Petra Petrovics Correlation & Linear Regression in SPSS 4 th seminar Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation

Részletesebben

c adatpontok és az ismeretlen pont közötti kovariancia vektora

c adatpontok és az ismeretlen pont közötti kovariancia vektora 1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

Erdélyi Magyar Adatbank Biró A. Zoltán Zsigmond Csilla: Székelyföld számokban. Társadalmi közérzet

Erdélyi Magyar Adatbank Biró A. Zoltán Zsigmond Csilla: Székelyföld számokban. Társadalmi közérzet Társadalmi közérzet Társadalmi közérzet Erdélyi Magyar Adatbank Vannak-e Önnek olyan személyes elképzelései, amelyeket a következő öt évben szeretne megvalósítani? igen 72.8% nem 27.2% igen nem 1. ábra.

Részletesebben

Metaanalízisek. Ferenci Tamás november 27.

Metaanalízisek. Ferenci Tamás november 27. Metaanalízisek Ferenci Tamás tamas.ferenci@medstat.hu 2017. november 27. A metaanalízis fogalma Több, ugyanarra a kérdésre vonatkozó vizsgálat eredményeinek bizonyos módszer szerinti aggregálása (Itt természetesen

Részletesebben

Párhuzamos programozási platformok

Párhuzamos programozási platformok Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási

Részletesebben

Magas szintű optimalizálás

Magas szintű optimalizálás Magas szintű optimalizálás Soros kód párhuzamosítása Mennyi a várható teljesítmény növekedés? Erős skálázódás (Amdahl törvény) Mennyire lineáris a skálázódás a párhuzamosítás növelésével? S 1 P 1 P N GPGPU

Részletesebben

Sztochasztikus kapcsolatok

Sztochasztikus kapcsolatok Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.

Részletesebben

FIZIKAI KÉMIA II. házi dolgozat. Reakciókinetikai adatsor kiértékelése (numerikus mechanizmusvizsgálat)

FIZIKAI KÉMIA II. házi dolgozat. Reakciókinetikai adatsor kiértékelése (numerikus mechanizmusvizsgálat) FIZIKAI KÉMIA II. házi dolgozat Reakciókinetikai adatsor kiértékelése (numerikus mechanizmusvizsgálat) Készítette: () Kémia BSc 2008 évf. 2010 1 A numerikus mechanizmusvizsgálat feladatának megfogalmazása

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Párhuzamos programozási platformok

Párhuzamos programozási platformok Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási

Részletesebben

Bevezetés a programozásba. 5. Előadás: Tömbök

Bevezetés a programozásba. 5. Előadás: Tömbök Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és

Részletesebben

Esetelemzések az SPSS használatával

Esetelemzések az SPSS használatával Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e

Részletesebben

7. Régió alapú szegmentálás

7. Régió alapú szegmentálás Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba

Részletesebben

Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József

Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken Dombi József Mesterséges intelligencia Klasszikus megközelítés (A*, kétszemélyes játékok, automatikus tételbizonyítás,

Részletesebben

Élpont osztályozáson alapuló robusztus tekintetkövetés

Élpont osztályozáson alapuló robusztus tekintetkövetés KÉPFELDOLGOZÁS Élpont osztályozáson alapuló robusztus tekintetkövetés HELFENBEIN TAMÁS Ipari Kommunikációs Technológiai Intézet, Bay Zoltán Alkalmazott Kutatási Közalapítvány helfenbein@ikti.hu Lektorált

Részletesebben

Correlation & Linear Regression in SPSS

Correlation & Linear Regression in SPSS Correlation & Linear Regression in SPSS Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise 1 - Correlation File / Open

Részletesebben

SAMSUNG SSM-8000 szoftvercsomag

SAMSUNG SSM-8000 szoftvercsomag SAMSUNG SSM-8000 szoftvercsomag A Samsung SSM-8000 szoftvercsomag a Samsung által forgalmazott IP kamerák, digitális rögzítők, hálózati rögzítők, encoderek közös grafikai felületen történő megjelenítését

Részletesebben

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve TÉRINFORMATIKAI ELEMZÉSEK 1.2 Azonosító (tantárgykód) BMEEOFTA-J1 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus előadás

Részletesebben

A glejes talajrétegek megjelenésének becslése térinformatikai módszerekkel. Dr. Dobos Endre, Vadnai Péter

A glejes talajrétegek megjelenésének becslése térinformatikai módszerekkel. Dr. Dobos Endre, Vadnai Péter A glejes talajrétegek megjelenésének becslése térinformatikai módszerekkel Dr. Dobos Endre, Vadnai Péter Miskolci Egyetem Műszaki Földtudományi Kar Földrajz Intézet VIII. Kárpát-medencei Környezettudományi

Részletesebben

Szoftver karbantartási lépések ellenőrzése

Szoftver karbantartási lépések ellenőrzése Szoftverellenőrzési technikák (vimim148) Szoftver karbantartási lépések ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások

Részletesebben

Fájlszervezés. Adatbázisok tervezése, megvalósítása és menedzselése

Fájlszervezés. Adatbázisok tervezése, megvalósítása és menedzselése Fájlszervezés Adatbázisok tervezése, megvalósítása és menedzselése Célok: gyors lekérdezés, gyors adatmódosítás, minél kisebb tárolási terület. Kezdetek Nincs általánosan legjobb optimalizáció. Az egyik

Részletesebben

Dr. Dobos Endre, Vadnai Péter. Miskolci Egyetem Műszaki Földtudományi Kar Földrajz Intézet

Dr. Dobos Endre, Vadnai Péter. Miskolci Egyetem Műszaki Földtudományi Kar Földrajz Intézet Ideális interpolációs módszer keresése a talajvízszint ingadozás talajfejlődésre gyakorolt hatásának térinformatikai vizsgálatához Dr. Dobos Endre, Vadnai Péter Miskolci Egyetem Műszaki Földtudományi Kar

Részletesebben

UAV felmérés tapasztalatai

UAV felmérés tapasztalatai Mérnökgeodézia Konferencia 2018. UAV felmérés tapasztalatai Multikopteres térképezés kis méretű munkaterületeken Felmérések pontossága, megbízhatósága Budapest, 2018. 10. 27. Lennert József - Lehoczky

Részletesebben

DHA VÉDELMI RENDSZER EREDMÉNYEINEK STATISZTIKAI VIZSGÁLATA

DHA VÉDELMI RENDSZER EREDMÉNYEINEK STATISZTIKAI VIZSGÁLATA DHA VÉDELMI RENDSZER EREDMÉNYEINEK STATISZTIKAI VIZSGÁLATA Laboratory of Cryptography and System Security (CrySyS) Híradástechnika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem (szabog@crysys.hu)

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Normál látók és színtévesztők szemkamerás vizsgálatainak statisztikai megközelítése

Normál látók és színtévesztők szemkamerás vizsgálatainak statisztikai megközelítése II. Magyar Szemmozgáskutatás Konferencia / II. Hungarian Conference on Eye Movements 2016. június 10. Kecskemét Cím: Normál látók és színtévesztők szemkamerás vizsgálatainak statisztikai megközelítése

Részletesebben

A pozicionális elit összetétele digitalizált választási jegyzőkönyvekben

A pozicionális elit összetétele digitalizált választási jegyzőkönyvekben A pozicionális elit összetétele digitalizált választási jegyzőkönyvekben BIG DATA KONFERENCIA 17. NOVEMBER. Mehring-Tóth Szilvia doktorjelölt Az előadás és kutatás alapfogalmai pozicionális elit fogalmi

Részletesebben

STATISZTIKA PRÓBAZH 2005

STATISZTIKA PRÓBAZH 2005 STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

A Hat Szigma bevezetésének tapasztalatai a Siemens Erőműtechnika Kft-nél

A Hat Szigma bevezetésének tapasztalatai a Siemens Erőműtechnika Kft-nél A Hat Szigma bevezetésének tapasztalatai a Siemens Erőműtechnika Kft-nél Sebestyén László 2004. november 16. Rekord nyereséget jelentett a Siemens 2004. november 11. csütörtök, 16:10 Szeptemberben végződött

Részletesebben

13. Túlélési analízis. SURVIVAL ANALYSIS Nyári Tibor Ph.D., Boda Krisztina Ph.D.

13. Túlélési analízis. SURVIVAL ANALYSIS Nyári Tibor Ph.D., Boda Krisztina Ph.D. 13. Túlélési analízis SURVIVAL ANALYSIS Nyári Tibor Ph.D., Boda Krisztina Ph.D. Túlélési analízis Eredetileg biológiai és orvosi alkalmazásoknál használták Egyéb alkalmazások pl. szociológia, ipar, közgazdaságtan

Részletesebben