Mechanika I-II. Példatár
|
|
- Nikolett Jónás
- 8 évvel ezelőtt
- Látták:
Átírás
1 Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár május 24.
2 Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását és a diákok tanulását. Az itt szereplő példák megoldása nem helyettesíti a tanórákon való részvételt, illetve a számonkérések a példatárban szereplő feladatoktól eltérő feladatok megldása alapján is történhet. Az elméleti tények megértése elsősorban az elmélet példákon való alkalmazásán keresztül lehetséges. A példatárban szereplő példák önálló megoldása, majd az eredmények ellenőrzése a leginkább célravezető. A példák megoldásához a mechanika elméletének megértése is szükséges, ehhez más irodalmakat is célszerű igénybevenni, pl: [1], [2]. A példatárban szereplő esetleges hibákért felelősséget nem vállalunk, az ezekre vonatkozó észrevételeket a példatár fejlesztésérre felhasználjuk. i
3 Tartalomjegyzék 1. Statika Vektoralgebra Egyenúlyi erőrendszerek Szilárdságtan Fezsültség Alakváltozási energia Kinematika Anyagi pont kinematikája Merev testek kinematikaja Dinamika Anyagi pont dinamikája Merev testek dinamikája Rezgéstan Harmonikus rezgőmozgás Példa Példa Példa Egy szabadsági fokú csillapítatlan lengőrendszerek Példa Egy szabadsági fokú csillapított lengőrendszerek Egy szabadsági fokú gerjesztett lengőrendszerek Példa Irodalomjegyzék 18 1
4 1. fejezet Statika 1.1. Vektoralgebra Abc... 2
5 STATIKA Egyenúlyi erőrendszerek Abc...
6 2. fejezet Szilárdságtan 2.1. Fezsültség Abc... 4
7 SZILÁRDSÁGTAN Alakváltozási energia Abc...
8 3. fejezet Kinematika 3.1. Anyagi pont kinematikája Abc... 6
9 KINEMATIKA Merev testek kinematikaja Abc...
10 4. fejezet Dinamika 4.1. Anyagi pont dinamikája Abc... 8
11 DINAMIKA Merev testek dinamikája Abc...
12 5. fejezet Rezgéstan 5.1. Harmonikus rezgőmozgás Harmonikus rezgőmozgás esetén a mozgástörvényt, azaz a rezgőmozgást végző test elmozdulásának időfüggvényét a következő alakban adhatjuk meg: x(t) = A sin(ωt + ϑ), (5.1) ahol A a rezgés amplitúdója, ω a rezgés körfrekvenciája és ϑ a fázistolás. az elmozdulást leíró függvény ismeretében a sebesség és a gyorsulás időfüggvénye idő szerinti deriválással előállítható az alábbiak szerint: v(t) = ẋ(t) = Aω cos(ωt + ϑ), (5.2) a(t) = v(t) = ẍ(t) = Aω 2 sin(ωt + ϑ). (5.3) Mivel a sin() függvény maximuma 1, a maximális elmozdulás maga az amplitúdó, a maximális sebesség és gyorsulás pedig az alábbiak szerint alakul: x max = A, (5.4) v max = Aω, (5.5) a max = Aω 2. (5.6) A körfrekvencia (mértékegysége [rad/s]) alapján a frekvencia (mértékegysége [periodus/s], vagyis [Hz]) majd ebből az egy teljes lengéshez tartozó periódusidő (mértékegysége [s]) kiszámítható: f = ω 2π, (5.7) T = 1 f. (5.8) Példa Egy tömegpont harmonikus rezgőmozgást végez. Ismert a rezgés amplitúdója: A = 300[mm] és a tömegpont maximális gyorsulása: a max = 5[m/s 2 ]. Határozzuk meg a tömegpont maximális sebességét, a mozgás frekvenciáját és a periódusidőt! 10
13 REZGÉSTAN 11 Megoldás: Az (5.6) egyenlet alapján kiszámítható a mozgás körfrekvenciája: a max = Aω 2 ω = amax A = 5[m/s 2 ] 0, 3[m] = 4, 082[rad/s]. A körfrekvencia ismeretében az (5.5) felhasználásával a maximális sebesség meghatározható: v max = Aω = 0, 3[m]4, 082[rad/s] = 1, 225[m/s]. A körfrekvenciából a frekvencia és a periódusidő is kiszámítható: f = ω 2π = 0, 6497[Hz], T = 1 f = 2π ω = 1, 539[s] Példa Határozzuk meg egy harmonikus rezgőmozgással mozgó tömegpont amplitúdóját és maximális sebességét, ha a maximális gyorsulása a max = 12[m/s 2 ] és a frekvenciája f = 3[Hz]! Megoldás: Első lépésben a körfrekvenciát kell kiszámítatnunk: ω = 2πf = 18, 849[rad/s]. Az ω körfrekvencia ismeretében a rezgési amplitúdó meghatározható: a max = Aω 2 A = a max ω 2 = 0, 03377[m]. Az ω körfrekvencia és az A amplitúdó ismeretében a maximális sebesség meghatározható: v max = Aω = 0, 6366[m/s] Példa Egy harmonikus rezgőmozgással mozgó tömegpont amplitúdója A = 2[cm], a maximális sebessége v max = 25[m/s]! Számítsuk ki a rezgés körfrekvenciáját, frekvenciáját és periódusidejét, valamint a tömegpont maximális gyorsulását!
14 REZGÉSTAN 12 Megoldás: A rezgés körfrekvenciája: A frekvencia és a periódusidő: v max = Aω ω = v max A = 1250[rad/s]. f = ω 2π = 198, 9[Hz], T = 1 f = 2π ω = 5, [s]. A maximális gyorsulás: a max = Aω 2 = 31250[m/s 2 ].
15 REZGÉSTAN Egy szabadsági fokú csillapítatlan lengőrendszerek A csillapítatlan, egy szabadsági fokú, lineáris, gerjesztetlen lengőrendszer referencia egyenlete: ẍ + α 2 x = 0. (5.9) Példa Adott a 5.1. ábrán látható lengőrendszer. A test tömege: m = 2[kg], a rugómerevség: s = 50[N/m]. a) Írjuk fel a rendszer mozgásegyenletét! b) Határozzuk meg a rendszer sajátfrekvenciáját! s m 5.1. ábra. Megoldás: a) Választunk egy koordinátát, amellyel leírhatjuk az m tömegű test pozícióját az egyensúlyi helyzethez képest, ez legyen az x. A lengőrendszer mozgásegyenletének felírásához felrajzoljuk az m tömegű test szabadtest ábráját pozitív irányban kitérített x koordináta esetén. x F r a s 5.2. ábra. A szabadtest ábra alapján a dinamika alaptételének segítségével felírható az alábbi egyenlet: ma s = F r. A fenti egyenlet tovább alakítható felhasználva egyrészt azt, hogy az a s gyorsulás az x koordináta második idő szerinti deriváltjával egyezik meg, másrészt azt, hogy a rugóerő a rendszerben szereplő lineáris rugó esetén a rugó x megnyúlásával arányos, és az arányossági tényező az s rugómerevség. mẍ = sx. mẍ + sx = 0. (5.10)
16 REZGÉSTAN 14 b) A sajátfrekvencia meghatározásához össze kell hasonlítanunk a mozgásegyenletben szereplő együtthatókat, a referencia egyenletben szereplő együtthatókkal. A mozgásegyenletünk és a referencia egyenlet azonos alakra rendezve: Az x együtthatójának összehasonlításából: ẍ + s m x = 0, ẍ + α 2 x = 0. s s m = α2 α = m = 50[N/m] 2[kg] = 5[rad/s].
17 REZGÉSTAN Egy szabadsági fokú csillapított lengőrendszerek A csillapítatott, egy szabadsági fokú, lineáris, gerjesztetlen lengőrendszer referencia egyenlete: ẍ + 2Dαẋ + α 2 x = 0. (5.11)
18 REZGÉSTAN Egy szabadsági fokú gerjesztett lengőrendszerek A csillapított, egy szabadsági fokú, lineáris, gerjesztett lengőrendszer referencia egyenlete: ẍ + 2Dαẋ + α 2 x = f 0 α 2 sin(ωt + ϑ). (5.12) Dimenziótlan nagyítási függvény a λ frekvenciahányados függvényében: D=0 D=0.125 N[-] D= D= D= D=0.5 D=0.707 D=1 D=1.414 D=2 D= = [-] 5.3. ábra. Nagyítási függvény Példa Adott egy m = 0.5[kg] tömegű testből és egy s = 8[N/m] merevségű rugóból, valamint egy csillapítóelemből összeállított lengőrendszer. A relatív csillapítási tényező D = 0, 25[ ]. A rendszert egy időben harmonikusan változó, adott amplitúdójú erő gerjeszti. Adott a rendszer rezonanciagörbéje (5.5 ábra). a) Számítsa ki a rendszer csillapítatlan sajátkörfrekvenciáját! b) A rendszer rezonanciagörbéje alapján állapítsa meg, hogy mekkora állandósult rezgési amplitúdó alakul ki ω = 2[rad/s] körfrekvenciájú gerjesztés esetén! c) Mekkora lehet a gerjesztés körfrekvenciája ahhoz, hogy a létrejött rezgési amplitúdó ne legyen nagyobb 5[mm]-nél? Megoldás: a) A rendszer csillapítatlan sajátkörfrekvenciája (lásd: példa): s α = m = 8[N/m] = 4[rad/s]. (5.13) 0.5[kg]
19 REZGÉSTAN D=0 40 D= k s m Fcos( t) A[mm] 20 D= D= D= D=0.5 D= ábra. 5 D=1.414 D=2 D=1 D= = [-] 5.5. ábra. b) A rendszer rezonanciagörbéje alapján megállapítható, hogy mekkora állandósult rezgési amplitúdó alakul ki ω = 2[rad/s] körfrekvenciájú gerjesztés esetén. Ehhez elsőként a frekvenciahányadost kell meghatározni, amely a gerjesztőerő körfrekvenciájának és a rendszer sajátkörfrekvenciájának a hányadosát jelenti: λ = ω α = 2[rad/s] 4[rad/s] = 0, 5[ ]. (5.14) Ezután a feladatban szereplő rendszerhez megadott rezonanciagörbe alapján (D = 0, 25[ ] relatív csillapítási értékhez tartozó görbéről) leolvasható, hogy a létrejövő állandósult rezgésamplitúdó: A = 12, 6[mm]. (5.15) c) A rezonancia görbék diagramjáról először az 5[mm] nagyságú amplitúdóhoz lehet leolvasni a frekvenciahányadost: λ = 1, 67[ ]. (5.16) A frekvenciahányadosból és a rendszer sajátkörfrekvenciájából az 5[mm] amplitúdóhoz tartozó gerjesztési frekvencia kiszámítható: ω = λα = 1, 67[ ] 4[rad/s] = 6, 68[rad/s]. (5.17) Tehát a gerjesztési körfrekvencia 6, 68[rad/s] vagy annál nagyobb értékű lehet.
20 Irodalomjegyzék [1] Gy. Béda, Szilárdságtan I., Tankönyvkiadó, Budapest, [2] Gy. Béda and Bezák A., Kinematika és dinamika, Tankönyvkiadó, Budapest,
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?
Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
2.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések
58. FEJEZET. EGY SZABADSÁGI FOKÚ LENGŐRENDSZEREK.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések.4.1. Súrlódási modell A Coulomb-féle súrlódási modellben a súrlódási erő a felületeket
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
Rezgőmozgások. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.
Rezgőmozgások Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. , Egyirányú 2 / 66 Rezgőmozgásnak nevezünk egy mozgást, ha van a térnek egy olyan pontja, amihez a mozgást végző test többször
Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás
Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt
rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika
Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó
PÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?
Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A
2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések
. REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós
Rezgőmozgás, lengőmozgás
Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást
Gyakorló feladatok Feladatok, merev test dinamikája
Gyakorló feladatok Feladatok, merev test dinamikája 4.5.1. Feladat Határozza meg egy súlytalannak tekinthető súlypontját. 2 m hosszú rúd két végén lévő 2 kg és 3 kg tömegek Feltéve, hogy a súlypont a 2
Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2
Rezgéstani alapok Diagnosztika 03 --- 1 A szinusz függvény π 3,14 3π 4,71 π 1,57 π 6,8 periódus : π 6,8 A szinusz függvény periódusának változása Diagnosztika 03 --- π sin t sin t π π sin 3t sin t π 3
ÁLTALÁNOS JÁRMŰGÉPTAN
ÁLTALÁNOS JÁRMŰGÉPTAN ELLENŐRZŐ KÉRDÉSEK 3. GÉPEK MECHANIKAI FOLYAMATAI 1. Definiálja a térbeli pont helyvektorát! r helyvektor előáll ortogonális (a 3 tengely egymásra merőleges) koordinátarendszer koordinátairányú
Rezgések és hullámok
Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
Hangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
Irányításelmélet és technika I.
Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ
Oktatási Hivatal A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ 1./ Bevezetés Ha egy rezgésre képes rugalmas testet például ütéssel rezgésbe
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
Fizika alapok vegyészeknek Mechanika II.: periodikus mozgások november 10.
Fizika alapok vegyészeknek Mechanika II.: periodikus mozgások Surján Péter 2018. november 10. 2 Tartalomjegyzék 1. Körmozgás 5 1.1. Az egyenletes körmozgás leírása.................. 5 1.2. A centripetális
Az elméleti mechanika alapjai
Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.
1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések
K1A labor 1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglakoztunk
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
Járművek lengései. Gépjármű Futóművek II. Szabó Bálint
Járművek lengései Gépjármű Futóművek II. Szabó Bálint 1 Bevezetés 2 2 Bevezetés Koordináta-rendszerek Gyakran alkalmazott koordináta rendszer 3 SAE koordináta rendszer 3 Bevezetés Dinamikai irányok felbontása
1. Egyensúlyi pont, stabilitás
lméleti fizia. elméleti összefoglaló. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan pontoat nevezzü, ahol a tömegpont gyorsulása 0. Ha a tömegpont egy ilyen pontban tartózodi, és nincs sebessége,
2. MECHANIKA 2. MECHANIKA / 1. ω +x
2. MECHANIKA A mérés célja Periodikus mozgásokkal a mindennapi életben gyakran találkozunk, és korábbi tanulmányainkban is foglalkoztunk velük. Ennek a gyakorlatnak célja egyrészt az, hogy ezeket a mozgásokat
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása
Mechanikai rezgések = 1 (1)
1. Jellemző fizikai mennyiségek Mechanikai rezgések Mivel a harmonikus rezgőmozgást végző test leírható egy egyenletes körmozgást végző test vetületével, a rezgőmozgást jellemző mennyiségek megegyeznek
Mérnöki alapok 10. előadás
Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.
a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása
Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30
Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra.
Tisztelt Hallgatók! Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra. Az, hogy valaki egy korábbi vizsga megoldását
Dinamika. p = mυ = F t vagy. = t
Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus
0.1. Lineáris rendszer definíciója
Részlet Török János, Orosz László, Unger Tamás, Elméleti Fizika jegyzetéből.. Lineáris rendszer definíciója be linearis rendszer ki be bei ki i ki + ki be λki + be 2 2 λ. ábra. Lineáris rendszer. Mielőtt
REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK EZGÉSTAN GYAKOLAT Kidolozta: Dr. Na Zoltán eetemi adjunktus 5. feladat: Szabad csillapított rezőrendszer A c k ϕ c m k () q= q t m rúd c k Adott:
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések
2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglalkoztunk velük.
1. MECHANIKA. Periodikus mozgások: körmozgás, rezgések, lengések
1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglakoztunk velük.
Gépészeti rendszertechnika (NGB_KV002_1)
Gépészeti rendszertechnika (NGB_KV002_1) 6. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/
A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei
A rezgések dinaikai vizsgálata a rezgések kialakulásának feltételei F e F Rezgés kialakulásához szükséges: Mozgásegyenlet: & F( & t kezdeti feltételek: ( v t & v( t & ( t Ha F F( akkor az erőtér konzervatív.
Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi
Tartalom Bevezetés az állapottér-elméletbe Irányítható alak Megfigyelhetőségi alak Diagonális alak Állapottér transzformáció 2018 1 A szabályozáselmélet klasszikus, BODE, NICHOLS, NYQUIST nevéhez kötődő,
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
GÉPEK DINAMIKÁJA 7.gyak.hét 1. Feladat
Széchenyi István Egyetem Alkalmazott Mechanika Műszaki Tudományi Kar Tanszék GÉEK DINAMIKÁJA 7.gyak.hét 1. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) 7.gyak.hét 1. feladat: RUGALMASAN ÁGYAZOTT
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
Rezgő testek. 48 C A biciklitől a világűrig
48 C A biciklitől a világűrig Anjuli Ahooja Corina Toma Damjan Štrus Dionysis Konstantinou Maria Dobkowska Miroslaw Los Učenca: Nandor Licker és Jagoda Bednarek C Rezgő testek A biciklitől a Length világűrig
Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!
Kérdések és feladatok rezgőmozgásokból Dr. Horváth András 0.1-es változat Tudnivalók Kedves Hallgató! Az alábbiakban egy válogatást közlünk az elmúlt évek vizsga- és ZH-feladataiból. Időnk és energiánk
Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1
Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása
Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István
Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)
Mérnöki alapok 10. előadás
Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.
Mechanika. Kinematika
Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat
Rugalmas tengelykapcsoló mérése
BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Budapesti Mőszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Jármőelemek és Hajtások Tanszék Jármőelemek és Hajtások Tanszék
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
Differenciálegyenletek december 13.
Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.
Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik
28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály
1. feladat a) A négyzet alakú vetítővászon egy oldalának hossza 1,2 m. Ahhoz, hogy a legnagyobb nagyításban is ráférjen a diafilm-kocka képe a vászonra, és teljes egészében látható legyen, ahhoz a 36 milliméteres
Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika ZH NÉV:.. 2018. október 18. Neptun kód:... g=10 m/s 2 Előadó: Márkus/Varga Az eredményeket a bekeretezett részbe be kell írni! 1. Egy m=3
Polimer alkatrészek méretezésének alapjai
Polimer alkatrészek méretezésének alapjai Polimer alkatrészek terhelésre adott válaszreakcióinak befolyásoló tényezői: - terhelés paramétereitől: o terhelés nagysága o terhelés jellege (statikus, dinamikus,
Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)
Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás
Gépészeti rendszertechnika (NGB_KV002_1)
Gépészeti rendszertechnika (NGB_KV002_1) 2. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/
(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely)
(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) Mérést végezte: Szalontai Gábor Mérőtárs neve: Nagy Dániel Mérés időpontja: 2012.11.22. Bevezető A hétköznapi és kézzelfogható
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs
Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső
Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)
Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények
Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó
Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:
GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat
Széchenyi István Egyetem Alkalmazott Mechanika Műszaki Tudományi Kar Tanszék GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) y k c S x x m x Adatok m kg c
Felvételi, 2017 július -Alapképzés, fizika vizsga-
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott
0. Teszt megoldás, matek, statika / kinematika
0. Teszt megoldás, matek, statika / kinematika Mechanika (ismétlés) statika, kinematika Dinamika, energia Áramlástan Reológia Optika find x Teszt: 30 perc, 30 kérdés Matek alapfogalmak: Adattípusok: Természetes,
Statikailag határozatlan tartó vizsgálata
Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
Zárójelentés a Gyümölcsfák csillapítási tulajdonságai rázáskor c. kutatási témáról
Zárójelentés a Gyümölcsfák csillapítási tulajdonságai rázáskor c. kutatási témáról Előzmények A farázás csillapító hatását az eddigi kutatásokban elhanyagolták. A gyümölcsfát ugyanis merev befogásúnak
4. Ingamozgás periodikus külső erő hatására
. Ingamozgás periodikus külső erő hatására.1. Fékezetlen ingamozgás periodikus külső erő hatására Fékezetlen lineáris matematikai inga Ha az ''+k =0 egenletre valamilen periodikus külső erő hat, akkor
Speciális mozgásfajták
DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális
Ejtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.
A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /
DR. BUDO ÁGOSTON ' # i. akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA. Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST
DR. BUDO ÁGOSTON ' # i akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST 1991 TARTALOMJEGYZÉK Bevezette 1.. A klasszikus mechanika feladata, érvényességi határai
Öveges korcsoport Jedlik Ányos Fizikaverseny 2. (regionális) forduló 8. o március 01.
Öveges korcsoport Jedlik Ányos Fizikaverseny. (regionális) forduló 8. o. 07. március 0.. Egy expander 50 cm-rel való megnyújtására 30 J munkát kell fordítani. Mekkora munkával nyújtható meg ez az expander
2.3 Newton törvények, mozgás lejtőn, pontrendszerek
Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
l 1 Adott: a 3 merev fogaskerékből álló, szabad rezgést végző rezgőrendszer. Adott továbbá
SZÉCHENYI ISTVÁN EGYETE ALKALAZOTT ECHANIKA TANSZÉK ECHANIKA-REZGÉSTAN GYAKORLAT (kidolgozta: Fehér Lajos tsz mérnök; Tarnai Gábor mérnök tanár; olnár Zoltán egy adj r Nagy Zoltán egy adj) Több szabadságfokú
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján
Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Rendszer és irányításelmélet Rendszerek idő és frekvencia tartományi vizsgálata Irányítástechnika Budapest, 29 2 Az előadás felépítése
A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p
Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,
2.1. Másodrendű homogén lineáris differenciálegyenletek. A megfelelő másodrendű homogén lineáris differenciálegyenlet általános alakja
2. Másodrendű skaláris differenciálegyenletek 19 2. Másodrendű skaláris differenciálegyenletek Legyen I R egy nyílt intervallum, p, q, f : I R. Az explicit másodrendű inhomogén lineáris skaláris differenciálegyenlet
Értékelési útmutató az emelt szint írásbeli feladatsorhoz
Értékelési útmutató az emelt szint írásbeli feladatsorhoz 1. C 1 pont 2. B 1 pont 3. D 1 pont 4. B 1 pont 5. C 1 pont 6. A 1 pont 7. B 1 pont 8. D 1 pont 9. A 1 pont 10. B 1 pont 11. B 1 pont 12. B 1 pont
Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika
Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós
Werner Miklós Antal május Harmonikusan rezgő tömegpont. 2. Anharmonikus rezgések harmonikus közelítése Elmélet...
Rezgések, kiegészítés Werner Miklós Antal 014. május 8. Tartalomjegyzék 1. Harmonikusan rezgő tömegpont 1. Anharmonikus rezgések harmonikus közelítése 3.1. Elmélet..............................................
Rezgőmozgás, lengőmozgás, hullámmozgás
Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus
Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1. (b) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 Síkhullámok végtelen kiterjedésű, szilárd izotróp közegekben (1) longitudinális hullám transzverzális
6. A Lagrange-formalizmus
Drótos G.: Fejezetek az elméleti mechanikából 6. rész 1 6. A Lagrange-formalizmus A Lagrange-formalizmus alkalmazásával bizonyos fizikai rendszerek mozgásegyenleteit írhatjuk fel egyszerű módon. Az alapvető