Belebegési derivatívumok vumok meghatároz rozása szélcsatorna kísérlettel Hunyadi MátyM tyás tanárseg rsegéd Témavezető: Dr. Hegedűs s István egyetemi

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Belebegési derivatívumok vumok meghatároz rozása szélcsatorna kísérlettel Hunyadi MátyM tyás tanárseg rsegéd Témavezető: Dr. Hegedűs s István egyetemi"

Átírás

1 Belebegési derivatívumok vumok meghatároz rozása szélcsatorna kísérlettel Hunyadi MátyM tyás tanárseg rsegéd Témavezető: Dr. Hegedűs s István egyetemi tanár

2 Célkitűzés Mérés s bemutatása Következtetések analizálása Új j mérés m s konfiguráci ció megtervezése

3 Szélhat lhatások Kvázi zi-statikus állapot erőtényez nyező Dinamikus vizsgálat átviteli függvf ggvény aeroelasztikus hatások (öngerjesztett erők) derivatívumok vumok

4 A belebegés, flutter mh& + c h& + k h S&& α + c & α + k α = M α h h = α L Instabilitás s bekövetkeztekor: ω crit mozg h α mozgásfrekvencia crit kritikus szélsebess lsebesség h Jelenség g közelk zelítése: Egy keresztmetszet Merev keresztmetszet Két t szabadságfok = h 0 e α 0 h: függf ggőleges mozgás α: : csavarási si elfordulás L h : függf ggőleges aeroelasztikus erő M α : csavarási si aeroelasztikus nyomaték iω = α e crit iω t crit t

5 Aeroelasztikus erők Theodorsen: linearitás, additivitás,, vékony v sík s k lemezre Scanlan: alkalmazható egyéb b geometriára ra is H, A : aeroelasztikus derivatívumok vumok szélcsatorna vizsgálattal (Scanlan derivatívumok vumok) Egyszerűsítés: s: h = h e 0 iωt = α e α 0 iωt L h M = ρ α = ρ B KH B KA h& ( K ) + KH ( K ) + K H ( K ) h& B & α B & α α + K h B h ( K ) + KA ( K ) + K A ( K ) + K A B 3 α 4 3 H 4 aerodinamikus csillapítás aerodinamikus merevség

6 Scanlan derivatívumok vumok, Theodorsen megoldása Theodorsen: H derivatívumok Theodorsen: A derivatívumok A A A 3 A H H H 3 H red red Theodorsen: : elméleti leti megoldás s vékony, v sima lemezre Más s esetben: szélcsatorna vizsgálat

7 Szélcsatorna vizsgálat :00 léptl pték Erőltetett szf-ú mozgás Végtelen és félvégtelen kialakítás (közbens zbenső km, konzolvég) -6,, 0, 0, +6 megfújás Közel lamináris áramlás s (T( u 0,5%) Tehetetlenségi erők széler lerők k szétv tválasztásasa

8 Erőtényez nyezők

9 Derivatívumok vumok mérése erőltetett mozgás, szf szerint szétv tválasztva erőmérők, nyomatékm kmérők mozgásm smérők mintavételez telezés s 00 Hz h = h 0 e iωt = α e α 0 iωt

10 Szélcsatorna vizsgálat oszcilláló mozgás s frekvenciája f=,0;,5;,0;,5; 3,0 Hz szélsebess lsebesség =5; 0; 5; 0 m/s modell alaprajzi széless lessége: B=95 mm (:00 modell) erős mozgású állapot kvázi-állandó állapot red = f B

11 M z α=0 f= Hz f=,0 Hz f=,5 Hz =5 m/s =0 m/s M z -M z0 [Nm] elmozdulás s [mm] =0 m/s t [ms[ ms] t [ms[ ms]

12 Mz -M z0 [Nm] elmozdulás s [mm] =5 m/s =0 m/s M z α=0 f= Hz f=,5 Hz t [ms [ ms] t [ms [ ms]

13 Ff -F f0 [N] elmozdulás s [mm] =5 m/s =0 m/s F f α=0 f= Hz f=,5 Hz t [ms [ ms] t [ms [ ms]

14 M z α=0 f= Hz f=3 Hz =5 m/s M z -M z0 [Nm] alfa [fok] =0 m/s t [ms[ ms] t [ms[ ms]

15 F f α=0 f= Hz f=3 Hz =5 m/s F f -F f0 [N] alfa [fok] =0 m/s t [ms[ ms] t [ms[ ms]

16 α=0 f= Hz =0 m/s alfa [fok] t [ms [ ms] t [ms [ ms] Ff-Ff0f0 [N] F f M z Mz-Mz0z0 [Nm] alfa [fok] elmozdulás s [mm] elmozdulás s [mm]

17 Szélcsatorna vizsgálat javaslat Több mérés m s az értékesebb tartományban oszcilláló mozgás s frekvenciája f= 0,5;,;,0;,5; 3,0; 3,5; 4,0 Hz szélsebess lsebesség =4; 6; 9; 5 m/s modell alaprajzi széless lessége: :00-nál l nagyobb erős mozgású állapot kvázi-állandó állapot (korlát: méret, m tömeg/merevst meg/merevség) g) red = f B

18 Hiba lehetőségek Tervezési hiba szélsebess lsebesség, frekvencia, léptl pték, tömeg, t merevség Mérési hiba jel / zaj arány (tehetetlenség, din. nyomás) mechanikai, elektronikai zaj megfogás s kialakítása Feldolgozási hiba fáziskésés (időben állandó terheltségt gtől l függf ggően változv ltozó) erők értelmezése mért erők inerciális erők mért erők szélcsendben mért m erők

19 Hiba hatása Közelítő ellenőrz rzések szf-ú rendszeren. α=0, csak függf ggőleges eltolódás mh&& + c h h& + k h h = ρ B KH h& B & α h ( K ) + KH ( K ) + K H ( K ) + K H B 3 α 4 instabilitás s = látszólagos csillapítás s eltűnése aerodinamikus csillapítás aerodinamikus merevség δ s 4m π ρb ( ) =, 0 = H red ~0% a=0, 0-ból indított simítás 3,00,00,00 0,00 -,00 -,00-3,00-4,00-5,00-6,00-7,00-8,00 6,00 7,00 8,00 9,00 0,00,00,00 3,00 4,00 H H4 A A4 f =0,55 Hz ~0% red red = 7,07 = fb = crit red 5 m s

20 Derivatívumok vumok a=0, eredeti mérés 0.00 red a=0, eredeti mérés red = f B H H4 A A4 Hs H4s As A4s H H3 A A3 Hs H3s As A3s L h M = ρ α 3. fokú polinomos közelítés = ρ red = f B B KH B KA h& ( K ) + KH ( K ) + K H ( K ) h& B & α B & α α + K H h B h ( K ) + KA ( K ) + K A ( K ) + K A B 3 α 4 πf B π K = = red 4. fokú polinomos közelítés 3 4

21 Összefüggések Összefüggések derivatívumok vumok között ellenőrizhet rizhetőség mérési sorozat csökkent kkentésének nek lehetősége szerzőnk cd H = KH3 K H 4 = KH A = KA 3 A4 = KA nként nt változv ltozó összefüggések π πfb K = = red

22 Összefüggések a= Sim ított értékekből K H 4 = KH H4s -K H Sim ított értékekből H K = KH 3 Hs cd K K H3-Cd/K K = π red Sim ított értékekből A4 = KA Sim ított értékekből A = KA K A4s -K A K As K A3

23 Erőtényez nyező - derivatívum vum a=0 Végérték ellenőrzés K K H -.00 K^ A dcl/da dcm/da dc KH K L 0 dα K dcm K A 0 3 dα

24 Derivatívumok vumok a=-6, eredeti mérés red a=-6, eredeti mérés red H H4 A A4 Hs H4s As A4s H H3 A A3 Hs H3s As A3s L h M = ρ α 3. fokú polinomos közelítés = ρ red = f B B KH B KA h& ( K ) + KH ( K ) + K H ( K ) h& B & α B & α α + K H h B h ( K ) + KA ( K ) + K A ( K ) + K A B 3 α 4 πf B π K = = red 4. fokú polinomos közelítés 3 4

25 Összefüggések a=-6 Simított értékekből K H4s -K H H 4 = KH Simított értékekből K Hs K H3-Cd/K H = KH 3 cd K Simított értékekből A4 = KA Simított értékekből A = KA K A4s -K A K As K A3 π K = red Eltérések lehetséges oka: nemlineáris kapcsolat a szerkezet mozgása és s az aeroelasztikus erők k között k

26 Erőtényez nyező - derivatívum vum a=-6 Végérték ellenőrzés K K H K^ A3 dcl/da dcm/da K KH A 3 K dcl 0 dα K dcm 0 dα

27 Erőtényez nyezők

28 Összefoglaló Értékes, új j mérési m tartomány kijelölése Mérési hiba minimalizálása (méréstechnika) Feldolgozási hiba csökkent kkentése Linearitás, additivitás ellenőrz rzése többlett bblet-kísérlettel Eredmények összevetése se meglévő összefüggésekkel (esetleg: mérések m számának csökkent kkentése) Modell megfogási/mozgat si/mozgatási helyeinek széthúzása

A belebegés hatása hidak merevítőtartójának elmozdulásaira turbulens szélben

A belebegés hatása hidak merevítőtartójának elmozdulásaira turbulens szélben Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar Hidak és Szerkezetek Tanszék A belebegés hatása hidak merevítőtartójának elmozdulásaira turbulens szélben PhD értekezés tézisfüzete Hunyadi

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Hangterjedés akadályozott terekben

Hangterjedés akadályozott terekben Hangterjedés akadályozott terekben Hangelnyelés, hanggátlás: hangszigetelés Augusztinovicz Fülöp segédlet, 2014. Szakirodalom P. Nagy József: A hangszigetelés elmélete és gyakorlata Akadémiai Kiadó, Budapest,

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

XI. MAGYAR MECHANIKAI KONFERENCIA MaMeK, 2011 Miskolc, augusztus

XI. MAGYAR MECHANIKAI KONFERENCIA MaMeK, 2011 Miskolc, augusztus XI. MAMEK 011 MISKOLC XI. MAGYAR MECHANIKAI KONFERENCIA MaMeK, 011 Miskolc, 011. augusztus 9-31. RGALMASAN FELFÜGGESZTETT HÍDMODELLRE HATÓ AERODINAMIKAI ERŐK KÍSÉRLETI MEGHATÁROZÁSA MONTE CARLO MÓDSZERREL

Részletesebben

a NAT /2006 számú akkreditálási okirathoz

a NAT /2006 számú akkreditálási okirathoz Nemzeti Akkreditáló Testület MELLÉKLET a számú akkreditálási okirathoz Az AEROPLEX Közép-Európai Légijármû Mûszaki Központ Kft. tevékenységi területe: nagyfrekvenciás paraméterek (frekvencia, teljesítmény,

Részletesebben

Mérnöki alapok 11. előadás

Mérnöki alapok 11. előadás Mérnöki alapok 11. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.

Részletesebben

Az M0 Megyeri híd próbaterhelése Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke

Az M0 Megyeri híd próbaterhelése Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke Az M0 Megyeri híd próbaterhelése Dr. Dunai László egyetemi tanár BME, Próbaterhelési terv - kidolgozás Balparti ártéri híd - 2 híd, BME Céh Zrt. Jobbparti ártéri híd - 2 híd, BME Céh Zrt. Szentendrei-sziget

Részletesebben

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz Nemzeti kkreditáló Testület RÉSZLETEZŐ OKIRT a NT--016/ nyilvántartási sú akkreditált státuszhoz z EROPLEX Közép-Európai Légijármű Műszaki Központ Kft. Kalibráló Labor (1185 Budapest, Liszt Ferenc Nemzetközi

Részletesebben

Rugalmasan ágyazott gerenda. Szép János

Rugalmasan ágyazott gerenda. Szép János Rugalmasan ágyazott gerenda vizsgálata AXIS VM programmal Szép János 2013.10.14. LEMEZALAP TERVEZÉS 1. Bevezetés 2. Lemezalap tervezés 3. AXIS Program ismertetés 4. Példa LEMEZALAPOZÁS Alkalmazás módjai

Részletesebben

Földrengésvédelem Példák 1.

Földrengésvédelem Példák 1. Rezgésidő meghatározása, válaszspektrum-módszer Budapesti Műszaki és Gazdaságtudományi Egyetem Szilárdságtani és Tartószerkezeti Tanszék 017. március 16. A példák kidolgozásához felhasznált irodalom: [1]

Részletesebben

y ij e ij BIOMETRIA let A variancia-anal telei Alapfogalmak 2. Alapfogalmak 1. ahol: 7. Előad Variancia-anal Lineáris modell ltozó bontását t jelenti.

y ij e ij BIOMETRIA let A variancia-anal telei Alapfogalmak 2. Alapfogalmak 1. ahol: 7. Előad Variancia-anal Lineáris modell ltozó bontását t jelenti. Elmélet let BIOMETRIA 7. Előad adás Variancia-anal Lineáris modellek A magyarázat a függf ggő változó teljes heterogenitásának nak két k t részre r bontását t jelenti. A teljes heterogenitás s egyik része

Részletesebben

Talajok összenyom sszenyomódása sa és s konszolidáci. ció. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Talajok összenyom sszenyomódása sa és s konszolidáci. ció. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés Talajok összenyom sszenyomódása sa és s konszolidáci ció Dr. Mócz M czár r Balázs BME Geotechnikai Tanszék Miért fontos? BME Geotechnikai Tanszék Miért fontos? BME Geotechnikai Tanszék Talajok összenyomhatósági

Részletesebben

Dinamika. p = mυ = F t vagy. = t

Dinamika. p = mυ = F t vagy. = t Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A

Részletesebben

STATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm)

STATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm) Normális eloszlás sűrűségfüggvénye STATISZTIKA 9. gyakorlat Konfidencia intervallumok f σ π ( µ ) σ ( ) = e /56 p 45% 4% 35% 3% 5% % 5% % 5% Normális eloszlás sűrűségfüggvénye % 46 47 48 49 5 5 5 53 54

Részletesebben

XXI. NEMZETKÖZI GÉPÉSZETI TALÁLKOZÓ

XXI. NEMZETKÖZI GÉPÉSZETI TALÁLKOZÓ XXI. NEMZETKÖZI GÉPÉSZETI TALÁLKOZÓ Szaszák Norbert II. éves doktoranduszhallgató, Dr. Szabó Szilárd Miskolci Egyetem, Áramlás- és Hőtechnikai Gépek Tanszéke 2013. Összefoglaló Doktori téma: turbulenciagenerátorok

Részletesebben

Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed

Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed Sugárzások mechanikai Nem ionizáló sugárzások Ionizálo sugárzások elektromágneses elektromágneses részecske Hang és ultrahang IH hallható hang UH alfa sugárzás béta sugárzás rádió hullámok infravörös fény

Részletesebben

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015. Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő

Részletesebben

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH /2014 nyilvántartási számú (4) akkreditált státuszhoz

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH /2014 nyilvántartási számú (4) akkreditált státuszhoz MÓDOSÍTOTT RÉSZLETEZŐ OKIRT (1) a NH016/ nyilvántartási számú (4) akkreditált státuszhoz EROPLEX KözépEurópai Légijármű Műszaki Központ Kft. Kalibráló Labor (1185 Budapest, Liszt Ferenc Nemzetközi repülőtér)

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

RÉSZLETEZŐ OKIRAT (1) a NAH-0162/2018 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (1) a NAH-0162/2018 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (1) a NAH-0162/2018 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: AEROPLEX Közép-Európai Kft. Kalibráló Labor 1185 Budapest Liszt Ferenc Nemzetközi

Részletesebben

DFTH november

DFTH november Kovács Ernő 1, Füves Vktor 2 1,2 Elektrotechnka és Elektronka Tanszék Mskolc Egyetem 3515 Mskolc-Egyetemváros tel.: +36-(46)-565-111 mellék: 12-16, 12-18 fax : +36-(46)-563-447 elkke@un-mskolc.hu 1, elkfv@un-mskolc.hu

Részletesebben

AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi.

AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi. AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN várfalvi. IDÉZZÜK FEL A STACIONER HŐVEZETÉST q áll. t x áll. q λ t x t λ áll x. λ < λ t áll. t λ áll x. x HŐMÉRSÉKLETELOSZLÁS INSTACIONER ESETBEN Hőáram, hőmérsékleteloszlás

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG

Részletesebben

Tartalom. Robusztus stabilitás Additív hibastruktúra Multiplikatív hibastruktúra

Tartalom. Robusztus stabilitás Additív hibastruktúra Multiplikatív hibastruktúra Tartalom Robusztus stabilitás Additív hibastruktúra Multiplikatív hibastruktúra 2015 1 Robusztus stabilitás Szabályozási rendszer tervezésének gyakorlati problémája az, hogy az aktuális rendszer G(s) átviteli

Részletesebben

Használhatósági határállapotok. Alakváltozások ellenőrzése

Használhatósági határállapotok. Alakváltozások ellenőrzése 1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)

Részletesebben

Nyomás a dugattyúerők meghatározásához 6,3 bar Ismétlési pontosság

Nyomás a dugattyúerők meghatározásához 6,3 bar Ismétlési pontosság iniszán, Sorozat SC-G-P/PE 16-25 mm Kettős működésű mágneses dugattyúval Csillapítás: pneumatikus Easy 2 Combine- Alkalmas Két dugattyúval Integrált edium Performance golyós sínvezetékkel 1 Környezeti

Részletesebben

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? .. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.

Részletesebben

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban

Részletesebben

Műszaki Tudományi Kar Szerkezetépítési és Geotechniaki Tanszék szervezésében TMDK tábor

Műszaki Tudományi Kar Szerkezetépítési és Geotechniaki Tanszék szervezésében TMDK tábor Talajok és szerkezetek dinamikai vizsgálata szeizmikus tervezéshez tudományos diákkör keretében című tehetséggondozó tábor 4. CSOPORT HALADASI NAPLÓ 2. Mérés címe: Acél konzolos gerenda dinamikus vizsgálata

Részletesebben

Geofizikai kutatómódszerek I.

Geofizikai kutatómódszerek I. Geofizikai kutatómódszerek I. A gravitációs és mágneses kutatómódszer Dr. Szabó Norbert Péter egyetemi docens Miskolci Egyetem Geofizikai Intézeti Tanszék e-mail: norbert.szabo.phd@gmail.com 1. A gravitációs

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

3. Hangfrekvenciás mechanikai rezgések vizsgálata

3. Hangfrekvenciás mechanikai rezgések vizsgálata 3. Hangfrekvenciás mechanikai rezgések vizsgálata Tóth Bence fizikus,. évfolyam 005.03.04. péntek délelőtt beadva: 005.03.. . A mérés első részében a megvastagított végű rúd (a D jelű) felharmonikusait

Részletesebben

Intelligens irányítások

Intelligens irányítások Intelligens irányítások Fuzzy következtető rendszerek Ballagi Áron Széchenyi István Egyetem Automatizálási Tsz. 1 Fuzzy következtető rendszer Fuzzy következtető Szabálybázis Fuzzifikáló Defuzzifikáló 2

Részletesebben

15kA / EN 60947-2 szerint Kioldási jelleggörbék: Védettség: elõlapon (piros/zöld érintkezõnként) Csatlakoztatható vezeték: 1-25mm 2

15kA / EN 60947-2 szerint Kioldási jelleggörbék: Védettség: elõlapon (piros/zöld érintkezõnként) Csatlakoztatható vezeték: 1-25mm 2 KISMEGSZAKÍTÓK, BMS0 KIVITEL, 10kA BMS0 kismegszakítók 12 MÛSZAKI ADATOK Névleges feszültség: 230V / 400V AC Névleges frekvencia: 50Hz / 60Hz Névleges DC feszültség: max. 48V DC Környezeti hõmérséklet:

Részletesebben

Szivattyú-csővezeték rendszer rezgésfelügyelete. Dr. Hegedűs Ferenc

Szivattyú-csővezeték rendszer rezgésfelügyelete. Dr. Hegedűs Ferenc Szivattyú-csővezeték rendszer rezgésfelügyelete Dr. Hegedűs Ferenc (fhegedus@hds.bme.hu) 1. Feladat ismertetése Rezgésfelügyeleti módszer kidolgozása szivattyúk nyomásjelére alapozva Mérési környezetben

Részletesebben

Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai

Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Mona Tamás Időjárás előrejelzés speci 3. előadás 2014 Differenciál, differencia Mi a különbség f x és df dx között??? Differenciál, differencia

Részletesebben

Rákóczi híd próbaterhelése

Rákóczi híd próbaterhelése Rákóczi híd próbaterhelése Dr. Kövesdi Balázs egyetemi docens, BME Dr. Dunai László egyetemi tanár, BME Próbaterhelés célja - programja Cél: Villamos forgalom elindítása előtti teherbírás ellenőrzése helyszíni

Részletesebben

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2010.04.09. VASBETON ÉPÜLETEK MEREVÍTÉSE Az épületeink vízszintes terhekkel szembeni ellenállását merevítéssel biztosítjuk. A merevítés lehetséges módjai: vasbeton

Részletesebben

Földstatikai feladatok megoldási módszerei

Földstatikai feladatok megoldási módszerei Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek

Részletesebben

Tecsound anyagok használata hanggátló szerkezetekben

Tecsound anyagok használata hanggátló szerkezetekben Tecsound anyagok használata hanggátló szerkezetekben 1 Tartalom A hanggátlásról általában A terjedési utak, zavarforrások Tecsound a gyakorlatban Összehasonlítás Összefoglaló 2 A hanggátlásról általában

Részletesebben

RÉSZLETEZŐ OKIRAT (2) a NAH /2015 nyilvántartási számú 2) akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (2) a NAH /2015 nyilvántartási számú 2) akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (2) a NAH20133/2015 nyilvántartási számú 2) akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: KVALIFIK Kft. Kalibráló Laboratórium 1118 Budapest, Sasadi út 78. 2) Akkreditálási

Részletesebben

Alj alatti betétek (USP) Daczi László

Alj alatti betétek (USP) Daczi László Alj alatti betétek (USP) Daczi László 2009.11.28. Az elıadás tartalma: Az USP célja Az USP története Rendelkezésre álló irodalom Tapasztalatok ismertetése Hazai alkalmazás Összefoglalás Az USP célja: -

Részletesebben

Nyomás a dugattyúerők meghatározásához 6,3 bar Ismétlési pontosság

Nyomás a dugattyúerők meghatározásához 6,3 bar Ismétlési pontosság 8-25 mm Kettős működésű mágneses dugattyúval Csillapítás: elasztikus Easy 2 Combine- 1 Környezeti hőmérséklet min./max. +0 C / +60 C Közeg Sűrített levegő Részecskeméret max. 5 µm A sűrített levegő olajtartalma

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

H01 TEHERAUTÓ ÉS BUSZMODELL SZÉLCSATORNA VIZSGÁLATA

H01 TEHERAUTÓ ÉS BUSZMODELL SZÉLCSATORNA VIZSGÁLATA H01 TEHERAUTÓ ÉS BUSZMODELL SZÉLCSATORNA VIZSGÁLATA 1. A mérés célja A mérési feladat moduláris felépítésű járműmodellen a c D ellenállástényező meghatározása különböző kialakítások esetén, szélcsatornában.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint ÉETTSÉGI VIZSGA. május. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ NEMZETI EŐOÁS MINISZTÉIM Egyszerű, rövid feladatok

Részletesebben

Tengelykapcsoló. 2018/2019 tavasz

Tengelykapcsoló. 2018/2019 tavasz Jármű és s hajtáselemek I. Tengelykapcsoló Török k István 2018/2019 tavasz TENGELYKAPCSOL KAPCSOLÓK 2 1. Besorolás Nyomatékátvivő elemek tengelyek; tengelykapcsolók; vonóelemes hajtások; gördülőelemes

Részletesebben

Fotovillamos és fotovillamos-termikus modulok energetikai modellezése

Fotovillamos és fotovillamos-termikus modulok energetikai modellezése Fotovillamos és fotovillamos-termikus modulok energetikai modellezése Háber István Ervin Nap Napja Gödöllő, 2016. 06. 12. Bevezetés A fotovillamos modulok hatásfoka jelentősen függ a működési hőmérséklettől.

Részletesebben

TERMÉKSZIMULÁCIÓ I. 9. elıadás

TERMÉKSZIMULÁCIÓ I. 9. elıadás TERMÉKSZIMULÁCIÓ I. 9. elıadás Dr. Kovács Zsolt egyetemi tanár Végeselem típusok Elemtípusok a COSMOSWorks Designer-ben: Lineáris térfogatelem (tetraéder) Kvadratikus térfogatelem (tetraéder) Lineáris

Részletesebben

A pneumatika építőelemei 1.

A pneumatika építőelemei 1. A pneumatika építőelemei 1. A pneumatikában alkalmazott építőelemek és működésük végrehajtó elemek (munkahengerek) PTE PMMFK 1 PTE PMMFK 2 PTE PMMFK 3 Egyszeres működésű henger rugós visszatérítéssel Egyszeres

Részletesebben

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának

Részletesebben

JUMO dtrans p30 nyomástávadó. Típus: Rövid leírás. Mőszaki adatok

JUMO dtrans p30 nyomástávadó. Típus: Rövid leírás. Mőszaki adatok JUMO Hungária Mérés és Szabályozástechnika Kft. Tel/fax : + 36 1 467 0835 1147 Budapest, Öv u. 143. + 36 1 467 0840 Kelet-magyarországi Iroda: 3980 Sátoraljaújhely, Dókus u. 21. Telefon: + 36 47 521 206

Részletesebben

4/26/2016. Légcsatorna hálózatok. Csillapítás. Hangterjedés, hangelnyelés légcsatorna hálózatokban

4/26/2016. Légcsatorna hálózatok. Csillapítás. Hangterjedés, hangelnyelés légcsatorna hálózatokban Légcsatorna hálózatok Csillapítás Evidenciák Hol helyezzük el a felszálló és ejtő vezetékeket? Falban Falhoz rögzítve szabadon Aknában A bilincs és a cső között van-e hanglágy anyag? Szeleptányér rezgése,

Részletesebben

A.2. Acélszerkezetek határállapotai

A.2. Acélszerkezetek határállapotai A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)

Részletesebben

ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ

ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ SIMONEK PÉTER KONZULENS: DR. OROSZ GYÖRGY MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK 2017. MÁJUS 10. CÉLKITŰZÉS Tesztpanel készítése műveleti erősítős

Részletesebben

Mérésadatgyűjtés, jelfeldolgozás.

Mérésadatgyűjtés, jelfeldolgozás. Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

L-transzformáltja: G(s) = L{g(t)}.

L-transzformáltja: G(s) = L{g(t)}. Tartalom 1. Stabilitáselmélet stabilitás feltételei inverz inga egyszerűsített modellje 2. Zárt, visszacsatolt rendszerek stabilitása Nyquist stabilitási kritérium Bode stabilitási kritérium 2018 1 Stabilitáselmélet

Részletesebben

MODELLEZÉS - SZIMULÁCIÓ

MODELLEZÉS - SZIMULÁCIÓ Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

-1- TITEK RUGALMAS TENGELYKAPCSOLÓK Miskolc, Kiss Ernő u telefon (46) fax (46)

-1- TITEK RUGALMAS TENGELYKAPCSOLÓK Miskolc, Kiss Ernő u telefon (46) fax (46) -1- TITEK RUGALMAS TENGELYKAPCSOLÓK 3531 Miskolc, Kiss Ernő u. 23. e-mail axicon@axiconkft.hu telefon (46) 533-463 fax (46) 533-464 2 A TITEK tengelykapcsoló hajtómotorok és gépek közötti forgatónyomaték

Részletesebben

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1 MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

24 VAC (3 VA), 100 115 VAC (4 VA), 200 230 VAC (5 VA) Maximális névleges bemeneti érték 10 100%-a

24 VAC (3 VA), 100 115 VAC (4 VA), 200 230 VAC (5 VA) Maximális névleges bemeneti érték 10 100%-a K8AB-AS Egyfázisú áramrelé Ezek az egyfázisú áramrelék a túláramok és áramesések figyelésére szolgálnak. Egyetlen relé lehetővé teszi a kézi és az automatikus nyugtázást. Az indítászárolási és a kapcsolási

Részletesebben

Szenzorok a. Bártfai Krisztián. Department of Vehicles Manufacturing and Repairing. Budapest University of Technology and Economics

Szenzorok a. Bártfai Krisztián. Department of Vehicles Manufacturing and Repairing. Budapest University of Technology and Economics Szenzorok a rezgésm smérésbensben Bártfai Krisztián Bevezetés A szenzorok szerepe a rezgésm smérésbensben Termelés s minőségi és s biztonsági követelmk vetelményei: Rezgésvizsg svizsgálat fontossága Forgógépek

Részletesebben

Ψ - 1/v 2 2 Ψ/ t 2 = 0

Ψ - 1/v 2 2 Ψ/ t 2 = 0 ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;

Részletesebben

Ejtési teszt modellezése a tervezés fázisában

Ejtési teszt modellezése a tervezés fázisában Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,

Részletesebben

Akusztika hanggátlás. Dr. Reis Frigyes elıadásának felhasználásával

Akusztika hanggátlás. Dr. Reis Frigyes elıadásának felhasználásával Akusztika hanggátlás Dr. Reis Frigyes elıadásának felhasználásával Mirıl van szó? A szerkezetet egyik oldalán valamilyen hatás éri - a levegıben terjedı hang (longitudinális hullámok), amelyek rezgésbe

Részletesebben

Szabályozó áramlásmérővel

Szabályozó áramlásmérővel Méretek Ød Ødi l Leírás Alkalmazási terület Az áramlásmérő felhasználható szabályozásra és folyamatos áramlásmérésre is. Állandó beépítésre készült, így már a tervezési fázisban specifikálni kell. Szerelési,

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.

Részletesebben

Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv

Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv Lódi Péter(D1WBA1) 2015 Március 18. Bevezetés: Mérés helye: PPKE-ITK 3. emeleti 321-es Mérőlabor Mérés ideje: 2015.03.25. 13:15-16:00 Mérés

Részletesebben

A vizsgálatok eredményei

A vizsgálatok eredményei A vizsgálatok eredményei A vizsgált vetőmagvak és műtrágyák nagy száma az eredmények táblázatos bemutatását teszi szükségessé, a legfontosabb magyarázatokkal kiegészítve. A közölt adatok a felsorolt publikációkban

Részletesebben

7H sorozat - Kapcsolószekrények fűtése

7H sorozat - Kapcsolószekrények fűtése 7H - Kapcsolószekrények fűtése (10 550) W Tápfeszu ltség vagy 230 V AC (50/60 Hz) Kettős szigetelésű műanyag készu lékház Alacsony felu leti hőmérséklet Vezetőképes részek érintése ellen védett kialakítás

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Az optikai szálak. FV szálak felépítése, gyakorlati jelenségek

Az optikai szálak. FV szálak felépítése, gyakorlati jelenségek Az optikai szálak FV szálak felépítése, gyakorlati jelenségek Egy kis történelem 1. - 1930 Norman R. French szabadalma optikai távbeszélő rendszerre (merev üvegrudak kötege) - 1950-es évek: 1-1,5m hosszú

Részletesebben

Mauell gyártmányú hibajelz relék

Mauell gyártmányú hibajelz relék Mauell gyártmányú hibajelz relék A hibajelz relék különböz villamos eszközök (pl. magszakító, szakaszoló, transzformátor, generátor stb.) rendellenes üzemállapotainak, mechanikai, fény és villamos távjelzéseire

Részletesebben

Mérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése

Mérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése Tanév, félév 2010-11 I. félév Tantárgy Áramlástan GEÁTAG01 Képzés főiskola (BSc) Mérés A Nap Hét A mérés dátuma 2010 Dátum Pontszám Megjegyzés Mérési jegyzőkönyv M1 számú mérés Testek ellenállástényezőjének

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

Alita lineáris levegőpumpák _

Alita lineáris levegőpumpák _ _ 1.1_Standard pumpamodellek 1.2_Nyomás- és vákuummodellek 1.3_OEM - pumpák sorozata Air and Vacuum Components 1 _ A hatékony sűrítettlevegő-termelést biztosító Alita lineáris levegőpumpák tervezésekor

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

egyetemi tanár, SZTE Optikai Tanszék

egyetemi tanár, SZTE Optikai Tanszék Hullámtan, hullámoptika Szabó Gábor egyetemi tanár, SZTE Optikai Tanszék Hullámok Transzverzális hullám Longitudinális hullám Síkhullám m matematikai alakja Tekintsünk nk egy, az x tengely mentén n haladó

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális

Részletesebben

Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék

Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Fűtési rendszerek hidraulikai méretezése Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Hidraulikai méretezés lépései 1. A hálózat kialakítása, alaprajzok, függőleges

Részletesebben

Dr.Tóth László

Dr.Tóth László Szélenergia Dr.Tóth László Dr.Tóth László Dr.Tóth László Dr.Tóth László Dr.Tóth László Amerikai vízhúzó 1900 Dr.Tóth László Darrieus 1975 Dr.Tóth László Smith Putnam szélgenerátor 1941 Gedser Dán 200 kw

Részletesebben

Kerékagymotoros Formula Student versenyautó menetdinamikai szimulációja

Kerékagymotoros Formula Student versenyautó menetdinamikai szimulációja bmemotion Kerékagymotoros Formula Student versenyautó menetdinamikai szimulációja Csortán-Szilágyi György Dorogi János Nagy Ádám Célunk Fő célunk: Villamos hajtású versenyautó tervezése és építése - részvétel

Részletesebben

FÖLDRAJZI HELYMEGHATÁROZ ÉGBOLTON

FÖLDRAJZI HELYMEGHATÁROZ ÉGBOLTON TÁJÉKOZÓDÁS S A FÖLDÖN TÉRBEN ÉS ID BEN Készítette: Mucsi Zoltán FÖLDRAJZI HELYMEGHATÁROZ ROZÁS S AZ ÉGBOLTON A NAP, A CSILLAGOK ÉS S A HOLD LÁTSZL TSZÓLAGOS MOZGÁSAI AZ ÓKOR ÓTA LÁTÓHATÁR(HORIZONT): AZ

Részletesebben

RC tag mérési jegyz könyv

RC tag mérési jegyz könyv RC tag mérési jegyz könyv Mérést végezte: Csutak Balázs, Farkas Viktória Mérés helye és ideje: ITK 320. terem, 2016.03.09 A mérés célja: Az ELVIS próbapanel és az ELVIS m szerek használatának elsajátítása,

Részletesebben

A mágneses szuszceptibilitás vizsgálata

A mágneses szuszceptibilitás vizsgálata Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő: 2012.12.13 A mágneses szuszceptibilitás vizsgálata 1.1 Mérés elve Anyagokat mágneses térbe helyezve, a tér hatására az anygban mágneses dipólusmomentum

Részletesebben