3D számítógépes geometria 2
|
|
- Csenge Tamás
- 6 évvel ezelőtt
- Látták:
Átírás
1 3D számítógépes geometria Numerikus analízis alapok ujjgyakorlat megoldások Várady Tamás, Salvi Péter / BME October, 18
2 Ujjgyakorlat 1 Feladat: 1 cos(x) dx kiszámítása trapéz-módszerrel
3 Ujjgyakorlat 1 Feladat: 1 cos(x) dx kiszámítása trapéz-módszerrel 1. iteráció: f () = 1, f (1) =.4 S 1 = 1 [ ] =.77
4 Ujjgyakorlat 1 Feladat: 1 cos(x) dx kiszámítása trapéz-módszerrel 1. iteráció: f () = 1, f (1) =.4 S 1 = 1 [ ] =.77. iteráció: f (.) =.878 S = 1 [ ] = 1 [S ] =.84 Ebből a javított érték =.84
5 Ujjgyakorlat 1 Feladat: 1 cos(x) dx kiszámítása trapéz-módszerrel 1. iteráció: f () = 1, f (1) =.4 S 1 = 1 [ ] =.77. iteráció: f (.) =.878 S = 1 [ ] = 1 [S ] =.84 Ebből a javított érték = iteráció: f (.) =.969, f (.7) =.73 S 3 = 1 [ [.4] S + 1 ( )] =.837 = 1 Ebből a javított érték = ami pontos 3 tizedesjegyre. A függvényt összesen x kellett kiértékelni.
6 Ujjgyakorlat (a) Feladat: 1 cos(x) dx kiszámítása Gauss Legendre kvadratúrával: ˆ 1 1 f (x) dx f ( ) ( ) f 3 3
7 Ujjgyakorlat (a) Feladat: 1 cos(x) dx kiszámítása Gauss Legendre kvadratúrával: ˆ 1 1 f (x) dx f ( ) ( ) f 3 3 A függvényt át kell alakítani a megfelelő formára: ˆ 1 cos(x) dx = Ebből f (y) = 1 cos ( ) y+1 ˆ 1 1 ( ) y cos dy
8 Ujjgyakorlat (a) Feladat: 1 cos(x) dx kiszámítása Gauss Legendre kvadratúrával: ˆ 1 1 f (x) dx f ( ) ( ) f 3 3 A függvényt át kell alakítani a megfelelő formára: ˆ 1 cos(x) dx = Ebből f (y) = 1 cos ( ) y+1 ˆ 1 1 ( ) y cos dy Kiértékelések: f ( 3/3) =.3, f ( 3/3) =.489 ˆ 1 cos(x) dx =.841
9 Ujjgyakorlat (b) Feladat: 1 cos(x) dx kiszámítása Gauss Csebisev kvadratúrával: 1 f (x) dx π [ ( ) ( )] f + f 1 x ˆ 1 1
10 Ujjgyakorlat (b) Feladat: 1 cos(x) dx kiszámítása Gauss Csebisev kvadratúrával: 1 f (x) dx π [ ( ) ( )] f + f 1 x ˆ 1 1 A függvényt át kell alakítani a megfelelő formára: f (y) = 1 ( ) y + 1 cos 1 y
11 Ujjgyakorlat (b) Feladat: 1 cos(x) dx kiszámítása Gauss Csebisev kvadratúrával: 1 f (x) dx π [ ( ) ( )] f + f 1 x ˆ 1 1 A függvényt át kell alakítani a megfelelő formára: f (y) = 1 ( ) y + 1 cos 1 y Kiértékelések: f ( /) =.3, f ( /) =.3 ˆ 1 cos(x) dx 1.71 (.3 +.3) =.914 Általános képlet: x i = cos ( (i 1)π n Vagy: π f (cos α) dα és x i = (i 1)π n ) és w i = π n, i [1... n]
12 Ujjgyakorlat (c) Feladat: 1 cos(x) dx kiszámítása Gauss Hermite kvadratúrával: ˆ e x f (x) dx π [ f ( ) ( + f )]
13 Ujjgyakorlat (c) Feladat: 1 cos(x) dx kiszámítása Gauss Hermite kvadratúrával: ˆ e x f (x) dx π [ f ( ) ( + f )] Az 1/(1 + e x ) szigmoid függvénnyel áttérünk [, ]-re: ( f (y) = cos e y ) e y+y (1 + e y )
14 Ujjgyakorlat (c) Feladat: 1 cos(x) dx kiszámítása Gauss Hermite kvadratúrával: ˆ e x f (x) dx π [ f ( ) ( + f )] Az 1/(1 + e x ) szigmoid függvénnyel áttérünk [, ]-re: ( f (y) = cos e y ) e y+y (1 + e y ) Kiértékelések: f ( /) =.86, f ( /) =.34 ˆ 1 cos(x) dx.886 ( ) =.9 Tanulság: akkor használjuk, ha az integrandus hasonló alakú
15 Ujjgyakorlat 3 Feladat: π kiszámítása Monte Carlo módszerrel Legyen f (p) = 1, ekkor ˆ p kör f (p) dp = π Kiegészítjük az integrálandó térfogatot [ 1, 1] -re f (p) az egységkörön kívül Monte Carlo integrálás: ˆ π = f (p) dp 1 N f (p i ) p [ 1,1] N i=1 A körön belülre eső pontok arányának négyszerese Kb. 1 millió mintára lesz (várhatóan) tizedesjegyig pontos :)
16 Ujjgyakorlat 4(a) Feladat: Pont követése Euler-módszerrel, h = lépésközzel. Vektortér: ( ) cos(x) + sin(y) cos(y) + sin(x),
17 Ujjgyakorlat 4(a) Feladat: Pont követése Euler-módszerrel, h = lépésközzel. Vektortér: ( ) cos(x) + sin(y) cos(y) + sin(x), 1. lépés: ( cos() + sin() (, )+, ) cos() + sin() = (.764, 1.834)
18 Ujjgyakorlat 4(a) Feladat: Pont követése Euler-módszerrel, h = lépésközzel. Vektortér: ( ) cos(x) + sin(y) cos(y) + sin(x), 1. lépés: ( cos() + sin() (, )+,. lépés: ( cos(.764) + sin(1.834) (.764, 1.834) +, ) cos() + sin() = (.764, 1.834) = (1.439,.7) ) cos(1.834) + sin(.764)
19 Ujjgyakorlat 4(b) Feladat: Pont követése Runge Kutta módszerrel, h = lépésközzel. Vektortér: ( cos(x) + sin(y) f (x, y) =, ) cos(y) + sin(x)
20 Ujjgyakorlat 4(b) Feladat: Pont követése Runge Kutta módszerrel, h = lépésközzel. Vektortér: ( cos(x) + sin(y) f (x, y) =,.. lépés: f (, ) = (.764,.166) ) cos(y) + sin(x)
21 Ujjgyakorlat 4(b) Feladat: Pont követése Runge Kutta módszerrel, h = lépésközzel. Vektortér: ( cos(x) + sin(y) f (x, y) =,.. lépés: f (, ) = (.764,.166) ) cos(y) + sin(x) 1. lépés: (, ) + f ( +.764/,.166/) = (.747,.13)
22 Ujjgyakorlat 4(b) Feladat: Pont követése Runge Kutta módszerrel, h = lépésközzel. Vektortér: ( cos(x) + sin(y) f (x, y) =,.. lépés: f (, ) = (.764,.166) ) cos(y) + sin(x) 1. lépés: (, ) + f ( +.764/,.166/) = (.747,.13) 1.. lépés: f (.747,.13) = (.6,.11)
23 Ujjgyakorlat 4(b) Feladat: Pont követése Runge Kutta módszerrel, h = lépésközzel. Vektortér: ( cos(x) + sin(y) f (x, y) =,.. lépés: f (, ) = (.764,.166) ) cos(y) + sin(x) 1. lépés: (, ) + f ( +.764/,.166/) = (.747,.13) 1.. lépés: f (.747,.13) = (.6,.11). lépés: (.747,.13) + f ( /, /) (.747,.13) + f (1.7,.64) = (1.9,.17)
24 Ujjgyakorlat Euler
25 Ujjgyakorlat Runge Kutta
26 Ujjgyakorlat Pontos
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos
Numerikus integrálás április 20.
Numerikus integrálás 2017. április 20. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
Többváltozós függvények Feladatok
Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk
Numerikus integrálás április 18.
Numerikus integrálás 2016. április 18. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
Runge-Kutta módszerek
Runge-Kutta módszerek A Runge-Kutta módszerek az Euler módszer továbbfejlesztésének, javításának tekinthetők, kezdeti értékkel definiált differenciál egyenletek megoldására. Előnye hogy a megoldás során
Numerikus matematika
Numerikus matematika Baran Ágnes Gyakorlat Numerikus integrálás Matlab-bal Baran Ágnes Numerikus matematika 8. Gyakorlat 1 / 20 Anoním függvények, function handle Függvényeket definiálhatunk parancssorban
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
5. fejezet. Differenciálegyenletek
5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
ANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
Analízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
Matematika mérnököknek 2. Ismétlés Numerikus dierenciálás Diegyenletek Fourier Matlab Projekt Desc Linkek
Matematika mérnököknek 2 Ismétlés Numerikus dierenciálás Diegyenletek Fourier Matlab Projekt Desc Linkek 1 Ismétlés Di-számítás Határozatlan integrál Matematika mérnököknek 2 2 Di-számítás Desc Summa Fa
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
Numerikus matematika vizsga
1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos
Fourier sorok február 19.
Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható
Közönséges differenciál egyenletek megoldása numerikus módszerekkel: egylépéses numerikus eljárások
Közönséges differenciál egyenletek megoldása numerikus módszerekkel: egylépéses numerikus eljárások Bevezetés Ebben a cikkben megmutatjuk, hogyan használhatóak a Mathematica egylépéses numerikus eljárásai,
Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
MODELLEZÉS - SZIMULÁCIÓ
Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)
1. Határozza meg az alábbi határértéket! A válaszát indokolja!
Matematika (Analízis és dierenciálegyenletek), NGB_MA003_1, 2. zárthelyi 2014. 11. 20., 1A-csoport x 2 + 6x x 2 5 5x 2 f(x) = tg(2x + 1) 2 x + cos x x 16 5 x + 16 2 x 16 4. Határozza meg, hogy az f(x)
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok
Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes
Határozatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó
FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart
n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
Kalkulus 2., Matematika BSc 1. Házi feladat
. Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben
Matematika példatár 4.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Csabina Zoltánné Matematika példatár 4 MAT4 modul Integrálszámítás szabályai és módszerei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról
Numerikus matematika
Numerikus matematika Baran Ágnes Gyakorlat Nemlineáris egyenletek Baran Ágnes Numerikus matematika 9.10. Gyakorlat 1 / 14 Feladatok (1) Mutassa meg, hogy az 3x 3 12x + 4 = 0 egyenletnek van gyöke a [0,
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl
Egyenletek, egyenlőtlenségek XV.
Egyenletek, egyenlőtlenségek XV. Trigonometrikus (nem alap) egyenletek Amennyien az egyenlet nem alapegyenlet, akkor arra törekszünk, hogy a szögfüggvények közötti összefüggések alkalmazásával egyféle
Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József
Bolygómozgás Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Egy Nap körül kering
x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx
Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos
Az érintőformula A Simpson formula Gauss-kvadratúrák Hiba utólagos becslése. Numerikus analízis
Az érintőformul Érintőformul Az érintőformul egy nyílt Newton-Cotes formul, melyre: ( ) + b f (x)dx (b )f. 2 Az érintőformul úgy is értelmezhető, hogy függvényt z [, b] intervllum középpontjához húzott
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.
Megjegyzés: jelenti. akkor létezik az. ekkor
. Hármas Integrál. Bevezetés és definíciók A bevezetés első részében egy feladaton keresztül jutunk el a hármasintegrál definíciójához. Feladat: Legyen R korlátos test, és a testnek legyen az f(x, y, z
Elhangzott tananyag óránkénti bontásban
TTK, Matematikus alapszak Differenciálegyenletek (Előadás BMETE93AM03; Gyakorlat BME TE93AM04) Elhangzott tananyag óránkénti bontásban 2016. február 15. 1. előadás. Közönséges differenciálegyenlet fogalma.
Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda
Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett
egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.
Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,
y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)
III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp
1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log
1. Fuggveny ertekek 1 Szamtsuk ki az alabbi fuggvenyek erteket a megadott helyeken! a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I b) f (x) = sin x 1 x = π 2, π 4, 3 3 2π, 10π I arcsin(x) ha 1 x 0 1 c) f
5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11
Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4
cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4
Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos
YBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok
Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás
Baran Ágnes. Gyakorlat Numerikus matematika. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 79
Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Numerikus matematika Baran Ágnes Matematika Mérnököknek 1. 9.-13. Gyakorlat 1 / 79 Lebegőpontos számok Példa a = 2, t = 4, k = 3, k + = 2 esetén mi lesz
Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4.
Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 2017. október 4. Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus
T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.
Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor
Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra
Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus függvény
Matematika I. NÉV:... FELADATOK:
24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n
7. Oldjuk meg az alábbi kezdetiérték-problémát: y x y = 6x, y(0) =
. feladatsor: szeparábilis és els rend lineáris dierenciálegyenletek x. Mutassuk meg, hogy y = e x e t2 dt + 3e x megoldása az alábbi dierenciálegyenletnek: y y = e x+x2. 2. Adjuk meg az y = e 3x + 2x
(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e
Az. gyakorlat HF-inak megoldása. Deriváljuk az alábbi függvényeket. sin x cos x = cos x sin x, x ln x = x / ln x + x x x, x x = x / = x/ = = e x cos x+e x sin x e x cos x cos x, x sin x ln x = + x x, x
Régebbi Matek B1 és A1 zh-k. deriválás alapjaival kapcsolatos feladatai. n )
Régebbi Matek B1 és A1 zh-k Sorozatok és függvények határértékével, folytonossággal és a deriválás alapjaival kapcsolatos feladatai. 1. Számítsuk ki: (a) n ( 2n 1) n+3 1 + arccos( 2n + 1 n ) (b) n ( n
MODELLEZÉS - SZIMULÁCIÓ
Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)
1. Vektorterek és lineáris leképezések
1. Vektorterek és lineáris leképezések 1.1. Feladat. Legyenek A, B : R 2 R 2 az A(x, y) = (2x y, y) B(x, y) = ( x, x + y) módon definiált leképezések. Ellenőrizzük, hogy lineárisak és írjuk fel a mátrixukat
VIK A3 Matematika, Gyakorlati anyag 2.
VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2
1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!
. Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x
KÖZELÍTŐ ÉS SZIMBOLIKUS SZÁMÍTÁSOK FELADATGYŰJTEMÉNY
Írta: MIHÁLYKÓ CSABA VIRÁGH JÁNOS KÖZELÍTŐ ÉS SZIMBOLIKUS SZÁMÍTÁSOK FELADATGYŰJTEMÉNY Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Mihálykó Csaba, Pannon Egyetem Műszaki Informatikai Kar Matematika
a) az O(0, 0) középpontú, r = 2 sugarú, negatív irányítasú körvonal P( 2, 2), Q( 2, 2) pontjait
06.05.7. Kalulus II. NÉV:... A csoport EHA:... FELADATOK. Határozzu meg a xy da integrált, ahol H az A(, ), B(0, 0) és C(, ) ponto által megha- y + 3 tározott háromszög. H 0pt. Oldju meg: y y + 5y = e
Matematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály II. rész: Trigonometria Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék II. rész: Trigonometria...........................
Speciális függvénysorok: Taylor-sorok
Speciális függvénysoro: Taylor-soro Állítsu elő az alábbi függvénye x 0 0 helyhez tartozó hatványsorát esetleg ülönféle módszereel és állapítsu meg a hatványsor onvergenciatartományát! A cos 5x függvény
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
Hatványsorok, Fourier sorok
a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés
MATLAB. 5. gyakorlat. Polinomok, deriválás, integrálás
MATLAB 5. gyakorlat Polinomok, deriválás, integrálás Menetrend Kis ZH Polinomok Numerikus deriválás Numerikus integrálás (+ anonim függvények) pdf Kis ZH Polinomok Sok függvény és valós folyamat leírható
Elérhető maximális pontszám: 70+30=100 pont
Villamosmérnök Szak Távoktatás 2. félév Matematika kollokvium 2008. dec. 20. Név: Neptun Kód: Tanár: Fel.: Elm.: Hf.: Össz.: Oszt.: Vajda István Rendelkezésre álló idő: 105 perc Elérhető maximális pontszám:
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
Határozatlan integrál, primitív függvény
Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,
Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november
Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
First Prev Next Last Go Back Full Screen Close Quit
Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy
1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
Feladatok matematikából 3. rész
Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!
Szélsőérték feladatok megoldása
Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =
konvergensek-e. Amennyiben igen, számítsa ki határértéküket!
1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,
I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex
Zajok és fluktuációk fizikai rendszerekben
Zajok és fluktuációk fizikai rendszerekben Zajjelenségek modellezése Makra Péter SZTE Kísérleti Fizikai Tanszék 2009-2010. őszi félév Változat: 0.1 Legutóbbi frissítés: 2009. október 14. Makra Péter (SZTE
Matematika M1 Gyakorlat
Matematika M Gyakorlat BME - Gépésmérnök MSc Gyakorló Feladatsor. Zh. Határoa meg a α paraméter értékét úgy hogy a vx y = αx y xy 4y 3 3 kétváltoós függvény egy reguláris komplex függvény képetes rése
(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,
Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ
2. Alapfeltevések és a logisztikus egyenlet
Populáció dinamika Szőke Kálmán Benjamin - SZKRADT.ELTE 22. május 2.. Bevezetés A populációdinamika az élőlények egyedszámának és népességviszonyainak térbeli és időbeli változásának menetét adja meg.
Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26
Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás
a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.
2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény BABEȘ-BOLYAI TUDOMÁNYEGYETEM 1.2 Kar FIZIKA 1.3 Intézet MAGYAR FIZIKA INTÉZET 1.4 Szakterület FIZIKA 1.5 Képzési szint LICENSZ
Differenciálegyenletek. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:
Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport
Analízis I. zárthelyi dolgozat javítókulcs, Informatika I. 2012. okt. 19. Elméleti kérdések A csoport 1. Hogyan számíthatjuk ki két trigonometrikus alakban megadott komplex szám szorzatát más alakba való
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
Funkcionálanalízis. Gyakorló feladatok március 22. Metrikus tér, normált tér és skalárszorzat tér
Funkcionálanalízis Gyakorló feladatok 2017 március 22 Metrikus tér, normált tér és skalárszorzat tér N1 Metrikát deniálnak-e R-en az alábbi függvények: (a) d(x, y) = x y (b) d(x, y) = x y (c) d(x, y) =
5. Deriválható függvények A derivált értelmezése A derivált mértani jelentése Műveletek deriválható függvényekkel...
Tartalomjegyzék GEOMETRIA 1 Vektorok 1 11 Irányított szakaszok Vektorok 1 1 Műveletek vektorokkal 3 13 Kollineáris vektorok 6 14 Helyzetvektor 8 15 Párhuzamosság, összefutás, kollinearitás 10 16 Skaláris
Közepek Gauss-kompozíciója Gondolatok egy versenyfeladat kapcsán
Gondolatok egy versenyfeladat kapcsán Debreceni Egyetem, Matematikai Intézet, Analízis Tanszék Regionális Matematika Szakkör Megnyitója Debrecen, 015. szeptember 7. AGH-egyenl tlenség Tétel Értelmezzük
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)
Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)
Matematika M1 1. zárthelyi megoldások, 2017 tavasz
Matematka M. zárthely megoldások, 7 tavasz A csoport Pontozás: + 7 + 7 + 7) + 3 + 6 5 pont.. Lehet-e az ux, y) e 3x cos3y) kétváltozós valós függvény egy regulárs komplex függvény valós része? Ha gen,
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának
Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai
Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Mona Tamás Időjárás előrejelzés speci 3. előadás 2014 Differenciál, differencia Mi a különbség f x és df dx között??? Differenciál, differencia
Dierenciálhatóság. Wettl Ferenc el adása alapján és
205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási