MATLAB. 8. gyakorlat. Differenciálegyenletek
|
|
- Vince Fehér
- 6 évvel ezelőtt
- Látták:
Átírás
1 MATLAB 8. gyakorlat Differenciálegyenletek
2 Menetrend Kis ZH Differenciálegyenletek általában Elsőrendű differenciálegyenletek Másodrendű differenciálegyenletek
3 Kis ZH pdf
4 Differenciálegyenletek Diffegyenlet: Olyan egyenlet, amelyben az ismeretlen egy függvény, és szerepel benne ennek az ismeretlen függvénynek valamely deriváltja is. A diffegyenlet rendje: az ismeretlen függvény legmagasabb fokú deriváltjának fokszáma (első és másodrendűről lesz szó). MATLAB-ban a diffegyenletek megoldása numerikus integrálással történik.
5 Differenciálegyenletek Praktikusan: amire kiváncsi vagyok: egy függvény ( f(t) ) ami a rendelkezésemre áll: a függvény valamilyen deriváltját tartalmazó függvény ( f'(t) = g(f(t),t) )
6 Szemléletesen Tegyük fel, hogy egy hegyi úton sétálunk, és az aktuális magasságunk az előrehaladás közben változik. A magasságunkat felírhatjuk pl. az idő, a hosszúsági és szélességi kör vagy a megtett út függvényében is. A megtett út függvényében a magasságra a következő összefüggés írható fel: y = y(x), ahol x az út, y pedig a magasság.
7 Szemléletesen Ha van nálunk magasságmérő vagy GPS vevő, az előrehaladás közben elegendő ponton felírva az aktuális magasságértékeket megkapjuk az y = y(x) összefüggés értékeit (pl. a lenti ábra szerint).
8 Szemléletesen Ez egyszerű megoldás lenne, de tegyük fel, hogy nincs nálunk megfelelő mérőeszköz. Látunk viszont egy táblát, ami 5%-os emelkedőt mutat. Ekkor a tábla megfelelően kicsi környezetében egy tetszőleges x-re és h = 100-ra az alábbi összefüggés írható fel: y ( x +h) y ( x) =0.05 h ahol az összefüggés bal oldala az út meredeksége x és x+h között.
9 Szemléletesen Tegyük fel, hogy az út mentén pár méterenként találunk egy ilyen táblát, melyek a magasság változásának közelítő értékeit adják meg a megtett út függvényében. Ha ezeket az értékeket felírjuk, megkapjuk a dy/dx összefüggést, ami y deriváltja lesz.
10 Szemléletesen Az így kapott görbét numerikusan integrálva megkapjuk y = y(x) értékeit. dx
11 Példa 1. - ode1 Legyen adott a következő elsőrendű diffegyenlet: y'(t) = 2y(t). Adjuk meg y(t) értékeit a t = [0,3] intervallumon, y(0) = 1 kezdeti érték esetén!
12 Példa 1. - ode1 Ehhez definiáljuk a diffegyenletet egy függvényként, amelynek 2 bemenő paramétere t és y. A diffegyenlet egyszerűsége miatt itt most anonim függvényt használjunk: F 2*y; F a deriváltfüggvény értékeit tartalmazza, a t paraméter a beépített megoldók miatt (ode45, ode23, ode15) kell.
13 Példa 1. - ode1 Írjunk egy saját diffegyenlet megoldó eljárást (ode1), amely az Euler módszert alkalmazva, F numerikus integrálásával kiszámolja y(t) értékeit a fent megadott intervallumon és kezdeti értékkel! Az integrálás lépésközét (intervallum hossza)/200-nak válasszuk meg! FONTOS: a saját megoldó csak szemléltetési célt szolgál, a későbbi feladatok megoldásakor mindig a beépített ode45 megoldót használjuk!
14 Megoldás 1. - ode1 function [t_out,y_out] = ode1(f,tspan,y0) % Egyszerű diffegyenlet megoldó. % Csak szemléltetési célt szolgál, % ne használjuk, mert pontatlan. % időskála kezdete t0 = tspan(1); % időskála vége tfinal = tspan(end); % lépésköz h = (tfinal - t0)/200; % kezdeti feltétel y = y0; for t = t0:h:tfinal % a derivált aktuális % értéke ydot = F(t,y); % numerikus integrálás y = y + h*ydot; % értékek tárolása a % kimeneten t_out(ind) = t; y_out(ind) = y; ind = ind + 1; % kimeneti vektorok t_out = zeros(201,1); y_out = zeros(201,length(y0)); ind = 1; end end
15 Megoldás 1. - ode1 Hívjuk meg a függvényt és rajzoljuk ki az eredményt! % függvény definíció F 2*y; % megoldás [t1,y1] = ode1(f,[0 3],1); % rajzoljuk ki figure(1); hold on; plot(t1,y1,'r-');
16 Megoldás 1. - ode1 Nézzük meg ugyanezt a beépített ode45 megoldó használatával is! % beépített megoldó eljárás [t45,y45] = ode45(f,[0 3],1); % rajzoljuk ki plot(t45,y45,'bo-'); Analízisből ismert, hogy az y'(t) = 2y(t) diffegyenlet megoldása y(t) = e2t, ezért ellenőrzésként rajzoljuk ki ezt is! plot(t45,exp(2*t45),'k--','linewidth',2);
17 Megoldás 1. - ode1
18 Konklúzió 1. - ode1 A beépített ode45 megoldó nem lineárisan osztja el a "mintavételi" időpontokat (ezért kell a t paraméter a deriváltfüggvény megadásánál). A lépésköz meghatározása minden esetben egy előre meghatározott pontosság elérése érdekében történik. A legtöbb problémára az ode45 a legjobb választás, ezért ezt fogjuk használni.
19 Elsőrendő, egyváltozós DE Vegyünk egy egyszerű töltőáramkört az alábbi ábra alapján: ahol V0 = 2 V, R = 1 kohm, C = 500 uf és tudjuk, hogy τ = RC (időállandó). t = 0-ban a kapacitáson nincs töltés és a kapcsoló nyitva van
20 Elsőrendő, egyváltozós DE A kapcsoló bekapcsolásakor a kapacitáson átfolyó áram alakulása az alábbi diffegyenlettel írható le, (V0/R kezdeti értékkel): 1 i ' (t )= τ i Analitikus alakban pedig az alábbi képlettel adható meg: V 0 τt i (t )= e R
21 Példa R, 1V DE Számítsuk ki és ábrázoljuk a fent leírt áramkörben a kapacitás áramának időbeli változását!
22 Megoldás R, 1V DE V0 = 2; % V R = 1E3; % Ohm C = 5E-4; % F tau = R*C; % ODE megadása anonim fv.-ként F -1/tau*y; % megoldás a [0 1] intervallumon, % V0/R kezdeti értékre [t_rc y_rc] = ode45(f,[0 1],V0/R); figure(2); plot(t_rc,y_rc,'linewidth',2); % analitikus megoldás t=0:0.001:1; I=V0/R*exp(-t/tau); hold on; plot(t,i,'r--','linewidth',2); title('kondenzator kisulese'); xlabel('t'); ylabel('i(t) [A]'); legend('ode45','analitikus');
23 Megoldás R, 1V DE
24 Példa R, 2V DE Egy kémiai reakció során két anyagot vegyítünk (A és B), melyek kocentráció változását az alábbi differenciálegyenlet rendszer írja le: ( da = 10A +50B dt db =10A 50B dt ) Adjuk meg A és B koncentrációját a [0 0.5] intervallumon, A(0) = 0 és B(0) = 1 esetén!
25 Megoldás R, 2V DE function dydt = chem(t,y) % y - állapotváltozó dydt = zeros(2,1); % da/dt dydt(1) = -10*y(1) + 50*y(2); % db/dt % az ODE megadása külön fv.-ben dydt(2) = 10*y(1) - 50*y(2); % (chem.m) történt end [t y] = ode45('chem',[0 0.5], [0 1]); % VAGY: % [t y] = ode45(@chem,[0 0.5], [0 1]); figure(3); hold on; plot(t,y(:,1),'k','linewidth',2); plot(t,y(:,2),'r','linewidth',2); title('kémiai reakció'); xlabel('t'); ylabel('koncentráció'); legend('a','b');
26 Megoldás R, 2V DE
27 Példa R, 2V DE Vizsgáljuk meg egy, két állatfajt tartalmazó területen a ragadozó-zsákmány egyedszám viszonyt leíró differenciálegyenlet rendszert (Lotka-Volterra modell)! ( dy 1 y2 = 1 μ y 1 2 dt dy 2 y1 = 1 μ y 2 1 dt ( ) ( ) ) y1: zsákmány egyedszám, y2: ragadozó egyedszám, µ 1: zsákmányok környezeti eltartóképessége, µ 2: ragadozók környezeti eltartóképessége
28 Példa R, 2V DE Oldjuk meg a fenti DER-t az alábbi adatok birtokában: µ 1 = 200, µ 2 = 300 y1(0) = 100, y2(0) = 150 t = [0 20]
29 Megoldás R, 2V DE % környezeti kapacitások % (eltartóképesség) mu1 = 200; % zsákmány mu2 = 300; % ragadozó % a rendszert leíró diffegyenletrendszer PredPrey [(1-y(2)/mu2)*y(1); -(1-y(1)/mu1)*y(2)]; % kezdeti értékek y0 = [100; % zsákmány 150]; % ragadozó % kirajzolás figure(4); subplot(211); plot(t_pp,y_pp,'linewidth',2); title('predator-prey Model'); xlabel('t'); ylabel('egyedszám'); legend('zsákmány','ragadozó'); % megoldás [t_pp y_pp] = ode45(predprey,[0 20],y0); % fazisgörbe subplot(212); plot(y_pp(:,1),y_pp(:,2)); title('fázisgörbe'); xlabel('zsakmany #'); ylabel('ragadozo #');
30 Megoldás R, 2V DE
31 Másodrendű DE - rezgőmozgás Rezgőmozgás során az erők egyensúlyát az alábbi összefüggés adja meg: mx ' ' + Dx +Cx ' = F ahol m a test tömege, D a rugóállandó, C a csillapítási tényező, x pedig a test kitérése.
32 Másodrendű DE - rezgőmozgás Az állapotvektor [x1;x2] legyen: x1 = x (kitérés) x2 = x' (sebesség) Ekkor a másodrendű egyenlet két elsőrendűvel megoldható.
33 Másodrendű DE - rezgőmozgás Paraméterek: külső erő (F) lehet pl. a gravitációs erő ha a csillapítási tényező (C) 0, a rezgőmozgás harmonikus lesz a tömeg (m) és a rugóállandó (D) a rezgés frekvenciáját és a test sebességét határozzák meg csillapított rezgés esetén (C>0) a nyugalmi kitérés s = F/D lesz
34 Példa R DE Számítsuk ki az alábbi paraméterekkel rendelkező rendszer rezgőmozgásának időbeli lefutását a t = [0 100] intervallumon: m = 1 kg (= Ns^2/m) D = 10 N/m C = 0.2 Ns/m F = -10 N Ábrázoljuk a rugóra rögzített test kitérésének és sebességének időbeli változását!
35 Megoldás R DE mx ' ' + Dx +Cx ' = F function xdot=myspring(t,x,m,d,c,f) % az állapotvektor x=[x1;x2] alakú, % ahol x1=pozíció, x2=sebesség xdot = zeros(2,1); xdot(1,1)=x(2); % x2dot = x'' xdot(2,1)=-d/m*x(1)-c/m*x(2)+f/m; end
36 Megoldás R DE % tömeg m = 1; % kg == (Ns^2)/m % rugóállandó D = 10; % N/m % csillapítási tényező C=0.2; % (Ns)/m % külső erő F=-10; % N % időablak tspan=[0 100]; % kezdeti feltételek ([kitérés;sebesség]) x0=[1;0]; % ODE megoldása [t x] = ode45(@(t,x) myspring(t,x,m,d,c,f),tspan,x0);
37 Megoldás R DE % tömeg m = 1; % kg == (Ns^2)/m % rugóállandó D = 10; % N/m % csillapítási tényező C=0.2; % (Ns)/m % külső erő F=-10; % N % időablak tspan=[0 100]; % kirajzolás figure(5); clf hold on; plot(t,x(:,1),'b'); plot(t,x(:,2),'r'); title('rezgőmozgás'); xlabel('t (s)'); ylabel('érték'); legend('pozíció (m)','sebesség (m/s)'); % kezdeti feltételek ([kitérés;sebesség]) x0=[1;0]; % ODE megoldása [t x] = ode45(@(t,x) myspring(t,x,m,d,c,f),tspan,x0);
38 Megoldás R DE
MATLAB. 5. gyakorlat. Polinomok, deriválás, integrálás
MATLAB 5. gyakorlat Polinomok, deriválás, integrálás Menetrend Kis ZH Polinomok Numerikus deriválás Numerikus integrálás (+ anonim függvények) pdf Kis ZH Polinomok Sok függvény és valós folyamat leírható
ODE SOLVER-ek használata a MATLAB-ban
ODE SOLVER-ek használata a MATLAB-ban Mi az az ODE? ordinary differential equation Milyen ODE megoldók vannak a MATLAB-ban? ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, stb. A részletes leírásuk
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos
MATLAB. 6. gyakorlat. Integrálás folytatás, gyakorlás
MATLAB 6. gyakorlat Integrálás folytatás, gyakorlás Menetrend Kis ZH Példák integrálásra Kérdések, gyakorlás pdf Kis ZH Numerikus integrálás (ismétlés) A deriváláshoz hasonlóan lehet vektorértékek és megadott
Annak a function-nak a neve, amiben letároltuk az egyenletünket.
Function-ok a MATLAB-ban Előző óra 4. Feladata. Amikor mi egy function-t írunk, akkor azt eltárolhatjuk egy.m fileban. Ebben az esetben ha egy másik programunkból szeretnénk meghívni ezt a függvényt (pl
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás
GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat
Széchenyi István Egyetem Alkalmazott Mechanika Műszaki Tudományi Kar Tanszék GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) y k c S x x m x Adatok m kg c
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma
Differenciálegyenletek numerikus integrálása április 9.
Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek
Differenciálegyenletek. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:
Differenciálegyenletek
DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)
Differenciálegyenletek december 13.
Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
Közönséges differenciálegyenletek megoldása Mapleben
Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen
DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1
DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet
Matematika III. harmadik előadás
Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet
(kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus)
Széchenyi István Egyetem Műszaki Tudományi Kar Alkalmazott Mechanika Tanszék GÉPEK DINAMIKÁJA 2.gyak.hét 1. és 2. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) Gépek dinamikája - 2. gyakorlat
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.
Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független
Numerikus matematika
Numerikus matematika Baran Ágnes Gyakorlat Numerikus integrálás Matlab-bal Baran Ágnes Numerikus matematika 8. Gyakorlat 1 / 20 Anoním függvények, function handle Függvényeket definiálhatunk parancssorban
Bevezetés az állapottér elméletbe: Állapottér reprezentációk
Tartalom Bevezetés az állapottér elméletbe: Állapottér reprezentációk vizsgálata 1. Példa az állapottér reprezentációk megválasztására 2. Átviteli függvény és állapottér reprezentációk közötti kapcsolatok
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!
Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet
11. gyakorlat megoldásai
11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozza meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 3y + x 2 y + 2xy, (c) f(x,
Differenciálegyenlet rendszerek
Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
11. gyakorlat megoldásai
11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozzuk meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 y + x 2 y + 2xy, (c) f(x,
Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.
5. fejezet. Differenciálegyenletek
5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.
Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot.
3. Fejezet Matematikai háttér A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot René Descartes Számtalan kiváló szakirodalom foglalkozik a különféle differenciálegyenletek
Kétváltozós függvények differenciálszámítása
Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt
Gépészeti rendszertechnika (NGB_KV002_1)
Gépészeti rendszertechnika (NGB_KV002_1) 2. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/
Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.
Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t
Matematika A3 1. ZH+megoldás
Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő
Differenciálegyenletek
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek Példák differenciálegyenletekre Newton második törvénye Egy tömegpont gyorsulása egyenesen arányos a rá ható erővel és fordítottan arányos
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy
MATLAB. 3. gyakorlat. Mátrixműveletek, címzések
MATLAB 3. gyakorlat Mátrixműveletek, címzések Menetrend Kis ZH Mátrixok, alapműveletek Vezérlő szerkezetek Virtuális műtét Statisztikai adatok vizsgálata pdf Kis ZH Mátrixok, alapműveletek mátrix létrehozása,
1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis
1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.
Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7
Baran Ágnes. Gyakorlat Komplex számok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 16
Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Komplex számok Baran Ágnes Matematika Mérnököknek 1. 1.-2. Gyakorlat 1 / 16 1. Oldja meg az alábbi egyenleteket a komplex számok halmazán! Ábrázolja a megoldásokat
Széchenyi István Egyetem. Műszaki számítások. Matlab 5a. előadás. Numerikus deriválás és integrálás. Dr. Szörényi Miklós, Dr.
Matlab 5a. előadás Numerikus deriválás és integrálás Dr. Szörényi Miklós, Dr. Kallós Gábor 2017 2018 Tartalom Motiváció Numerikus deriválás, függvény alatti terület Lineáris módszerek Magasabb fokú módszerek
Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi
Tartalom Bevezetés az állapottér-elméletbe Irányítható alak Megfigyelhetőségi alak Diagonális alak Állapottér transzformáció 2018 1 A szabályozáselmélet klasszikus, BODE, NICHOLS, NYQUIST nevéhez kötődő,
(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,
Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ
Mérést végezte: Varga Bonbien. Állvány melyen plexi lapok vannak rögzítve. digitális Stopper
Mérést végezte: Varga Bonbien Mérőtárs neve: Megyeri Balázs Mérés időpontja: 2008.04.22 Jegyzőkönyv Leadásának időpontja: 2008.04.29 A Mérés célja: Hooke Törvény Vizsgálata Hooke törvényének igazolása,
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
Differenciálegyenletek
Differenciálegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, I. félév Losonczi László (DE) Differenciálegyenletek 2011/12 tanév, I. félév 1 /
First Prev Next Last Go Back Full Screen Close Quit
Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy
Számítógépes gyakorlat MATLAB, Control System Toolbox
Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges
Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre
Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.
Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:
Mechanika I-II. Példatár
Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását
Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását
Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
Számítógépes gyakorlat MATLAB, Control System Toolbox
Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados
Elhangzott tananyag óránkénti bontásban
TTK, Matematikus alapszak Differenciálegyenletek (Előadás BMETE93AM03; Gyakorlat BME TE93AM04) Elhangzott tananyag óránkénti bontásban 2016. február 15. 1. előadás. Közönséges differenciálegyenlet fogalma.
Lineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
Numerikus Matematika
Numerikus Matematika Baran Ágnes Gyakorlat Interpoláció Baran Ágnes Numerikus Matematika 6.-7. Gyakorlat 1 / 40 Lagrange-interpoláció Példa Határozzuk meg a ( 2, 5), ( 1, 3), (0, 1), (2, 15) pontokra illeszkedő
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)
Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,
DIFFERENCIÁLEGYENLETEK MEGOLDÁSA ANALÓG SZÁMÍTÓGÉPPEL
1 DIFFERENCIÁLEGYENLETEK MEGOLDÁSA ANALÓG SZÁMÍTÓGÉPPEL Az analóg áramkörök körében léteznek olyan eszközök, amelyek képesek matematikai műveletek elvégzésére. A matematikai változókat áram vagy feszültség
PÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
BME Hidrodinamikai Rendszerek Tanszék 2. MÉRÉS
2. MÉRÉS VÍZMELEGÍTŐ IDŐÁLLANDÓJÁNAK MEGHATÁROZÁSA 1. Bevezetés A mérés célja, egy vízmelegítő időállandójának meghatározás adott térfogatáram és fűtési teljesítmény mellett. Az időállandó mellett a vízmelegítő
1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.
1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az
Gauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
1. Bevezetés Differenciálegyenletek és azok megoldásai
. Bevezetés.. Differenciálegyenletek és azok megoldásai Differenciálegyenlet alatt olyan függvény egyenleteket értünk, melyekben független változók, függvények és azok deriváltjai szerepelnek. Legegyszerűbb
Ipari matematika 2. gyakorlófeladatok
Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,
Hurokegyenlet alakja, ha az áram irányával megegyező feszültségeséseket tekintjük pozitívnak:
Első gyakorlat A gyakorlat célja, hogy megismerkedjünk Matlab-SIMULINK szoftverrel és annak segítségével sajátítsuk el az Automatika c. tantárgy gyakorlati tananyagát. Ezen a gyakorlaton ismertetésre kerül
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 3. Hibaszámítás, lineáris regresszió Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Hibaszámítás Hibák fajtái, definíciók Abszolút, relatív, öröklött
Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?
Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye
Inga. Szőke Kálmán Benjamin SZKRADT.ELTE május 18. A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt.
Inga Szőke Kálmán Benjamin SZKRADT.ELTE 2012. május 18. 1. Bevezetés A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt. A program forráskódját a labor honlapjáról lehetett elérni, és
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
DIFFERENCIAEGYENLETEK, MINT A MODELLEZÉS ESZKÖZEI AZ ISKOLAI MATEMATIKÁBAN
DIFFERENCIAEGYENLETEK, MINT A MODELLEZÉS ESZKÖZEI AZ ISKOLAI MATEMATIKÁBAN KOVÁCS ZOLTÁN 1. Bevezetés A természeti jelenségeket sokszor differenciálegyenletekkel lehet leírni: a vizsgált mennyiség például
Reakciókinetika és katalízis
Reakciókinetika és katalízis 5. előadás: /22 : Elemi reakciók kapcsolódása. : Egy reaktánsból két külön folyamatban más végtermékek keletkeznek. Legyenek A k b A kc B C Írjuk fel az A fogyására vonatkozó
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK
MÉSZÁROS JÓZSEFNÉ, NUmERIKUS módszerek 9 FÜGGVÉNYKÖZELÍTÉSEK IX. SPLINE INTERPOLÁCIÓ 1. SPLINE FÜGGVÉNYEK A Lagrange interpolációnál említettük, hogy az ún. globális interpoláció helyett gyakran célszerű
Elhangzott gyakorlati tananyag óránkénti bontásban. Mindkét csoport. Rövidítve.
TTK, Matematikus alapszak Differenciálegyenletek 1 (BMETE93AM15) Elhangzott gyakorlati tananyag óránkénti bontásban Mindkét csoport Rövidítve 1 gyakorlat 017 szeptember 7 T01 csoport Elsőrendű közönséges
Átmeneti jelenségek egyenergiatárolós áramkörökben
TARTALOM JEGYZÉK 1. Egyenergiatárolós áramkörök átmeneti függvényeinek meghatározása Példák az egyenergiatárolós áramkörök átmeneti függvényeinek meghatározására 1.1 feladat 1.2 feladat 1.3 feladat 1.4
1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?
Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)
Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási
azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
Hangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4
Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos
3. Fékezett ingamozgás
3. Fékezett ingamozgás A valóságban mindig jelen van valamilyen csillapítás. A gázban vagy folyadékban való mozgásnál, kis sebesség esetén a csillapítás arányos a sebességgel. Ha az vagy az ''+k sin =0,
Differenciálegyenletek megoldása próbafüggvény-módszerrel
Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges
Matematikai geodéziai számítások 5.
Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP
A fluxióelmélet. Az eredeti összefüggés y=5x 2
A fluxióelmélet Nézzük miről is szól valójában ez a fluxióelmélet. Newton elméletének első zseniális meglátása az, hogy vegyük alapul az időt, mint változót és minden mást ennek függvényében írjunk le.