A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben
|
|
- Teréz Veres
- 6 évvel ezelőtt
- Látták:
Átírás
1 A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben Faragó István 1, Havasi Ágnes 1, Zahari Zlatev 2 1 ELTE Alkalmazott Analízis és Számításmatematikai Tanszék és MTA-ELTE Numerikus Analízis és Nagy Hálózatok Kutatócsoport Budapest 2 Department of Environmental Science, Aarhus University Roskilde, Dánia Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
2 Vázlat Idöfüggö feladatok numerikus megoldása A Richardson-extrapoláció módszere Alkalmazás az UNI-DEM modellben Kombinálás operátorszeleteléssel Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
3 Idöfüggö feladatok numerikus megoldása Idöfüggö feladatok numerikus megoldása Alapfeladat: KDE vagy PDE-rendszerhez tartozó kezdetiértékvagy vegyes feladat megoldása Többnyire csak numerikusan lehetséges! 1 Definiálunk egy rácshálót; 2 ezen kitüzünk egy diszkrét feladatot; 3 megoldjuk a diszkrét feladatot numerikus megoldás 4 ellenörizzük, hogy megfelelöen pontos-e 5 ha nem, elölröl kezdjük egy finomabb rácshálón Mikor jó a numerikus módszer? - konzisztens - stabil - konvergens - hatékony (megfelelö pontosság "olcsó" elérése) - megörzi a kvalitatív tulajdonságokat Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
4 Richardson-extrapoláció Mi a Richardson-extrapoláció (RE)? Ha a numerikus megoldás nem elég pontos, a számolást elölröl kezdjük, a durvább rácson kapott megoldás elvész Ötlet (Richardson, 1911): Használjuk fel a régi megoldást egy pontosabb numerikus megoldás elöállításához! RE: u.azon módszert két (vagy több) különbözö lépésközzel alkalmazzuk (pl. τ és τ/2), és a megoldásokat megfelelö súlyokkal átlagoljuk p-ed rendü módszerböl (p+1)-ed rendü nyerhetö, és nem vész el a korábbi eredményünk! Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
5 Richardson-extrapoláció A RE alkalmazása KDER-ben KDER Cauchy-feladata: dy dt = f (t, y), t [0, T ], y(0) = y 0 Definiáljuk a t n = n τ rácshálót (n = 0,1,...,N), ahol τ = T /N a lépésköz, t N = T. Jelölés: y(t ) - a feladat pontos megoldása t = t -ban. RE: egy p-ed rendü numerikus módszerrel τ és τ/2 lépésközzel is elöállítjuk y(t ) approximációját. (Ha t = n τ az elsö rácson, akkor t = 2n τ/2 a második rácson.) Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
6 Richardson-extrapoláció A RE alkalmazása KDER-ben Jelölje a τ és τ/2 lépésközzel nyert numerikus megoldást t = t -ban z n ill. w n. Ha a módszer p-ed rendben konvergens, akkor y(t ) = z n + K τ p + O(τ p+1 ) ill. y(t ) = w n + K (0.5τ) p + O(τ p+1 ), ahol K a numerikus módszertöl függö mennyiség. Küszöböljük ki a p-ed rendü tagokat súlyozott átlagolással! Az új közelítés: y(t ) = 2p w n z n 2 p 1 y n := 2p w n z n 2 p 1, amely (p + 1)-ed rendben pontos! + O(τ p+1 ) Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
7 Richardson-extrapoláció A Richardson-extrapoláció két módja Passzív RE: y 0 z 1 w 1 z 2 w y 1 y 2 Aktív RE: y 0 z 1 w 1 y 1 z 2 w 2 y 2... Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
8 A RE konvergenciája Richardson-extrapoláció Passzív RE: ha a mögöttes (p-ed rendü) módszer konvergens, akkor a passzív RE-val kombinálva is az lesz. Mi a helyzet az aktív RE-val? Tétel (Faragó, Havasi, Zlatev, 2011): Tegyük fel, hogy f a 2. változójában lipschitzes, azaz f (t n, y n ) f (t n, y n ) L y n y n valamely L konstans mellett. Ekkor az explicit Runge-Kutta + aktív RE módszer konvergens. Tétel (Faragó, Havasi, Zlatev, 2012): Tegyük fel, hogy f a 2. változójában lipschitzes. Ekkor a diagonálisan implicit Runge-Kutta + aktív RE módszer konvergens. Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
9 Richardson-extrapoláció A RE stabilitása rögzített rácson Stiff feladatoknál fontos a Dahlquist-féle tesztfeladaton való viselkedés: y = λy, t [0, ), y(0) = y 0, Re(λ) 0 A passzív RE megörzi a mögöttes módszer stabilitási tulajdonságait. Ugyanez nem feltétlenül igaz az aktívra: a RE javíthat és ronthat is a stabilitáson: - Trapézszabály + RE: nem A-stabil - Implicit Euler + RE: L-stabil - Általános Θ-módszer + RE: A-stabil, ha Θ [2/3, 1] Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
10 Alkalmazás az UNI-DEM-ben Az UNI-DEM légkörkémiai almodellje az EMEP modellben is alkalmazott kémiai reakcióséma 56 anyagfajtával nemlineáris KDER egyes anyagfajták lassan, mások gyorsan alakulnak át erösen stiff rendszer 24 órás idöintervallum referenciamegoldás: négylépéses, ötödrendü L-stabil implicit Runge-Kutta módszerrel a hibát maximumnormában mérjük Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
11 Alkalmazás az UNI-DEM-ben A IE + RE módszerrel kapott hibák N IE IE + aktív RE IE + passzív RE E E E E-1 (2.02) 1.960E-3 (3.93) 1.739E-3 (3.87) E-2 (2.01) 5.453E-4 (3.59) 4.417E-4 (3.94) E-2 (2.01) 1.455E-4 (3.75) 1.113E-4 (3.97) E-2 (2.00) 3.765E-5 (3.86) 2.793E-5 (3.98) E-3 (2.00) 9.583E-6 (3.93) 6.997E-6 (3.99) E-3 (2.00) 2.418E-6 (3.96) 1.751E-6 (4.00) E-3 (2.00) 6.072E-7 (3.98) 4.379E-7 (4.00) E-3 (2.00) 1.522E-7 (3.99) 1.095E-7 (4.00) Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
12 Alkalmazás az UNI-DEM-ben Adott pontosság eléréséhez szükséges gépidö (s) és lépésszám (IE módszer) Globális hiba IE IE + RE Gépidö Lépésszám Gépidö Lépésszám [1E-2,1E-1] [1E-3,1E-2] [1E-4,1E-3] [1E-5,1E-4] [1E-6,1E-5] Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
13 Alkalmazás az UNI-DEM-ben Kombinálás operátorszeleteléssel A légköri transzport-kémiai egyenletrendszer: c i t = (uc i )+ (K c i ) σ i c i +R i (c 1,..., c q )+E i (x, t), i = 1, 2,..., q Csatolt nemlineáris PDE-rendszer. Közvetlen diszkretizáció M térbeli rácspont esetén nagyméretü nemlineáris KDE-rendszer M q db ismeretlennel standard numerikus módszerek nem használhatók Alkalmazzunk operátorszeletelést: - Az idöintervallumot τ hosszúságú részekre osztjuk - A jobb oldalt részoperátorokra bontjuk, a megfelelö részfeladatokat egymás után oldjuk meg a részintervallumokon - Csatolás a kezdeti feltételeken keresztül Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
14 Alkalmazás az UNI-DEM-ben A pontosság növelése Richardson-extrapolációval p: a szeletelési módszer rendje r: az alkalmazott numerikus módszer rendje A teljes approximáció rendje min{p, r}. A részfeladatokra csak akkor érdemes magasabb rendü módszert alkalmazni, ha a szeletelési módszer is magasabb rendü. A magasabb rendü szeletelési módszerek azonban költségesek. Ötlet: A pontosságot Richardson-extrapolációval növeljük! A kombinált módszert az UNI-DEM légkörkémiai almodelljén teszteltük. Két részoperátor: az ózonnal összefüggö anyagok kémiai reakciói + a többi Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
15 Alkalmazás az UNI-DEM-ben A szekvenciális szeleteléssel kapott hibák implicit Euler-módszerrel RE nélkül ill. RE alkalmazásával N Szekv. szeletelés Szekv. szel. + RE e e e-1 (1.97) 5.862e-3 (3.07) e-2 (1.99) 1.698e-3 (3.45) e-2 (1.99) 4.598e-4 (3.69) e-3 (2.00) 1.199e-4 (3.84) e-3 (2.00) 3.062e-5 (3.92) e-3 (2.00) 7.740e-6 (3.96) e-3 (2.00) 1.946e-6 (3.98) Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
16 Alkalmazás az UNI-DEM-ben MS-szeleteléssel kapott hibák másodrendü DIRK-módszerrel RE nélkül ill. RE alkalmazásával N DIRK DIRK + MS DIRK + MS + RE E-03 (4.15) 3.94E-02 (2.42) 8.61E-03 (3.08) E-03 (4.07) 1.47E-02 (2.69) 2.42E-03 (3.56) E-04 (4.03) 4.92E-03 (2.95) 5.83E-04 (4.15) E-05 (4.02) 1.55E-03 (3.20) 1.19E-04 (4.89) E-05 (4.01) 4.49E-04 (3.46) 1.99E-05 (5.99) E-06 (4.00) 1.22E-04 (3.68) 2.73E-06 (7.29) E-06 (4.00) 3.19E-05 (3.82) 3.30E-07 (8.29) E-07 (4.00) 8.17E-06 (3.91) 3.83E-08 (8.62) E-08 (4.00) 2.07E-06 (3.95) 4.56E-09 (8.39) E-08 (4.00) 5.19E-07 (3.98) 5.64E-10 (8.09) E-09 (4.00) 1.30E-07 (3.99) 7.09E-11 (7.96) E-09 (4.00) 3.26E-08 (3.94) 8.95E-12 (7.93) Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
17 Alkalmazás az UNI-DEM-ben From the Content: The basic properties of Richardson extrapolation Richardson extrapolation for explicit Runge-Kutta methods Linear multistep and predictor-corrector methods Richardson extrapolation for some implicit methods Richardson extrapolation for splitting techniques Richardson extrapolation for advection problems Richardson extrapolation for some other problems Retail price: / US$ pages published November 2017 hardcover isbn ebook isbn Figure: Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
18 Alkalmazás az UNI-DEM-ben Köszönöm a figyelmet! Faragó István (ELTE) Richardson-extrapoláció és alkalmazása Met. Napok, nov / 18
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
A Richardson-extrapoláció alkalmazása és matematikai vizsgálata egyszerűsített környezeti modellekben
Eötvös Loránd Tudományegyetem Meteorológiai Tanszék A Richardson-extrapoláció alkalmazása és matematikai vizsgálata egyszerűsített környezeti modellekben Készítette: Brajnovits Brigitta Meteorológus MSc,
Runge-Kutta módszerek
Runge-Kutta módszerek A Runge-Kutta módszerek az Euler módszer továbbfejlesztésének, javításának tekinthetők, kezdeti értékkel definiált differenciál egyenletek megoldására. Előnye hogy a megoldás során
Operátorszeletelési módszerek hibaanalízise és alkalmazásuk reakciódiffúzió-problémákra
Operátorszeletelési módszerek hibaanalízise és alkalmazásuk reakciódiffúzió-problémákra Ladics Tamás 05, április 3. Bevezetés A disszertáció négy fő részből áll, amelyekben az operátorszeletelés módszerét
Numerikus módszerek. 9. előadás
Numerikus módszerek 9. előadás Differenciálegyenletek integrálási módszerei x k dx k dt = f x,t; k k ' k, k '=1,2,... M FELADAT: meghatározni x k t n x k, n egyenletes időlépés??? t n =t 0 n JELÖLÉS: f
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos
Mátrixhatvány-vektor szorzatok hatékony számítása
Mátrixhatvány-vektor szorzatok hatékony számítása Izsák Ferenc ELTE TTK, Alkalmazott Analízis és Számításmatematikai Tanszék & ELTE-MTA NumNet Kutatócsoport munkatárs: Szekeres Béla János Alkalmazott Analízis
Egylépéses módszerek 0- és A-stabilitása
Balázsi Judit Egylépéses módszerek 0- és A-stabilitása B.Sc. Szakdolgozat Témavezet : Fekete Imre Doktorandusz Alkalmazott Analízis Tanszék Tudományos segédmunkatárs MTA-ELTE NUMNET Eötvös Loránd Tudományegyetem
Tartalomjegyzék. Typotex Kiadó, 2010
Tartalomjegyzék 15. Elliptikus egyenletek 7 15.1. Bevezetés: Elliptikus egyenletek alkalmazott feladatokban... 7 15.2. Elméleti háttér.......................... 9 15.3. Véges dierencia eljárások II...................
Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)
Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási
Csomós Petra. Loránd Tudományegyetem, Budapest. függvénytan, valós és komplex vonalintegrál)
Oktatási és témavezetői tevékenység Csomós Petra 1. Oktatás 2001.09 12. 2003.09 12. 2001.02 06. 2003.02 06. 2002.09 12. 2004.09 12. 2003.02 06. 2005.02 06. Analízis I. gyakorlat meteorológus és geofizikus
tisztelettel meghívja Önt
A Magyar Tudományos Akadémia Földtudományok Osztálya Meteorológiai Tudományos Bizottságának Légkördinamikai és Szinoptikus Meteorológiai Albizottsága, valamint Légkörfizikai és Levegőkémiai Albizottsága
Zárójelentés. A prekondicionálás matematikai módszerei nemlineáris fizikai modellekben című, K számú OTKA pályázatról
Zárójelentés A prekondicionálás matematikai módszerei nemlineáris fizikai modellekben című, K-43765 számú OTKA pályázatról A pályázat keretében 2003-2006 között hét kutató dolgozott: Faragó István, témavezető,
14. fejezet. Tárgymutató Címszavak jegyzéke
14. fejezet Tárgymutató 14.1. Címszavak jegyzéke A Adams Bashforth módszerek 71 Adams Moulton módszerek 71 Adams módszerek, változó lépéstávolságú 96 algebro-differenciálegyenletek 150 alulintegráció 346,
Eötvös Loránd Tudományegyetem Természettudományi Kar
Eötvös Loránd Tudományegyetem Természettudományi Kar Közönséges differenciálegyenletek numerikus megoldása Szakdolgozat Soós Ivett Matematika B.Sc., Matematikai elemz szakirány Témavezet : Mincsovics Miklós
Közönséges differenciál egyenletek megoldása numerikus módszerekkel: egylépéses numerikus eljárások
Közönséges differenciál egyenletek megoldása numerikus módszerekkel: egylépéses numerikus eljárások Bevezetés Ebben a cikkben megmutatjuk, hogyan használhatóak a Mathematica egylépéses numerikus eljárásai,
Károlyi Katalin Eötvös Loránd Tudományegyetem Alkalmazott Analízis Tanszék. Abstract
KÖZÖNSÉGES DIFFERENCIÁLEGYENLETEK TÖBBPONTOS PEREMÉRTÉK PROBLÉMÁI Károlyi Katalin Eötvös Loránd Tudományegyetem Alkalmazott Analízis Tanszék 1117 Budapest, Pázmány Péter sétány 1/c. (karolyik@cs.elte.hu)
Numerical Treatment of Linear Parabolic Problems
MTA Doktori Értekezés Tézisei Numerical Treatment of Linear Parabolic Problems Faragó István Eötvös Loránd Tudományegyetem Budapest 2008 3 1. Kutatási feladat A természetben és a társadalomban lezajló
Csomós Petra. Loránd Tudományegyetem, Budapest. függvénytan, valós és komplex vonalintegrál)
Oktatási és témavezetői tevékenység Csomós Petra 1. Oktatás 2001.09 12. 2003.09 12. 2001.02 06. 2003.02 06. 2002.09 12. 2004.09 12. 2003.02 06. 2005.02 06. Analízis I. gyakorlat meteorológus és geofizikus
Merev differenciálegyenletek numerikus megoldása
Eötvös Loránd Tudományegyetem Természettudományi Kar Szabó-Pinczel Orsolya Merev differenciálegyenletek numerikus megoldása BSc szakdolgozat Témavezet : Mincsovics Miklós, tudományos segédmunkatárs Alkalmazott
Differenciálegyenletek numerikus integrálása április 9.
Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,
3D számítógépes geometria 2
3D számítógépes geometria Numerikus analízis alapok ujjgyakorlat megoldások Várady Tamás, Salvi Péter / BME October, 18 Ujjgyakorlat 1 Feladat: 1 cos(x) dx kiszámítása trapéz-módszerrel Ujjgyakorlat 1
A mikroskálájú modellek turbulencia peremfeltételeiről
A mikroskálájú modellek turbulencia peremfeltételeiről Adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék 27..23. 27..23. / 7 Általános célú CFD megoldók alkalmazása
Numerikus integrálás április 20.
Numerikus integrálás 2017. április 20. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
É Ü ö Ü ú Ú ű Ó Ó ű ö Ó Ó ú ű Ü Ö Ó Ó ö Ó Ő ű Ó Ó ú Ü Ü Ó Ó Ó Ü Ó Í Í ö ö ö ö ö ú ú ö ű ú ö ö ö ú ö ú ű ö ö ű ö ö ö ű ö ö ö ú ö ö ú ö ö ö ö ö ú ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ö ö Í ö Ö ö ú ö ö ö ö Ó Í
ü ő ő ü ő ő ö ö ő ö í ü ő í ö ö í ő ö ő ű ú ő í ü ő ö ő Í ö ö ő ö ö ő ő ö ő í Í í ü ö ő í ü ü ú ü ö ö ő ü ő ö ő í ü ő í ö ö ő ő ő í í ő í ő ő Á Ó Í í í ő ű ú ő í í ő ő Í ő í ő í í Í í ő í ő í ő ő íí ő
Í Ő É Ó É é Ö Á Á Á Ó é Ó é ö é Ö ű ö é ö ű ö é ö é é é é é é é é é é é é é é é é é é ü é é é Í é é é é ü é ö ü é ü é é ö ö é ú é é ü é é ü é é ü é ü é é é ú é Ó é é ú é ü é é ö é ö é Á Á Á Ó é Ó Í é ö
ö í Ö Ó ü í ü ö Ö ö ü ü ö ö ö ö Ö ü ö ö Ö ü Ű Ö ö ü ú ű ö ö í ö ö í ü ö ö í í ö Á É ö Ö í ö Ö ü ö Ö ö ö ö ö ö ü í ü ö í ü ö ö ö Ö ü ö í ü í ö ö ö Ö ü ö Ö í í ö Ö ü ö Ö í ü ö Á É ö Ö í ü ö í ö ű ö ö ű ö
ő ő ű í ó ú í ó í ó Á Á Á É ű ő ó ó ő ó ő Á É ó Á É ú Á É É Á ó Á Á Á Á Á É É ó Á É í É É í É ú ú ú ó ó Ö ú É ú ó ő ú ó í É É É É Ö Ö É Á É É É Ő Ó É ő ó ó í ő ú ő ő ű í ó ú Ő Ö ú É ú ú ő ő É É ő ő ő ő
ö é é ü Ő Ö é ü ö é é ü é é ó é ü ü é é é é é í é ü é é é é é é ö é é ö ö é ü ö ö é ü í é ü ü é é é ü é ö é é é ó é é é é é ü ö é é ü ú ö é é é é ö é é ö é é ó é ó é é í é é ó é é ó é é í ó é é ü ü é ó
Néhány közelítő megoldás geometriai szemléltetése
5. Fejezet Néány közelítő megoldás geometriai szemléltetése 5.. Iránymező Látattuk, ogy az explicit differenciálegyenletek rendelkeznek azzal az érdekes és kivételes tulajdonsággal, ogy bár esetenként
43. METEOROLÓGIAI TUDOMÁNYOS NAPOK. Mikro- és mezoskálájú légköri folyamatok modellezése MEGHÍVÓ
43. METEOROLÓGIAI TUDOMÁNYOS NAPOK Mikro- és mezoskálájú légköri folyamatok modellezése MEGHÍVÓ A Magyar Tudományos Akadémia Földtudományok Osztálya Meteorológiai Tudományos Bizottsága meghívja Önt a 43.
Differenciálegyenletek gyakorlat december 5.
Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos
NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó
FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart
a stabilitás szerepe a differenciálegyenletek numerikus megoldásában
Eötvös Loránd Tudományegyetem Természettudományi Kar a stabilitás szerepe a differenciálegyenletek numerikus megoldásában BSc Szakdolgozat Készítette: Farkas Alexandra Matematika BSc, Matematikai elemz
Maximum Principles in the Theory of Numerical Methods
Maximum Principles in the Theory of Numerical Methods Mincsovics Miklós Emil A doktori disszertáció tézisei Témavezetõ: Prof. Faragó István, DHAS Eötvös Loránd Tudományegyetem Matematika Doktori Iskola,
LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei
Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2
Ingák. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József
Ingák Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés A harmonikus oszcillátor
Numerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
Ensemble előrejelzések: elméleti és gyakorlati háttér HÁGEL Edit Országos Meteorológiai Szolgálat Numerikus Modellező és Éghajlat-dinamikai Osztály 34
Ensemble előrejelzések: elméleti és gyakorlati háttér HÁGEL Edit Országos Meteorológiai Szolgálat Numerikus Modellező és Éghajlat-dinamikai Osztály 34. Meteorológiai Tudományos Napok Az előadás vázlata
Operátorszeletelési eljárások és alkalmazásai aerodinamikai modellekre
Eötvös Loránd Tudományegyetem Természettudományi Kar Matematika Intézet Szakdolgozat Operátorszeletelési eljárások és alkalmazásai aerodinamikai modellekre Készítette: Boda Lívia Eötvös Loránd Tudományegyetem
(kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus)
Széchenyi István Egyetem Műszaki Tudományi Kar Alkalmazott Mechanika Tanszék GÉPEK DINAMIKÁJA 2.gyak.hét 1. és 2. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) Gépek dinamikája - 2. gyakorlat
Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc
Karátson, János Horváth, Róbert Izsák, Ferenc numerikus módszerei számítógépes írta Karátson, János, Horváth, Róbert, és Izsák, Ferenc Publication date 2013 Szerzői jog 2013 Karátson János, Horváth Róbert,
differenciálegyenletek numerikus megoldási módszerei
Numerikus modellezés és közönséges differenciálegyenletek numerikus megoldási módszerei Faragó István 2013.02.15. Tartalomjegyzék 1. Bevezetés 4 2. Közönséges differenciálegyenletek kezdetiérték-feladata
Meteorológiai előrejelzések
Meteorológiai előrejelzések Balogh Miklós Okleveles meteorológus BME Áramlástan Tanszék baloghm@ara.bme.hu Tartalom Történeti áttekintés A számszerű előrejelzések Áramlástani modellek Atmoszférikus alkalmazások
Szakdolgozat. M esz aros Mirjana
tvo s Lora nd Tudoma nyegyetem Eo szettudoma nyi Kar Terme K oz ons eges differenci alegyenletek numerikus megold asa Szakdolgozat M esz aros Mirjana Matematika BSc - Matematikai elemz o szakir any T emavezet
Differenciálegyenletek. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:
Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján. Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke
Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke 1 Tartalom Méretezési alapelvek Numerikus modellezés Analízis és
Közönséges differenciálegyenletek kétpontos peremérték-feladatai a numerikus modellezésben
Eötvös Loránd Tudományegyetem Természettudományi Kar Közönséges differenciálegyenletek kétpontos peremérték-feladatai a numerikus modellezésben BSc Szakdolgozat Készítette: Horváth Eszter Matematika BSc,
Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek
Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E
Numerikus integrálás április 18.
Numerikus integrálás 2016. április 18. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
Szomszédság alapú ajánló rendszerek
Nagyméretű adathalmazok kezelése Szomszédság alapú ajánló rendszerek Készítette: Szabó Máté A rendelkezésre álló adatmennyiség növelésével egyre nehezebb kiválogatni a hasznos információkat Megoldás: ajánló
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
MATLAB. 8. gyakorlat. Differenciálegyenletek
MATLAB 8. gyakorlat Differenciálegyenletek Menetrend Kis ZH Differenciálegyenletek általában Elsőrendű differenciálegyenletek Másodrendű differenciálegyenletek Kis ZH pdf Differenciálegyenletek Diffegyenlet:
Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20
Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális
Irányításelmélet és technika II.
Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november
Differenciálegyenletek numerikus megoldása
Eötvös Loránd Tudományegyetem Természettudományi Kar Somogyi Crescencia Kornélia Differenciálegyenletek numerikus megoldása BSc szakdolgozat Témavezet : Dr. Kovács Sándor Numerikus Analízis Tanszék Budapest,
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek A szimbolikus megoldó a MAPLE -ben Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2014. március 4. TARTALOMJEGYZÉK 1 of 41 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Funkció és
Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén
Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató
Nemlineáris anyagviselkedés peridinamikus modellezése Ladányi Gábor, PhD hallgató ladanyi@uniduna.hu Tartalom Bevezetés Motiváció A peridinamikus anyagmodell Irodalmi áttekintés Korábbi kutatási eredmények
Nemlineáris anyagviselkedés peridinamikus modellezése
Nemlineáris anyagviselkedés peridinamikus modellezése Ladányi Gábor, PhD hallgató ladanyi@uniduna.hu Témvezető: Dr. Gonda Viktor Kutatási beszámoló 2018.06.22. Tartalom Bevezetés Motiváció A peridinamikus
Idegen atomok hatása a grafén vezet képességére
hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
Bevezetés az algebrába 2
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Differencia- és differenciálegy.-rsz. H607 2017-04-05
A kutatás eredményei (záró beszámoló)
A kutatás eredményei (záró beszámoló) A K 68311 sz. OTKA pályázatot (a kutatás időtartama: 2007.07.01. 2011.06.30.)) A Miskolci Egyetem Matematikai Intézet Analízis Tanszéke 1 oktatóa - Dr. Rontó Miklós
2. Alapfeltevések és a logisztikus egyenlet
Populáció dinamika Szőke Kálmán Benjamin - SZKRADT.ELTE 22. május 2.. Bevezetés A populációdinamika az élőlények egyedszámának és népességviszonyainak térbeli és időbeli változásának menetét adja meg.
Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11.
Haszongépj pjármű fékrendszer intelligens vezérl rlése Németh Huba Knorr-Bremse Kutatási és s Fejlesztési si Központ, Budapest 2004. November 17. Knorr-Bremse 19.11.2004 Huba Németh 1 Tartalom Motiváció
A BSc-képzés szakdolgozati témái
A BSc-képzés szakdolgozati témái Alkalmazott Analízis és Számításmatematikai Tanszék 2018/2019 1. Topologikus és variációs módszerek alkalmazása a dierenciálegyenletek elméletében (a téma Témavezet : Simon
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
GPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása
Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása Bozóki Sándor 1,2, Fülöp János 1,3 1 MTA SZTAKI; 2 Budapesti Corvinus Egyetem 3 Óbudai Egyetem XXXI. Magyar Operációkutatási Konferencia
Zajok és fluktuációk fizikai rendszerekben
Zajok és fluktuációk fizikai rendszerekben Zajjelenségek modellezése Makra Péter SZTE Kísérleti Fizikai Tanszék 2009-2010. őszi félév Változat: 0.1 Legutóbbi frissítés: 2009. október 14. Makra Péter (SZTE
Eddig csak a polinom x-ben felvett értékét kerestük
Interpolációs polinom együtthatói Eddig csak a polinom x-ben felvett értékét kerestük Ez jó, ha kevés x-re kell kiértékelni Ha sok ismeretlen f (x)-et keresünk, akkor jobb kiszámolni az együtthatókat,
Reakció kinetika és katalízis
Reakció kinetika és katalízis 1. előadás: Alapelvek, a kinetikai eredmények analízise Felezési idők 1/22 2/22 : A koncentráció ( ) időbeli változása, jele: mol M v, mértékegysége: dm 3. s s Legyen 5H 2
Széladatok homogenizálása és korrekciója
Széladatok homogenizálása és korrekciója Péliné Németh Csilla 1 Prof. Dr. Bartholy Judit 2 Dr. Pongrácz Rita 2 Dr. Radics Kornélia 3 1 MH Geoinformációs Szolgálat pelinenemeth.csilla@mhtehi.gov.hu 2 Eötvös
Matematika mérnököknek 2. Ismétlés Numerikus dierenciálás Diegyenletek Fourier Matlab Projekt Desc Linkek
Matematika mérnököknek 2 Ismétlés Numerikus dierenciálás Diegyenletek Fourier Matlab Projekt Desc Linkek 1 Ismétlés Di-számítás Határozatlan integrál Matematika mérnököknek 2 2 Di-számítás Desc Summa Fa
MODELLEZÉS - SZIMULÁCIÓ
Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)
Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.
Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független
GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat
Széchenyi István Egyetem Alkalmazott Mechanika Műszaki Tudományi Kar Tanszék GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) y k c S x x m x Adatok m kg c
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka
Geokémia gyakorlat 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek Geológus szakirány (BSc) Dr. Lukács Réka MTA-ELTE Vulkanológiai Kutatócsoport e-mail: reka.harangi@gmail.com ALAPFOGALMAK:
ELLIPTIKUS ÉS PARABOLIKUS PARCIÁLIS DIFFERENCIÁLEGYENLETEK KVALITATÍV TULAJDONSÁGAI ÉS ÜZEMANYAGCELLÁK MEGBÍZHATÓ MODELLEZÉSE
ELLIPTIKUS ÉS PARABOLIKUS PARCIÁLIS DIFFERENCIÁLEGYENLETEK KVALITATÍV TULAJDONSÁGAI ÉS ÜZEMANYAGCELLÁK MEGBÍZHATÓ MODELLEZÉSE Szabó Tamás A doktori értekezés tézisei Témaveztő Dr. Faragó István a Magyar
Meteorológiai Adatasszimiláció
Meteorológiai Adatasszimiláció 2017 November 17 összeállította: Bölöni Gergely Tartalom 1 2 3 4 Numerikus el rejelzés: a hidro-termodinamikai egyenletek (HTE) numerikus megoldása a HTE megoldása vegyes
Differenciálegyenletek analitikus és numerikus megoldása
Eötvös Loránd Tudományegyetem Természettudományi Kar Differenciálegyenletek analitikus és numerikus megoldása BSc Szakdolgozat Kósa Lilla Témavezető: Chripkó Ágnes, egyetemi adjunktus, PhD Eötvös Loránd
Molnár Viktória. Közönséges differenciálegyenletek numerikus megoldása
Eötvös Loránd Tudományegyetem Természettudományi Kar Molnár Viktória Matematika Bsc - Alkalmazott matematikus szakirány Közönséges differenciálegyenletek numerikus megoldása Egylépéses módszerek Témavezet
Numerikus módszerek 1.
Numerikus módszerek 1. 11. előadás: A Newton-módszer és társai Lócsi Levente ELTE IK 2013. november 25. Tartalomjegyzék 1 A Newton-módszer és konvergenciatételei 2 Húrmódszer és szelőmódszer 3 Általánosítás
Numerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
Lineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
Szórványosan előfordulhat zápor, akkor esni fog vagy sem?
Múzeumok Éjszakája 2018.06.23. 21:00 Szórványosan előfordulhat zápor, akkor esni fog vagy sem? Ihász István Tartalom Néhány gondolat a csapadékról A megfigyelésektől az előrejelzésig A modellezés alapjai
A LEVEGŐMINŐSÉG ELŐREJELZÉS MODELLEZÉSÉNEK HÁTTERE ÉS GYAKORLATA AZ ORSZÁGOS METEOROLÓGIAI SZOLGÁLATNÁL
A LEVEGŐMINŐSÉG ELŐREJELZÉS MODELLEZÉSÉNEK HÁTTERE ÉS GYAKORLATA AZ ORSZÁGOS METEOROLÓGIAI SZOLGÁLATNÁL Ferenczi Zita és Homolya Emese Levegőkörnyezet-elemző Osztály Országos Meteorológiai Szolgálat Tartalom
Numerikus matematika
Numerikus matematika Baran Ágnes Gyakorlat Nemlineáris egyenletek Baran Ágnes Numerikus matematika 9.10. Gyakorlat 1 / 14 Feladatok (1) Mutassa meg, hogy az 3x 3 12x + 4 = 0 egyenletnek van gyöke a [0,
Közösségi numerikus időjárás-előrejelző modellek összehasonlító vizsgálata
XIII. Országos Felsőoktatási Környezettudományi Diákkonferencia Közösségi numerikus időjárás-előrejelző modellek összehasonlító vizsgálata Készítették: André Karolina és Salavec Péter Fizika BSc, Meteorológia
Dinamikai rendszerek, populációdinamika
Dinamikai rendszerek, populációdinamika Számítógépes szimulációk 1n4i11/1 Csabai István ELTE Komplex Rendszerek Fizikája Tanszék 5.102 Email: csabaiθcomplex.elte.hu 2009 tavasz Dierenciálegyenletek a zikán