Járművek lengései. Gépjármű Futóművek II. Szabó Bálint

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Járművek lengései. Gépjármű Futóművek II. Szabó Bálint"

Átírás

1 Járművek lengései Gépjármű Futóművek II. Szabó Bálint 1

2 Bevezetés 2 2

3 Bevezetés Koordináta-rendszerek Gyakran alkalmazott koordináta rendszer 3 SAE koordináta rendszer 3

4 Bevezetés Dinamikai irányok felbontása Hosszirányú dinamika: hajtás, fékezés Keresztirányú dinamika: kanyarodás, kormányzás Függőleges dinamika: lengések Az egyes irányok nem függetlenek egymástól: Tapadási kör Gumiabroncs karakterisztika normálerő függése Függőleges dinamika mozgásai: Függőleges elmozdulás Bólintás Dőlés 4 4

5 Bevezetés Lengések, rezgések csoportosítása A jármű haladása során a különböző forrásból származó periodikus gerjesztések hatására periodikus mozgásformák, lengések, rezgések alakulnak ki. A lengéseket frekvencia tartomány szerint két csoportba sorolhatjuk: Vizuális lengések : 0 25 Hz Lengések Aurális lengések : 25 Hz 20 khz vibráció, akusztikus rezgések 5 5

6 Bevezetés Követelmények A futóművek lengéstani, rugózási szempontból az alábbi két követelményt kell kielégítenie: Utazási komfort, lengéskényelem Keréktalpponti erő stabilitása Lengéskényelem hatásmechanizmusa: 1. Gerjesztés 2. Jármű dinamikai válasza 3. Kialakuló lengések 4. Emberi érzékelés Keréktalpponti erő stabilitásának mechanizmusa: 1. Gerjesztés 2. Jármű dinamikai válasza 3. Keréktalpponti normálerő változás 6 4. Szlipkarakterisztikák eltolódása 6

7 Bevezetés Követelmények A keréktalpponti erő növekedésével a maximálisan átvihető erő degresszív mértékben növekszik csak 7 7

8 Lengéskényelem meghatározása 8 8

9 Lengéskényelmi vizsgálatok Lengéskényelem reprezentációja Az emberi szervezet a frekvencián kívül lengésgyorsulás érzékeny ezért a lengéskényelmi mutatók a frekvencia mellett a lengésgyorsulást is figyelembe veszik. Sajátfrekvencia Lengésgyorsulás-szórás (effektív lengésgyorsulás) VDI 2057 és ISO 2631 sz. ajánlás szerinti mutatók Gépjárművek spektrumanalízise Frekvenciakarakterisztikák Átviteli tényezők 9 9

10 Lengéskényelmi vizsgálatok Az emberi szervezet lengésérzékenysége Az emberi szervezet lengésérzékenysége frekvenciafüggő, ~ Hz-ig lengést, ~ Hz-ig főként a bőrfelületével rezgést érzékel. Az emberi szervezet különösen azokra a frekvenciákra érzékeny, melyeknél egyes testrészei rezonanciába jönnek. Ezeket lehetőleg kerülni kell. Az emberi szervezet sajátfrekvenciái: Fej: 1,8 2,0 Hz, 20 Hz Szív: 7,0 Hz Törzs: 6,0 8,0 Hz 10 Csípő: 2,5 3,0 Hz 10

11 Lengéskényelmi vizsgálatok Az emberi szervezet lengésérzékenysége Az emberi szervezet a séta és a futás által gerjesztett függőleges irányú lengésekhez hozzászokott. Ha a sajátfrekvencia: f 0 < 0,75 Hz, a szervezet tengeri betegséget, f 0 > 1,45 Hz, rázást érzékel. Javasolt sajátfrekvencia: f 0 ~ 0,75 1,45 Hz 11 A lengéskényelmi szempontból a javasolt sajátfrekvencia biztosítása szükséges de nem elégséges feltétel. 11

12 Lengéskényelmi vizsgálatok Lengésgyorsulás-szórás Sztochasztikus folyamat statisztikus jellemzésére használják. A frekvenciát nem veszi figyelembe. Lengések intenzitásának, a dinamikus igénybevételek jellemzésére alkalmas 12 12

13 Lengéskényelmi vizsgálatok VDI 2057 sz. ajánlás szerinti mutató A lengésgyorsulást és a lengésfrekvenciát egyaránt figyelembe veszi. Meghatározásának menete: A lengésgyorsulások időfüggvényének felvétele. A lengésgyorsulások energiasűrűség-függvényének létrehozása. A függőleges lengésgyorsulások-spektrumát tercoktávokra kell bontani Tercoktávonként meghatározni a lengésgyorsulás-szórásokat. A lengésgyorsulás-szórásokat frekvencia szerint súlyozva meg kell határozni a K i - parciális mutatókat. A parciális mutatókat kvadratikusan összegezve meghatározni a redu- kált K - mutatót. f f oktáv; f 2 = 3 2 f 1 - tercoktáv; k 1 2 f f f - középfrekv. ahol: 13 f 1 - alsó határ, f 2 - felső határ. 13

14 Lengéskényelmi vizsgálatok VDI 2057 sz. ajánlás szerinti mutató K i - parciális mutató K - redukált mutató D zi - lengésgyorsulás szórás, m/s 2 14 f k - tercoktáv középfrekvencia, Hz 14

15 Lengéskényelmi vizsgálatok VDI 2057 sz. ajánlás szerinti mutató Egészségkárosodás Munkavégzőképesség Kényelemérzet 15 15

16 Lengéskényelmi vizsgálatok ISO 2631 sz. szabvány szerinti mutató 1/ 2 ai 0.5 f ha 1Hz f 4Hz a 1 ha 4Hz f 8Hz i a f ha Hz f Hz i , 16 16

17 Lengéskényelmi vizsgálatok ISO 2631 sz. szabvány szerinti mutató Ha 8 órás az igénybevétel D ze D ze = 0,1 m/s 2 - fáradság nélkül elviselhető = 0,315 m/s 2 - munkavégzőképesség változatlan D ze = 0,630 m/s 2 - egészségkárosodás nélkül elviselhető 17 17

18 Lengéskényelmi vizsgálatok Frekvenciaanalízis Cél: A domináns lengések megjelenítése, az elhangolás elősegítése 18 18

19 Lengéskényelmi vizsgálatok Átviteli tényező VEZETŐÜLÉS FREKVENCIAKARAKTERISZTIKÁJA 20 mm-es gerjesztés Átviteli tényező = gerjesztett lengésgyorsulás/gerjesztő lengésgyorsulás 4 Átviteli tényező 19 3,5 3 2,5 2 1,5 1 0,5 0 Vezetőülés 20 mm-s gerjesztés 0 0,5 1 1,5 2 2,5 3 3,5 Frekvencia, Hz 19

20 Lengésgerjesztő útprofil 20 20

21 Lengésgerjesztő útprofil Komponensek A gépjármű függőleges irányú lengéseinek gerjesztésében döntő szerepet játszik a lengésgerjesztő útprofil. Az útfelület összetevői: Makroprofil (l > 100 m): Járműdinamikát és a tüzelőanyag-fogyasztást befolyásolja Mikroprofil (0.1 m < l < 100 m): A jármű függőleges lengését gerjeszti Felületi érdesség (l < 0.1 m): A tapadásra és a gumiabroncs kopására van hatással, az általa gerjesztett rezgéseket a gumiabroncs elnyeli A mikroprofilt a továbbiakban az egyszerűség kedvéért útprofilnak nevezzük

22 Lengésgerjesztő útprofil Útprofil leírása Útprofil: egy vagy több nyomvonalban a függőleges elmozdulás időfüggvényének 22 leírása 22

23 Lengésgerjesztő útprofil Útprofil leírása mint sztochasztikus folyamat A stochasztikus útprofil változása mint folyamat, jó közelítéssel normáleloszlású, stacionárius, és ergodikus. A stacionaritás ebben az esetben azt jelenti, hogy egy realizációt, az azonos minőségű út bármely szakaszán az eredmény megváltoztatása nélkül felvehetünk. Az ergodikusság azt jelenti, hogy az adott úttípus jellemzésére egy realizáció is elegendő

24 Lengésgerjesztő útprofil Sztochasztikus folyamatok értelmezése Sztochasztikus folyamatok jellemzése: Várható érték Szórás Autokorreláció függvény Teljesítmény sűrűség spektrum 24 24

25 Lengésgerjesztő útprofil Autokorreláció függvény Korreláció függvény: + R xy t = න x τ y t + τ dτ Autokorreláció függvény: + R xx t = න x τ x t + τ dτ Tulajdonságok A maximuma 0 időeltolás mellett van: a szórásnégyzet Páros függvény Periodikus függvény autokorreláció függvénye is periodikus, azonos periódussal 25 25

26 Lengésgerjesztő útprofil Teljesítmény sűrűség spektrum PSD: Power Spectral Density Az autokorreláció függvény fourier transzformáltja Dimenziója általánosan: W Hz A teljesítménysűrűség spektrum alatti terület a folyamat szórásnégyzete S ω = 1 2π න R t e iωt dt 26 S(ω): kétoldalas spektrum G(ω): egyoldalas spektrum 26

27 Lengésgerjesztő útprofil Útprofil PSD előállítása A valós útprofilok PSD reprezentációjából közelítő egyenleteket állítanak elő 27 27

28 Járművek lengéstani modelljei 28 28

29 Járművek lengéstani modelljei Modellek komplexitása Teljes járműmodell Egynyomú, többtest modell 29 29

30 ሷ Járművek lengéstani modelljei Egytömegű lengőrendszer sajátlengései Csillapítás nélkül mx ሷ + kx = 0 x + k m x = 0 Saját körfrekvencia: ω n = k m Megoldás: x t = A sin ω n t + φ Lengés periódusideje: T = 1 f n = 1 2πω n 30 30

31 Járművek lengéstani modelljei Egytömegű lengőrendszer sajátlengései Csillapítással Megoldások: Ha ξ < 1 mx ሷ + cx ሶ + kx = 0 x ሷ + c m + k m x = 0 x t = Ae c 2m t sin ω d t + φ Csillapítatlan saját körfrekvencia: ω n = Relatív csillapítás: ξ = c k m 2 mk Csillapított saját körfrekvencia: ωd = ω n 1 ξ 2 Ha Ha ξ = 1 ξ > 1 x t = A + Bt e c 2m t x t = Ae t τ 1 + Be t τ

32 Járművek lengéstani modelljei Egytömegű lengőrendszer gerjesztett lengései mx ሷ + cx ሶ + kx = cx g ሶ + kx g x g = A g sin ω g t Nagyítási függvény: T = A A g = 1 + 4ξ 2 r 2 1 r ξ 2 r 2 r = ω g ω n Csillapítatlan esetben 32 (ξ=0): T = 1 1 r 2 32

33 ሷ ሷ ሶ ሷ Járművek lengéstani modelljei Kéttömegű lengőrendszer m 1 x 1 + cx 1 ሶ cx 2 ሶ + k 2 x 1 k 2 x 2 + k 1 x 1 = 0 x 2 + cx 2 ሶ cx 1 ሶ + k 2 x 2 k 2 x 1 = 0 m 2 m 1 0 x 1ሷ ሷ 0 m 2 x2 + ሶ ሷ ሶ c c x 1ሶ + k 1 + k 2 k 2 c c x2 k 2 k 2 x 1 x 2 = 0 0 Mx + Cx + Kx = 0 Általános megoldás: x = Ae λt x = Aλe λt x = Aλ 2 e λt MAλ 2 + CAλ + KA = 0 Mλ 2 + Cλ + K A = 0 det Mλ 2 + Cλ + K = 0 Két szabadsági fok esetén is negyedfokú polinom numerikus megoldás 33 33

34 Járművek lengéstani modelljei Negyedjármű modell példa Rugózott tömeg (m 2 )= 300 kg Rugózatlan tömeg (m 1 )= 40 kg Felfüggesztés merevsége (k 2 )= 25 kn/m Gumiabroncs merevsége (k 1 )= 175 kn/m Csillapítási tényező (c)= 2 kns/m Rugózott tömeg csillapítatlan sajátfrekvenciája: Hz f n2 = 1 2π k 2 = 1 m 2 2π = 1.45 Hz 34 34

35 Járművek lengéstani modelljei Negyedjármű modell példa Rugózott tömeg (m 2 )= 300 kg Rugózatlan tömeg (m 1 )= 40 kg Felfüggesztés merevsége (k 2 )= 25 kn/m Gumiabroncs merevsége (k 1 )= 175 kn/m Csillapítási tényező (c)= 2 kns/m Rugózatlan tömeg csillapítatlan sajátfrekvenciája: f n1 = 1 2π k 1 + k 2 m 1 = 1 2π = Hz Hz 35 35

36 Járművek lengéstani modelljei Negyedjármű modell példa Egységugrás gerjesztés hatására kialakuló lengések csillapítás nélkül: Rugózott tömeg elmozdulás [m] Idő [s] 36 Rugózatlan tömeg elmozdulás [m] Idő [s] A modell hibái: Lineáris rugókarakterisztika a gumiabroncs esetében is Kerék nem válhat el a talajtól 36

37 Rugózott tömeg elmozdulás [m] Járművek lengéstani modelljei Negyedjármű modell példa Idő [s] 1 Csillapítás nélkül 0.5 Rugózatlan tömeg elmozdulás [m] Csillapítás hatása: Idő [s] Rugózott tömeg elmozdulás [m] Rugózott tömeg elmozdulás [m] Rugózott tömeg Rugózatlan elmozdulás tömeg [m] elmozdulás [m] Rugózatlan tömeg elmozdulás [m] Idő [s] Idő [s] Idő [s] Alulcsillapított Optimális csillapítás Idő [s] Túlcsillapított Idő [s] 37 lás [m] 0.15

38 Járművek lengéstani modelljei Rugókarakterisztikák 38 38

39 Járművek lengéstani modelljei Lengéscsillapító karakterisztikák 39 Ahol: 39

40 Járművek lengéstani modelljei Egynyomú járműmodell Négy szabadsági fok: Első és hátsó kerék függőleges mozgása (x 1, x 2 ) Kocsitest függőleges mozgása (x 0 ) Kocsitest bólintása (β) Kocsitest mozgásának leírása átírható az első és hátsó futómű bekötési pont függőleges elmozdulására: Mozgásegyenlet felírása Lagrange egyenlet alapján: d T T + D + U = 0 dt q i ሶ q i q i ሶ q i β = x 3 x 4 l x 0 = x 3l 2 + x 4 l 1 l 40 40

41 ሷ ሷ ሷ ሷ ሷ ሷ ሶ ሶ ሶ ሶ Járművek lengéstani modelljei Egynyomú járműmodell mozgásegyenlete Rugózott tömeg (kocsitest) mozgásegyenlete: M 1 M 2 x 3 + M 3 x 4 + c 3 x 4 + M 3 x 3 + c 4 l ahol: θ 2 M 1 = m 3 l 2 l θ 2 M 2 = m 3 l 2 l 1 l 2 + θ 2 M 3 = m 3 x 3 x 1 + k 3 x 3 x 1 = 0 x 4 x 2 + k 4 x 4 x 2 = 0 l 2 redukált tömegek θ = J az inerciasugár m Az egyes paraméterek a teljes járműre vonatkoznak! Rugózatlan tömegek (kerekek) mozgásegyenlete: m 1 m 2 41 x 1 + c 3 x 2 + c 4 x 1 ሶ x 2 ሶ x 3 ሶ + k 3 x 1 x 3 + c 1 x 1 ሶ x 4 ሶ + k 4 x 2 x 4 + c 2 x 2 ሶ ሶ h 1 t + k 1 x 1 h 1 t = 0 ሶ h 2 t + k 2 x 2 h 2 t = 0 41

42 ሷ ሷ ሷ ሷ ሷ ሷ ሶ ሶ ሶ ሶ ሶ ሶ ሶ ሶ Járművek lengéstani modelljei Egynyomú járműmodell mozgásegyenlete Az első és a hátsó felfüggesztés modellje a kocsitesten keresztül van összekötve, pontosabban a kapocs az M 3 redukált tömeg: M 1 M 2 x 3 + M 3 x 4 + c 3 x 4 + M 3 x 3 + c 4 x 3 x 1 + k 3 x 3 x 1 = 0 x 4 x 2 + k 4 x 4 x 2 = 0 Ha M 3 = 0, akkor kocsitest mozgásegyenlete két, független egyenletre esik szét: M 1 M 2 x 3 + c 3 x 4 + c 4 x 3 x 1 + k 3 x 3 x 1 = 0 x 4 x 2 + k 4 x 4 x 2 = 0 Ez akkor teljesül, ha: l 1 l 2 + θ 2 l 2 = 0 l 1 l 2 = θ 2 Tömegeloszlási tényező: 42 ε = θ2 l 1 l 2 Kiterjesztett feltétel: 0.8 ε

JÁRMŰDINAMIKA 2013 FUTÓMŰ-TERVEZÉS, JÁRMŰDINAMIKA C. TÁRGYHOZ

JÁRMŰDINAMIKA 2013 FUTÓMŰ-TERVEZÉS, JÁRMŰDINAMIKA C. TÁRGYHOZ JÁRMŰDINAMIKA 013 FUTÓMŰ-TERVEZÉS, JÁRMŰDINAMIKA C. TÁRGYHOZ 1 JÁRMŰDINAMIKA A járműdinamika témái Gépjárművek fékezése Gépjárművek lengései Gépjárművek stabilitása, kormányozhatósága I. FEJEZET GÉPJÁRMŰVEK

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

Gépészeti rendszertechnika (NGB_KV002_1)

Gépészeti rendszertechnika (NGB_KV002_1) Gépészeti rendszertechnika (NGB_KV002_1) 6. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

JKL rendszerek. Közúti járművek szerkezeti felépítése. Szabó Bálint

JKL rendszerek. Közúti járművek szerkezeti felépítése. Szabó Bálint JKL rendszerek Közúti járművek szerkezeti felépítése Szabó Bálint 1 Közúti járművek szerkezeti felépítése Tartalom Bevezetés Járműdinamika Gépjárművek hajtásrendszerei Gépjármű fékrendszerek 2 2 Bevezetés

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

Rugózott vezetőülés vizsgálata

Rugózott vezetőülés vizsgálata Rugózott vezetőülés vizsgálata Modellezés, identifikáció és lengéstani vizsgálat 1/3 Modell készítése Modell: egy rendszer / jelenség / fogalom egyszerűsített leképezése, működésének leírása Modell tárgya

Részletesebben

Gépjármű Diagnosztika. Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet

Gépjármű Diagnosztika. Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet Gépjármű Diagnosztika Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet 7. Előadás Lengéscsillapító diagnosztika Lengéscsillapítók feladata A gépjármű lengéscsillapítók hármas

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK Dr. Soumelidis Alexandros 2018.10.18. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérések

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ Oktatási Hivatal A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ 1./ Bevezetés Ha egy rezgésre képes rugalmas testet például ütéssel rezgésbe

Részletesebben

2.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések

2.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések 58. FEJEZET. EGY SZABADSÁGI FOKÚ LENGŐRENDSZEREK.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések.4.1. Súrlódási modell A Coulomb-féle súrlódási modellben a súrlódási erő a felületeket

Részletesebben

Rezgések és hullámok

Rezgések és hullámok Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő

Részletesebben

RENDSZERTECHNIKA 8. GYAKORLAT

RENDSZERTECHNIKA 8. GYAKORLAT RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.

Részletesebben

L-transzformáltja: G(s) = L{g(t)}.

L-transzformáltja: G(s) = L{g(t)}. Tartalom 1. Stabilitáselmélet stabilitás feltételei inverz inga egyszerűsített modellje 2. Zárt, visszacsatolt rendszerek stabilitása Nyquist stabilitási kritérium Bode stabilitási kritérium 2018 1 Stabilitáselmélet

Részletesebben

0.1. Lineáris rendszer definíciója

0.1. Lineáris rendszer definíciója Részlet Török János, Orosz László, Unger Tamás, Elméleti Fizika jegyzetéből.. Lineáris rendszer definíciója be linearis rendszer ki be bei ki i ki + ki be λki + be 2 2 λ. ábra. Lineáris rendszer. Mielőtt

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

TRAKTOROK LENGÉSJELENSÉGEI SEGÉDELSŐKERÉK- HAJTÁSNÁL, A VONTATÁSI JELLEMZŐK ALAKULÁSA

TRAKTOROK LENGÉSJELENSÉGEI SEGÉDELSŐKERÉK- HAJTÁSNÁL, A VONTATÁSI JELLEMZŐK ALAKULÁSA TRAKTOROK LENGÉSJELENSÉGEI SEGÉDELSŐKERÉK- HAJTÁSNÁL, A VONTATÁSI JELLEMZŐK ALAKULÁSA Doktori (PhD) értekezés tézisei Kovács Zoltán Gödöllő 01 A doktori iskola megnevezése: Műszaki Tudományi tudományága:

Részletesebben

2. témakör. Sztochasztikus, stacionárius és ergodikus jelek leírása idő és frekvenciatartományban

2. témakör. Sztochasztikus, stacionárius és ergodikus jelek leírása idő és frekvenciatartományban 2. témakör Sztochasztikus, stacionárius és ergodikus jelek leírása idő és frekvenciatartományban Bevezetés Egy összetett jel, amely nem feltétlen periodikus, de stabil amplitúdójó és frekvenciájú diszkrét

Részletesebben

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert

Részletesebben

Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata

Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása

Részletesebben

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK EZGÉSTAN GYAKOLAT Kidolozta: Dr. Na Zoltán eetemi adjunktus 5. feladat: Szabad csillapított rezőrendszer A c k ϕ c m k () q= q t m rúd c k Adott:

Részletesebben

Rezgőmozgás, lengőmozgás

Rezgőmozgás, lengőmozgás Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást

Részletesebben

Bevezetés az állapottér elméletbe: Állapottér reprezentációk

Bevezetés az állapottér elméletbe: Állapottér reprezentációk Tartalom Bevezetés az állapottér elméletbe: Állapottér reprezentációk vizsgálata 1. Példa az állapottér reprezentációk megválasztására 2. Átviteli függvény és állapottér reprezentációk közötti kapcsolatok

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések . REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

Kerékagymotoros Formula Student versenyautó menetdinamikai szimulációja

Kerékagymotoros Formula Student versenyautó menetdinamikai szimulációja bmemotion Kerékagymotoros Formula Student versenyautó menetdinamikai szimulációja Csortán-Szilágyi György Dorogi János Nagy Ádám Célunk Fő célunk: Villamos hajtású versenyautó tervezése és építése - részvétel

Részletesebben

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika jellemzőinek Rendszerek stabilitása és minőségi jellemzői. Soros kompenzátor. Irányítástechnika Budapest, 29 2 Az

Részletesebben

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához? Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban

Részletesebben

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy

Részletesebben

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika a Alapfogalmak, modellezési elvek. Irányítástechnika Budapest, 2009 2 Az előadás szerkezete a 1. 2. módszerei 3.

Részletesebben

AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi.

AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi. AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN várfalvi. IDÉZZÜK FEL A STACIONER HŐVEZETÉST q áll. t x áll. q λ t x t λ áll x. λ < λ t áll. t λ áll x. x HŐMÉRSÉKLETELOSZLÁS INSTACIONER ESETBEN Hőáram, hőmérsékleteloszlás

Részletesebben

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2 Rezgéstani alapok Diagnosztika 03 --- 1 A szinusz függvény π 3,14 3π 4,71 π 1,57 π 6,8 periódus : π 6,8 A szinusz függvény periódusának változása Diagnosztika 03 --- π sin t sin t π π sin 3t sin t π 3

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Alaptagok Nyquist és Bode diagramjai

Alaptagok Nyquist és Bode diagramjai Alaptagok Nyquist és Bode diagramjai Luspay Tamás, Bauer Péter BME Közlekedésautomatikai Tanszék 212. január 1. 1. Bevezetés - Átviteli függvény, frekvenciafüggvény Dinamikus rendszerek leírásának egyik

Részletesebben

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n

Részletesebben

Szakmai nap 2013. február r 7. Zrt. Magyar Államvasutak. Szolgáltat. stabilitása sa. a pálya-jármű kölcsönhatás kérdéskörének tükrében

Szakmai nap 2013. február r 7. Zrt. Magyar Államvasutak. Szolgáltat. stabilitása sa. a pálya-jármű kölcsönhatás kérdéskörének tükrében 213. február r 7. Magyar Államvasutak Zrt. Vasúti MérnM Vasúti jármj rművek keresztfutás-stabilit stabilitása sa a pályap lya-jármű kölcsönhatás kérdéskörének tükrt krében Kemény Dániel D György fejlesztőmérn

Részletesebben

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei A rezgések dinaikai vizsgálata a rezgések kialakulásának feltételei F e F Rezgés kialakulásához szükséges: Mozgásegyenlet: & F( & t kezdeti feltételek: ( v t & v( t & ( t Ha F F( akkor az erőtér konzervatív.

Részletesebben

Projektfeladatok 2014, tavaszi félév

Projektfeladatok 2014, tavaszi félév Projektfeladatok 2014, tavaszi félév Gyakorlatok Félév menete: 1. gyakorlat: feladat kiválasztása 2-12. gyakorlat: konzultációs rendszeres beszámoló a munka aktuális állásáról (kötelező) 13-14. gyakorlat:

Részletesebben

Görgős járműfékpadok 2. rész

Görgős járműfékpadok 2. rész Görgős járműfékpadok 2. rész Motorteljesítmény-mérés mérés görgős járműfékpadon dr. Nagyszokolyai Iván, BME Gépjárművek tanszék, 2008. motorteljesítmény BOSCH FLA (Funktions( Funktions- und Leistungs-Analyse

Részletesebben

Jelek és rendszerek - 4.előadás

Jelek és rendszerek - 4.előadás Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet

Részletesebben

BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Számítógépes Modellezés Házi Feladat Készítete: Magyar Bálint Dátum: 2008. 01. 01. A feladat kiírása A számítógépes modellezés c. tárgy házi feladataként

Részletesebben

Differenciálegyenlet rendszerek

Differenciálegyenlet rendszerek Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján

Részletesebben

Alaptagok Nyquist- és Bode-diagramjai

Alaptagok Nyquist- és Bode-diagramjai C Alaptagok Nyquist- és Bode-diagramjai C.1. Bevezetés - Átviteli függvény, frekvenciafüggvény Dinamikus rendszerek leírásának egyik módja az átviteli függvények segítségével történik. Az átviteli függvényeket

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Pro/ENGINEER Advanced Mechanica

Pro/ENGINEER Advanced Mechanica Pro/ENGINEER Advanced Mechanica 2009. június 25. Ott István www.snt.hu/cad Nagy alakváltozások Lineáris megoldás Analízis a nagy deformációk tartományában Jellemzı alkalmazási területek: Bepattanó rögzítı

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS Dr. Soumelidis Alexandros 2019.03.13. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT

Részletesebben

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

Rezgőmozgások. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

Rezgőmozgások. Horváth András SZE, Fizika és Kémia Tsz szeptember 29. Rezgőmozgások Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. , Egyirányú 2 / 66 Rezgőmozgásnak nevezünk egy mozgást, ha van a térnek egy olyan pontja, amihez a mozgást végző test többször

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

PÉLDÁK ERŐTÖRVÉNYEKRE

PÉLDÁK ERŐTÖRVÉNYEKRE PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,

Részletesebben

Mátrix-exponens, Laplace transzformáció

Mátrix-exponens, Laplace transzformáció 2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Versenyautó futóművek. Járműdinamikai érdekességek a versenyautók világából

Versenyautó futóművek. Járműdinamikai érdekességek a versenyautók világából Versenyutó futóművek Járműdinmiki érdekességek versenyutók világából Trtlom Bevezetés Alpfoglmk A gumibroncs Futómű geometri Átterhelődések Futómű kinemtik 2 Trtlom 2 Bevezetés Bevezetés Alpfoglmk A gumibroncs

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

Belebegési derivatívumok vumok meghatároz rozása szélcsatorna kísérlettel Hunyadi MátyM tyás tanárseg rsegéd Témavezető: Dr. Hegedűs s István egyetemi

Belebegési derivatívumok vumok meghatároz rozása szélcsatorna kísérlettel Hunyadi MátyM tyás tanárseg rsegéd Témavezető: Dr. Hegedűs s István egyetemi Belebegési derivatívumok vumok meghatároz rozása szélcsatorna kísérlettel Hunyadi MátyM tyás tanárseg rsegéd Témavezető: Dr. Hegedűs s István egyetemi tanár 009.05.05. Célkitűzés Mérés s bemutatása Következtetések

Részletesebben

1. Az üregsugárzás törvényei

1. Az üregsugárzás törvényei 1. Az üregsugárzás törvényei 1.1. A Wien féle eltolódási törvény és a Stefan-Boltzmann törvény Egy zárt, belül üres fémdoboz kis nyílása az úgynevezett abszolút fekete test. A nyílás elektromágneses sugárzást

Részletesebben

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

ELLENŐRZŐ KÉRDÉSEK. Váltakozóáramú hálózatok

ELLENŐRZŐ KÉRDÉSEK. Váltakozóáramú hálózatok ELLENŐRZŐ KÉRDÉSEK Váltakozóáramú hálózatok Háromfázisú hálózatok Miért használunk többfázisú hálózatot? Mutassa meg a háromfázisú rendszer fontosabb jellemzőit és előnyeit az egyfázisú rendszerrel szemben!

Részletesebben

AKTÍV TERHELÉSEK HATÁSA JÁRMŰ VÁZSZERKEZETEK DINAMIKUS IGÉNYBEVÉTELÉRE

AKTÍV TERHELÉSEK HATÁSA JÁRMŰ VÁZSZERKEZETEK DINAMIKUS IGÉNYBEVÉTELÉRE AKTÍV TERHELÉSEK HATÁSA JÁRMŰ VÁZSZERKEZETEK DINAMIKUS IGÉNYBEVÉTELÉRE HORV_-Í.TH S., SZŐKE D. Budapesti :\Iűszaki Egyetem, Közlekedésmérnöki Kar Mechanika Tanszék Bevezetés Járműszerkezetek dinamikai

Részletesebben

θ & új típusú differenciálegyenlet: vektormező egy körön lehetségesek PERIODIKUS MEGOLDÁSOK példa: legalapvetőbb modell az oszcillátorokra fixpont:

θ & új típusú differenciálegyenlet: vektormező egy körön lehetségesek PERIODIKUS MEGOLDÁSOK példa: legalapvetőbb modell az oszcillátorokra fixpont: 3. előadás & θ új típusú differenciálegyenlet: vektormező egy körön f ( θ ) lehetségesek PERIODIKUS MEGOLDÁSOK legalapvetőbb modell az oszcillátorokra példa: & θ sinθ θ & fixpont: θ & 0 θ θ & > 0 nyilak:

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

2. E L Ő A D Á S D R. H U S I G É Z A

2. E L Ő A D Á S D R. H U S I G É Z A Mechatronika alapjai 2. E L Ő A D Á S D R. H U S I G É Z A elmozdulás erő nyomaték elmozdulás erő nyomaték Mechanizmusok Mechanizmus: általánosságban: A gép mechanikus elven működő részei Definíció: A

Részletesebben

Alkalmazott spektroszkópia

Alkalmazott spektroszkópia Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp

Részletesebben

GÉPEK DINAMIKÁJA 7.gyak.hét 1. Feladat

GÉPEK DINAMIKÁJA 7.gyak.hét 1. Feladat Széchenyi István Egyetem Alkalmazott Mechanika Műszaki Tudományi Kar Tanszék GÉEK DINAMIKÁJA 7.gyak.hét 1. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) 7.gyak.hét 1. feladat: RUGALMASAN ÁGYAZOTT

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

Ingák. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József

Ingák. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József Ingák Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés A harmonikus oszcillátor

Részletesebben

Szeizmikus zaj és izoláció az Advanced LIGO detektorokban

Szeizmikus zaj és izoláció az Advanced LIGO detektorokban Szeizmikus zaj és izoláció az Advanced LIGO detektorokban Balogh András 2015. június 28. 1 1. A szeizmikus zaj hatásai[4] A Föld felszínére telepített gravitációs-hullám detektorok kikerülhetetlenül ki

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban

1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban 1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

Zajok és fluktuációk fizikai rendszerekben

Zajok és fluktuációk fizikai rendszerekben Zajok és fluktuációk fizikai rendszerekben Sztochasztikus rezonancia Makra Péter SZTE Kísérleti Fizikai Tanszék 2009-2010. őszi félév Változat: 0.1 Legutóbbi frissítés: 2009. november 4. Makra Péter (SZTE

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Ejtési teszt modellezése a tervezés fázisában

Ejtési teszt modellezése a tervezés fázisában Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,

Részletesebben

28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály

28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály 1. feladat a) A négyzet alakú vetítővászon egy oldalának hossza 1,2 m. Ahhoz, hogy a legnagyobb nagyításban is ráférjen a diafilm-kocka képe a vászonra, és teljes egészében látható legyen, ahhoz a 36 milliméteres

Részletesebben

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j) Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 8. A JELFELDOLGOZÁS ALAPJAI

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 8. A JELFELDOLGOZÁS ALAPJAI ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 8. A JELFELDOLGOZÁS ALAPJAI Dr. Soumelidis Alexandros 2018.11.22. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG A Fourier

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális

Részletesebben

Földrengésvédelem Példák 1.

Földrengésvédelem Példák 1. Rezgésidő meghatározása, válaszspektrum-módszer Budapesti Műszaki és Gazdaságtudományi Egyetem Szilárdságtani és Tartószerkezeti Tanszék 017. március 16. A példák kidolgozásához felhasznált irodalom: [1]

Részletesebben

Geofizikai kutatómódszerek I.

Geofizikai kutatómódszerek I. Geofizikai kutatómódszerek I. A gravitációs és mágneses kutatómódszer Dr. Szabó Norbert Péter egyetemi docens Miskolci Egyetem Geofizikai Intézeti Tanszék e-mail: norbert.szabo.phd@gmail.com 1. A gravitációs

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek

Részletesebben