Szomszédság alapú ajánló rendszerek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Szomszédság alapú ajánló rendszerek"

Átírás

1 Nagyméretű adathalmazok kezelése Szomszédság alapú ajánló rendszerek Készítette: Szabó Máté

2 A rendelkezésre álló adatmennyiség növelésével egyre nehezebb kiválogatni a hasznos információkat Megoldás: ajánló rendszer Olyan szoftver ami megkísérli előre jelezni, hogyan fog egy felhasználó értékelni egy eddig még nem ismert terméket.

3 Az ajánló rendszerek céljai Több termék eladása Többféle termék eladása Felhasználó elégedettségének növelése A felhasználó igényeinek feltérképezése

4 Elvárások Stabilitás Hatékonyság Pontosság Novelty Serendipity

5 Felhasználói visszajelzések Implicit A felhasználó normális tevékenységének rögzítése Explicit Unáris Bináris Skaláris

6 A probléma formálisan U - felhasználó I - árucikk R - a rendszer által már ismert értékelések S - a lehetséges érékelések értékkészlete Ekkor a feladat: az függvény becslése

7 Validálás Mean Absolute Error Root Mean Squared Error

8 Validálás Precision Recall

9 Információszűrő rendszer Ajánló rendszer Együttműködő Tartalom alapú Szomszédsági Hibrid Modell alapú

10 Szomszédság alapú ajánló rendszer User alapú Item alapú a b c d e A B C D 5 2 3? 4 E

11 User-based rating prediction Egyszerű Súlyozott Súlyozott és normalizált

12 User-based classification Súlyozott Normalizált és súlyozott

13 Különbség a két módszer között Ha az értékelések folytonosak, akkor inkább az előbbit, ha diszkrétek, akkor az utóbbit alkalmazzuk Gondoljunk arra az esetre ha egy terméket mindenki vagy 1 vagy 10 pontosra értékelt

14 Item-based rating prediction Súlyozott és normalizált

15 Item-based classification Súlyozott és normalizált

16 Az hogy item vagy user alapú megoldást választunk, alapvetően a felhasználók és az árucikkek számának arányától függ a b c d e A B C Ne feledkezzünk meg a tár- és számításigényről sem

17 Szomszédság alapú ajánló rendszerek általános működése Normalizálás Hasonlósági súlyok kiszámítása Szomszédok kiválasztása

18 Normalizálás A felhasználók azonos skálán értékelnek, de nem azonos szempontok szerint Az egyes értékeléseket nem lehet összevetni Normalizálni kell a b c d A B

19 Normalizálás Mean centering a b c d A 0,25 0,25 0,25-0,75 B 0,25-0,75-0,75 1,25 Z-score normalization a b c d A 0,5 0,5 0,5-1,5 B 0,26-0,78-0,78 1,31

20 Hasonlósági súlyok kiszámítása Koszinusz hasonlóság Pearson korreláció Még sok más

21 Hasonlósági súlyok kiszámítása Mean squared difference Spearman rank korreláció

22 Szomszédok kiválasztása Nem gazdaságos minden értéket eltárolni, valamilyen előszűrést kell alkalmazni Top-N filtering Threshold filtering Negative filtering A fentiek keveréke

23 Szomszédok kiválasztása k MSD SRC PC Christian Desrosiers, George Karypis - A comprehensive survey of neighborhood-based recommendation methods

24 A szomszédsági alapú rendszerek gyengéi A felhasználók nem feltétlenül adnak értékelést ugyanazokra a termékekre Gyakorlatban az értékelés eloszlása nem egyenletes Sok termékhez nincs, vagy nem elég az értékelés (pl. újonnan a rendszerhez adott tétel)

25 Lehetséges megoldások Dimenzió csökkentés Gráf alapú megoldások Legrövidebb út Véletlen bolyongás

26 A szomszédság alapú módszerek előnyei Egyszerűség Hatékonyság Igazolhatóság Stabilitás Véletlenszerű felfedezés

27 Köszönöm a figyelmet!

Nagyméretű adathalmazok kezelése Ajánló rendszerek

Nagyméretű adathalmazok kezelése Ajánló rendszerek Nagyméretű adathalmazok kezelése Gubek Andrea BME SZIT 1 Tartalom alapú ajánló rendszerek Együttműködés alapú ajánló rendszerek 2 The Movie Genome és a Jinni Movie Genome Gubek Andrea (BME SZIT) Elosztott

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Közösség detektálás gráfokban

Közösség detektálás gráfokban Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a

Részletesebben

Hash-alapú keresések

Hash-alapú keresések 1/16 az információ-visszakeresésben Babeş Bolyai Tudományegyetem Magyar Matematika és Informatika Intézet A Magyar Tudomány Napja Erdélyben Kolozsvár, 2012 2/16 Tartalom Információ-visszakeresés Információ-visszakeresés

Részletesebben

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük

Részletesebben

Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?

Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk? Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

Betekintés a komplex hálózatok világába

Betekintés a komplex hálózatok világába Betekintés a komplex hálózatok világába Dr. Varga Imre Debreceni Egyetem Informatikai Kar EFOP-3.6.1-16-2016-00022 Egyszerű hálózatok Grafit kristály Árpád házi uralkodók családfája LAN hálózat Komplex

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

BitTorrent felhasználók értékeléseinek következtetése a viselkedésük alapján. Hegedűs István

BitTorrent felhasználók értékeléseinek következtetése a viselkedésük alapján. Hegedűs István BitTorrent felhasználók értékeléseinek következtetése a viselkedésük alapján Hegedűs István Ajánló rendszerek Napjainkban egyre népszerűbb az ajánló rendszerek alkalmazása A cégeket is hasznos információval

Részletesebben

Feltesszük, hogy a mintaelemek között nincs két azonos. ha X n a rendezett mintában az R n -ik. ha n 1 n 2

Feltesszük, hogy a mintaelemek között nincs két azonos. ha X n a rendezett mintában az R n -ik. ha n 1 n 2 Kabos: Ordinális változók Hipotézisvizsgálat-1 Minta: X 1, X 2,..., X N EVM (=egyszerű véletlen minta) X-re Feltesszük, hogy a mintaelemek között nincs két azonos. Rendezett minta: X (1), X (2),..., X

Részletesebben

STATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm)

STATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm) Normális eloszlás sűrűségfüggvénye STATISZTIKA 9. gyakorlat Konfidencia intervallumok f σ π ( µ ) σ ( ) = e /56 p 45% 4% 35% 3% 5% % 5% % 5% Normális eloszlás sűrűségfüggvénye % 46 47 48 49 5 5 5 53 54

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

Adaptív dinamikus szegmentálás idősorok indexeléséhez

Adaptív dinamikus szegmentálás idősorok indexeléséhez Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november

Részletesebben

Szalai Péter. April 17, Szalai Péter April 17, / 36

Szalai Péter. April 17, Szalai Péter April 17, / 36 Szociális hálók Szalai Péter April 17, 2015 Szalai Péter April 17, 2015 1 / 36 Miről lesz szó? 1 Megfigyelések Kis világ Power-law Klaszterezhetőség 2 Modellek Célok Erdős-Rényi Watts-Strogatz Barabási

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

IV.7 MÓDSZER KIDOLGOZÁSA FELHASZNÁLÓI ADATOK VÉDELMÉRE MOBIL ALKALMAZÁSOK ESETÉN

IV.7 MÓDSZER KIDOLGOZÁSA FELHASZNÁLÓI ADATOK VÉDELMÉRE MOBIL ALKALMAZÁSOK ESETÉN infokommunikációs technológiák IV.7 MÓDSZER KIDOLGOZÁSA FELHASZNÁLÓI ADATOK VÉDELMÉRE MOBIL ALKALMAZÁSOK ESETÉN ANTAL Margit, SZABÓ László Zsolt 2015, január 8. BEVEZETÉS A KUTATÁS CÉLJA A felhasználó

Részletesebben

A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben

A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben Faragó István 1, Havasi Ágnes 1, Zahari Zlatev 2 1 ELTE Alkalmazott Analízis és Számításmatematikai Tanszék és MTA-ELTE Numerikus Analízis

Részletesebben

Dr. habil. Maróti György

Dr. habil. Maróti György infokommunikációs technológiák III.8. MÓDSZER KIDOLGOZÁSA ALGORITMUSOK ÁTÜLTETÉSÉRE KIS SZÁMÍTÁSI TELJESÍTMÉNYŰ ESZKÖZÖKBŐL ÁLLÓ NÉPES HETEROGÉN INFRASTRUKTÚRA Dr. habil. Maróti György maroti@dcs.uni-pannon.hu

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Törtszámok bináris ábrázolása, Az információ értelmezése és mérése http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF NIK

Részletesebben

Regressziós vizsgálatok

Regressziós vizsgálatok Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga

Részletesebben

Ajánló rendszerek áttekintés

Ajánló rendszerek áttekintés Ajánló rendszerek áttekintés Hegedűs István, Ormándi Róbert Ajánló rendszerek áttekintés p. 1/50 Ajánlási feladat definíciója Adott: Ajánló rendszerek áttekintés p. 2/50 Ajánlási feladat definíciója Adott:

Részletesebben

Engedy Balázs. Nagy adathalmazok kezelése

Engedy Balázs. Nagy adathalmazok kezelése Ajánlórendszerek Engedy Balázs Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudomány szakirány Nagy adathalmazok kezelése című tárgy előadása 2010. április 21. Engedy Balázs Ajánlórendszerek

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

Metaanalízisek. Ferenci Tamás május 16. Ferenci Tamás Metaanalízisek május 16.

Metaanalízisek. Ferenci Tamás május 16. Ferenci Tamás Metaanalízisek május 16. Metaanalízisek Ferenci Tamás tamas.ferenci@medstat.hu 2018. május 16. Ferenci Tamás tamas.ferenci@medstat.hu Metaanalízisek 2018. május 16. 1 / 18 A metaanalízis fogalma Több, ugyanarra a kérdésre vonatkozó

Részletesebben

Deep Learning a gyakorlatban Python és LUA alapon Felhasználói viselkedés modellezés

Deep Learning a gyakorlatban Python és LUA alapon Felhasználói viselkedés modellezés Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Felhasználói viselkedés modellezés http://smartlab.tmit.bme.hu Modellezés célja A telefon szenzoradatai alapján egy általános viselkedési

Részletesebben

A leíró statisztikák

A leíró statisztikák A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Diagnosztika és előrejelzés

Diagnosztika és előrejelzés 2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának

Részletesebben

Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária 2006

Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária 2006 A Network-Elemzés - és felhasználása általános iskolai osztályok társas szerkezetének és a szerveződésért felelős személyes tulajdonságok feltárására Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária

Részletesebben

Egy újabb látószög - feladat

Egy újabb látószög - feladat 1 Egy újabb látószög - feladat A feladat Adott az O középpontú, R sugarú körön az α szöggel jellemzett P pont. Határozzuk meg, hogy mekkora ϑ szög alatt látszik a P pontból a vízszintes átmérő - egyenes

Részletesebben

Maradandó digitális transzformációk Oracle HOUG Konferencia 2018

Maradandó digitális transzformációk Oracle HOUG Konferencia 2018 2018.04.09 Maradandó digitális transzformációk Oracle HOUG Konferencia 2018 www.pwc.hu Megkérdeztük a vezérigazgatókat hogyan látják vállalatukat, iparágukat Világszerte 1293 7 IPARÁGBÓL vett részt a felmérésen

Részletesebben

Tudásmenedzsment szerepe a minőségkultúra fejlesztésében

Tudásmenedzsment szerepe a minőségkultúra fejlesztésében Tudásmenedzsment szerepe a minőségkultúra fejlesztésében Prof. dr. habil Bencsik Andrea egyetemi tanár Széchenyi István Egyetem Győr; Selye János Egyetem Komarno Szlovákia ISOFÓRUM XXIV. NMK Amiről szó

Részletesebben

1 2 3 4 5 Meta adat: bármilyen adat, ami a tartalomhoz kapcsolódik. Pl. filmek esetén a rendező, a főszereplő, a műfaj. Tranzakciós adat: felhasználó és az elemek közötti interakció során keletkező adat.

Részletesebben

ÜGYVITELI UTASÍTÁS A PANASZOK ÉS VISSZAJELZÉSEK KEZELÉSÉRŐL ÉS A FELHASZNÁLÓI ELÉGEDETTSÉG VIZSGÁLATÁNAK RENDJÉRŐL

ÜGYVITELI UTASÍTÁS A PANASZOK ÉS VISSZAJELZÉSEK KEZELÉSÉRŐL ÉS A FELHASZNÁLÓI ELÉGEDETTSÉG VIZSGÁLATÁNAK RENDJÉRŐL KIEMELKEDŐEN KÖZHASZNÚ FEHÉR BOT ALAPÍTVÁNY 4087 HAJDÚDOROG, NÁNÁSI U. 4. ÜGYVITELI UTASÍTÁS A PANASZOK ÉS VISSZAJELZÉSEK KEZELÉSÉRŐL ÉS A FELHASZNÁLÓI ELÉGEDETTSÉG VIZSGÁLATÁNAK RENDJÉRŐL Ezen utasítás

Részletesebben

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)

Részletesebben

MUNKAGAZDASÁGTAN. Készítette: Köllő János. Szakmai felelős: Köllő János. 2011. január

MUNKAGAZDASÁGTAN. Készítette: Köllő János. Szakmai felelős: Köllő János. 2011. január MUNKAGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

IBM SPSS Modeler 18.2 Újdonságok

IBM SPSS Modeler 18.2 Újdonságok IBM SPSS Modeler 18.2 Újdonságok 1 2 Új, modern megjelenés Vizualizáció fejlesztése Újabb algoritmusok (Python, Spark alapú) View Data, t-sne, e-plot GMM, HDBSCAN, KDE, Isotonic-Regression 3 Új, modern

Részletesebben

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART ))

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Döntési fák (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Rekurzív osztályozó módszer, Klasszifikációs és regressziós fák folytonos, kategóriás, illetve túlélés adatok

Részletesebben

A HŐMÉRSÉKLET ÉS A CSAPADÉK HATÁSA A BÜKK NÖVEKEDÉSÉRE

A HŐMÉRSÉKLET ÉS A CSAPADÉK HATÁSA A BÜKK NÖVEKEDÉSÉRE A HŐMÉRSÉKLET ÉS A CSAPADÉK HATÁSA A BÜKK NÖVEKEDÉSÉRE Manninger M., Edelényi M., Jereb L., Pödör Z. VII. Erdő-klíma konferencia Debrecen, 2012. augusztus 30-31. Vázlat Célkitűzések Adatok Statisztikai,

Részletesebben

Bevezetés a Korreláció &

Bevezetés a Korreláció & Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv

Részletesebben

A villamos energia ellátás javítása érdekében tett intézkedések az ELMŰ-ÉMÁSZ Társaságcsoportnál

A villamos energia ellátás javítása érdekében tett intézkedések az ELMŰ-ÉMÁSZ Társaságcsoportnál A villamos energia ellátás javítása érdekében tett intézkedések az ELMŰ-ÉMÁSZ Társaságcsoportnál Igények és lehetőségek új egyensúlya 61. MEE Vándorgyűlés Debrecen 2014.09.10-12 Csank András 1. OLDAL Igények

Részletesebben

Diszkriminancia-analízis

Diszkriminancia-analízis Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független

Részletesebben

Informatikai fejlesztések a hatékonyság növelése érdekében. Richter Gedeon Nyrt. Dr. Benkő Béla

Informatikai fejlesztések a hatékonyság növelése érdekében. Richter Gedeon Nyrt. Dr. Benkő Béla Informatikai fejlesztések a hatékonyság növelése érdekében Richter Gedeon Nyrt. Dr. Benkő Béla Gondolatmenet Problémák célkitűzés megoldás eredmény Nagykereskedelmi raktár (1999) Export disztribúció (2005)

Részletesebben

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben

Nagy méretű adathalmazok vizualizációja

Nagy méretű adathalmazok vizualizációja Nagy méretű adathalmazok vizualizációja Big Data elemzési módszerek Kocsis Imre, Salánki Ágnes ikocsis, salanki@mit.bme.hu 2014.10.15. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

Z Generáció - MeGeneráció

Z Generáció - MeGeneráció Z Generáció - MeGeneráció Kökönyei Gyöngyi 1, Urbán Róbert 1, Örkényi Ágota 2,3, Költő András 2,3, Zsiros Emese 2, Kertész Krisztián 2, Németh Ágnes 2, Demetrovics Zsolt 1 1 ELTE Pszichológiai Intézet

Részletesebben

Nyilvántartási Rendszer

Nyilvántartási Rendszer Nyilvántartási Rendszer Veszprém Megyei Levéltár 2011.04.14. Készítette: Juszt Miklós Honnan indultunk? Rövid történeti áttekintés 2003 2007 2008-2011 Access alapú raktári topográfia Adatbázis optimalizálás,

Részletesebben

Eredmények kiértékelése

Eredmények kiértékelése Eredmények kiértékelése Nagyméretű adathalmazok kezelése (2010/2011/2) Katus Kristóf, hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tanszék 2011. március

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Korreláció számítás az SPSSben

Korreláció számítás az SPSSben Korreláció számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

ACTA CAROLUS ROBERTUS

ACTA CAROLUS ROBERTUS ACTA CAROLUS ROBERTUS Károly Róbert Főiskola tudományos közleményei Alapítva: 2011 3 (1) ACTA CAROLUS ROBERTUS 3 (1) Informatika szekció SZÖVEGOSZTÁLYOZÁSI MÓDSZEREK A WEKA ADATBÁNYÁSZATI SZOFTVER SEGÍTSÉGÉVEL

Részletesebben

Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver):

Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver): B Motiváció B Motiváció Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver): Helyesség Felhasználóbarátság Hatékonyság Modern számítógép-rendszerek: Egyértelmű hatékonyság (például hálózati hatékonyság)

Részletesebben

Bevásárlóközpontok energiafogyasztási szokásai

Bevásárlóközpontok energiafogyasztási szokásai Bevásárlóközpontok energiafogyasztási szokásai Bessenyei Tamás tamas.bessenyei@powerconsult.hu 2009.11.17. Az épületek, mint villamos fogyasztók 1 Bevásárlóközpontok energiafogyasztása Az épületek üzemeltetési

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs

Részletesebben

Mátrixhatvány-vektor szorzatok hatékony számítása

Mátrixhatvány-vektor szorzatok hatékony számítása Mátrixhatvány-vektor szorzatok hatékony számítása Izsák Ferenc ELTE TTK, Alkalmazott Analízis és Számításmatematikai Tanszék & ELTE-MTA NumNet Kutatócsoport munkatárs: Szekeres Béla János Alkalmazott Analízis

Részletesebben

Elemszám becslés. Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet

Elemszám becslés. Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet Elemszám becslés Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet Miért fontos? Gazdasági okok: Túl kevés elem esetén nem tudjuk kimutatni a kívánt hatást Túl kevés elem esetén olyan eredmény

Részletesebben

Centrális határeloszlás-tétel

Centrális határeloszlás-tétel 13. fejezet Centrális határeloszlás-tétel A valószínűségszámítás legfontosabb állításai azok, amelyek független valószínűségi változók normalizált összegeire vonatkoznak. A legfontosabb ilyen tételek a

Részletesebben

A képzett szakemberekért. SZFP II. Hazai Peer Review 2009

A képzett szakemberekért. SZFP II. Hazai Peer Review 2009 A képzett szakemberekért SZFP II. Hazai Peer Review 2009 A külsk lső értékelés s módszertana m III.1.. előad adás Szakképz pzési Önértékelési Modell ADOTTSÁGOK EREDMÉNYEK Emberi erőforrások Munkatársi

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Steps Towards an Ontology Based Learning Environment. Anita Pintér Corvinno Technologia Transzfer Kft apinter@corvinno.hu

Steps Towards an Ontology Based Learning Environment. Anita Pintér Corvinno Technologia Transzfer Kft apinter@corvinno.hu Steps Towards an Ontology Based Learning Environment Anita Pintér Corvinno Technologia Transzfer Kft apinter@corvinno.hu Ontológia alapú elektronikus tanulási környezet megteremtése Anita Pintér Corvinno

Részletesebben

Mi a karbantartás feladata. Karbantartás-fejlesztés korszerűen Nyílt képzés 2014.05.15. Fekete Gábor, A.A. Stádium Kft.

Mi a karbantartás feladata. Karbantartás-fejlesztés korszerűen Nyílt képzés 2014.05.15. Fekete Gábor, A.A. Stádium Kft. Mi a karbantartás feladata Karbantartás-fejlesztés korszerűen Nyílt képzés 2014.05.15. Fekete Gábor, A.A. Stádium Kft. A karbantartás hagyományos értelmezése A karbantartás feladata a berendezések képességeinek

Részletesebben

Diszkrét idejű felújítási paradoxon

Diszkrét idejű felújítási paradoxon Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N

Részletesebben

HOGYAN JELEZHETŐ ELŐRE A

HOGYAN JELEZHETŐ ELŐRE A HOGYAN JELEZHETŐ ELŐRE A MUNKATÁRSAK BEVÁLÁSA? A BELSŐ ÉRTÉKELŐ KÖZPONT MÓDSZEREI ÉS S BEVÁLÁSVIZSG SVIZSGÁLATA Budapest, 2010.03.25. PSZE HR Szakmai nap Előadó: Besze Judit BÉK módszergazda. 1/28 BEVÁLÁS

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

GEOSTATISZTIKA. Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány. 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

GEOSTATISZTIKA. Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány. 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ GEOSTATISZTIKA Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet

Részletesebben

8. Pontmegfeleltetések

8. Pontmegfeleltetések 8. Pontmegfeleltetések Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Példa: panoráma kép készítés 1. Jellemzőpontok detektálása mindkét

Részletesebben

Gráfalgoritmusok ismétlés ősz

Gráfalgoritmusok ismétlés ősz Gráfalgoritmusok ismétlés 2017. ősz Gráfok ábrázolása Egy G = (V, E) gráf ábrázolására alapvetően két módszert szoktak használni: szomszédsági listákat, illetve szomszédsági mátrixot. A G = (V, E) gráf

Részletesebben

nem kezelt 1.29, 1.60, 2.27, 1.31, 1.81, 2.21 kezelt 0.96, 1.14, 1.59

nem kezelt 1.29, 1.60, 2.27, 1.31, 1.81, 2.21 kezelt 0.96, 1.14, 1.59 1. feladat Egy szer rákellenes hatását vizsgálták úgy, hogy 9 egér testébe rákos sejteket juttattak be. Közülük 3 véletlenszerűen kiválasztott egérnek kezelésként beadták a vizsgálandó szert, 6-nak pedig

Részletesebben

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen

Részletesebben

Populációbecslések és monitoring 1. gyakorlat. Elvonásos módszerek az adatokat pl. a vadászok is gyűjthetik, olcsóbb

Populációbecslések és monitoring 1. gyakorlat. Elvonásos módszerek az adatokat pl. a vadászok is gyűjthetik, olcsóbb Populációbecslések és monitoring 1. gyakorlat Nem minden állat látható fogásos módszerek Elvonásos módszerek az adatokat pl. a vadászok is gyűjthetik, olcsóbb 1. Egyszerű arányváltozás - zárt populáció,

Részletesebben

Gépi tanulás a Rapidminer programmal. Stubendek Attila

Gépi tanulás a Rapidminer programmal. Stubendek Attila Gépi tanulás a Rapidminer programmal Stubendek Attila Rapidminer letöltése Google: download rapidminer Rendszer kiválasztása (iskolai gépeken Other Systems java) Kicsomagolás lib/rapidminer.jar elindítása

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Szerven belül egyenetlen dóziseloszlások és az LNT-modell

Szerven belül egyenetlen dóziseloszlások és az LNT-modell Szerven belül egyenetlen dózseloszlások és az LNT-modell Madas Balázs Gergely, Balásházy Imre MTA Energatudomány Kutatóközpont XXXVIII. Sugárvédelm Továbbképző Tanfolyam Hunguest Hotel Béke 2013. áprls

Részletesebben

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke

Részletesebben

A könyvvizsgálat színvonalának növelése a minőségellenőrzésen keresztül

A könyvvizsgálat színvonalának növelése a minőségellenőrzésen keresztül XXIII. Országos Könyvvizsgálói Konferencia Visegrád 2015. Szeptember 4-5. A könyvvizsgálat színvonalának növelése a minőségellenőrzésen keresztül Szabó Zsuzsanna & Mádi-Szabó Zoltán Minőségellenőrzési

Részletesebben

Az igazság pillanatai

Az igazság pillanatai 1 1 Az igazság pillanatai avagy A mezőny dicsérete Tudományos teljesítmény elemzése SciVal megoldásokkal Porosz Péter Elsevier PTE Innovációs Nap 2014. május 27. 2 2 Apu, miért fut itt ez a sok ember?

Részletesebben

Új módszerek és eszközök infokommunikációs hálózatok forgalmának vizsgálatához

Új módszerek és eszközök infokommunikációs hálózatok forgalmának vizsgálatához I. előadás, 2014. április 30. Új módszerek és eszközök infokommunikációs hálózatok forgalmának vizsgálatához Dr. Orosz Péter ATMA kutatócsoport A kutatócsoport ATMA (Advanced Traffic Monitoring and Analysis)

Részletesebben

Antropogén eredetű felszínváltozások vizsgálata távérzékeléssel

Antropogén eredetű felszínváltozások vizsgálata távérzékeléssel Antropogén eredetű felszínváltozások vizsgálata távérzékeléssel Verőné Dr. Wojtaszek Malgorzata http://www.civertan.hu/legifoto/galery_image.php?id=8367 TÁMOP-4.2.1.B-09/1/KONV-2010-0006 projekt Alprogram:

Részletesebben

A szellemivagyon-értékelés alapjai

A szellemivagyon-értékelés alapjai A szellemivagyon-értékelés alapjai Káldos Péter Magyar Szabdalmi Hivatal H 1054 Budapest Garibaldi u. 2 peter.kaldos@hpo.hu Tel: +36 1 474 5814 Menü A szellemivagyon-értékelés céljai Alkalmazott módszerek

Részletesebben

18. modul: STATISZTIKA

18. modul: STATISZTIKA MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

AZ ÜGYFÉL KOMMUNIKÁCIÓ ÚJ FORMÁI POZITÍV ÜGYFÉLÉLMÉNY SZÖVEGBÁNYÁSZATI MEGOLDÁSOK

AZ ÜGYFÉL KOMMUNIKÁCIÓ ÚJ FORMÁI POZITÍV ÜGYFÉLÉLMÉNY SZÖVEGBÁNYÁSZATI MEGOLDÁSOK AZ ÜGYFÉL KOMMUNIKÁCIÓ ÚJ FORMÁI POZITÍV ÜGYFÉLÉLMÉNY SZÖVEGBÁNYÁSZATI MEGOLDÁSOK HOFGESANG PÉTER ÜZLETI INTELLIGENCIA A JÖVŐ, AHOGY MI LÁTJUK Hagyományos és új kommunikációs formák Szöveges adatok Szöveganalitika

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

ÉRTÉKELÉS MÁSKÉPP Készítette: Cselikné Juhász Ildikó

ÉRTÉKELÉS MÁSKÉPP Készítette: Cselikné Juhász Ildikó ÉRTÉKELÉS MÁSKÉPP ÉRTÉKELÉS? Eddig Osztályzat: - eltérő értéke van, osztályon kívül nem összehasonlítható; - öt fokú skála; - nem segít a teljesítmény javításában; - fegyelmezési eszköz?! ÉRTÉKELÉS? Eddig

Részletesebben

Az értékelés során következtetést fogalmazhatunk meg a

Az értékelés során következtetést fogalmazhatunk meg a Az értékelés során következtetést fogalmazhatunk meg a a tanuló teljesítményére, a tanulási folyamatra, a célokra és követelményekre a szülők teljesítményére, a tanulási folyamatra, a célokra és követelményekre

Részletesebben