Intelligens irányítások
|
|
- Vince Hegedűs
- 6 évvel ezelőtt
- Látták:
Átírás
1 Intelligens irányítások Fuzzy következtető rendszerek Ballagi Áron Széchenyi István Egyetem Automatizálási Tsz. 1
2 Fuzzy következtető rendszer Fuzzy következtető Szabálybázis Fuzzifikáló Defuzzifikáló 2
3 Fuzzy következtető rendszer A rendszer felépítésének és elemeinek bemutatása egy példa alapján (Matlab borravaló példa): Az átlag borravaló 15 %, eltérés (5-5 %) a kiszolgálás és az étel minősőgének függvényében történik. A minőség 0 és 10 között pontozott, 10 a legjobb, 0 a pocsék. Kérdés: mennyi borravalót adjak? 3
4 Klasszikus megközel zelítés servratio=0.8; if service<3, tip=((0.10/3)*service+0.05)*servratio +... (1-servRatio)*(0.20/10*food+0.05); elseif service<7, tip=(0.15)*servratio +... (1-servRatio)*(0.20/10*food+0.05); else, tip=((0.10/3)*(service-7)+0.15)*servratio +... (1-servRatio)*(0.20/10*food+0.05); end 4
5 Fuzzy megközel zelítés 1. If service is poor or the food is rancid, then tip is cheap 2. If service is good, then tip is average 3. If service is excellent or food is delicious, then tip is generous 5
6 Fuzzy következtetés s koncepciója 6
7 Nyelvi változv ltozók Nyelvi változó az a nyelvi értékekből (fuzzy számok) álló halmaz mely alkalmas valamely értelmezési tartomány leírására. Egy nyelvi változót öt jellemzővel határozhatunk meg: a változó neve (pl.: víz hőmérséklet) a nyelvi értékek nevének előállítási szintaxisa a szemantikai jelentés (a nyelvi érték és a fuzzy szám egymáshoz rendelése) az értelmezési tartomány (pl.: 0-100C) a nyelvi értékek nevei (pl.: hideg, langyos, meleg, forró). 7
8 Nyelvi változv ltozók Víz hőmérséklet μ x 1 hideg langyos meleg forró x [ C] 8
9 Szabályok szabályb lybázis A szakértői ismereteket szokásosan HA...AKKOR... (IF...THEN...) típusú szabályokkal lehet legegyszerűbben kifejezni. pl: Ha vízhőfok = hideg és levegőhőfok = hideg akkor fűtés := max A szabálybázis a szabályok halmaza: a szakértői ismereteket magába foglaló nyelvi változókkal megfogalmazott kijelentések. 9
10 A szabályok forrása és s származtat rmaztatása A szakértői ismeretek és a mérnöki tapasztalat szakmai leírások, üzemeltetési könyvek kérdőív A kezelő személyzet beavatkozásainak megfigyelése A folyamat fuzzy modelljének (leírásának) felállítása Tanuló rendszerek felépítése 10
11 A következtetk vetkeztető rendszer A szabálybázis szabályait és az adatbázis adatait felhasználva meghatározza a bemenő megfigyeléshez tartozó fuzzy következtetéseket. A következtetés eredménye szintén egy fuzzy halmaz, amelynek tagsági függvényét a fuzzy logikai következtetés többféle elve szerint s-normák és t- normák felhasználásával lehet meghatározni. 11
12 A Mamdani következtetési módszerm A Mamdani féle következtetési módszer szerint, ha az X illetve az Y univerzumokon meghatározott A és B olyan két fuzzy halmaz, amelyeket egy reláció köt össze, akkor a következtetés eredménye az X Y tartományon meghatározott R fuzzy halmaz lesz, amelyet a következő összefüggés szerint határozunk meg: { μ μ } RM = RX Y = min A( x), B( y) /( x, y), x X, y Y X Y A Mamdani módszer végül is az fuzzy implikáció műveletét, mint relációs kapcsolatot, a "min" (minimum) operátor segítségével realizálja. A gyakorlatban ezt a módszert alkalmazzák leggyakrabban a szabályozástechnikában. 12
13 Fuzzifikáci ció A fuzzifikálás során egy (pl. állapotváltozó méréséből eredő) éles (pontos, határozott) érték fuzzy halmazokká alakul át, azaz nyelvi kifejezéséhez tagsági függvények értékei társulnak. 13
14 Implikáci ció 14
15 Implikáci ció 15
16 Aggregáci ció 16
17 Defuzzifikáci ció A defuzzifikáció folyamata nem más mint a logikai következtetések alapján egy kimeneti értelmezési tartományon születő fuzzy beavatkozások (következtetések) leképezése egy éles értékeket tartalmazó halmazra. 17
18 Defuzzifikáci ció MAX A maximális tagsági fokkal rendelkező alaphalmazbeli elem megkeresése μ x 1 μ ( x ) max μ ( x) x m = x m x X x X x m x 18
19 Defuzzifikáci ció FoM, LoML Az első (utolsó) maximum hely módszerek (FoM, LoM) olyan fuzzy halmazok esetén használhatók, a MAX módszer bizonytalanságának feloldására, ahol több maximumhely van, illetve ahol a maximális tagsági fok egy platón helyezkedik el és nem egy egyedülálló pont. μ x 1 FoM LoM x 19
20 Defuzzifikáci ció MoM A maximum átlagoló módszer a maximális tagsági fokú elemek átlagát választja a fuzzy halmazra legjellemzőbb elemnek. n xmi μ i= 1 x( xmi) = max μx( x) MoM = x X μ x 1 n xmi X MoM x 20
21 Defuzzifikáci ció CoG A fuzzy halmaz legjellemzőbb eleméül a halmaz elemeinek tagsági fokával súlyozott átlagát választja. μ x 1 CoG = n i= 1 n i= 1 μ( x ) x i μ( x ) i i CoG x 21
22 A fuzzy következtetés 22
23 Sugeno féle fuzzy következtetés 23
24 A fuzzy következtetés 24
25 Fuzzy szabályoz lyozás FIS Fuzzy halmazok Szabálybázis Input Skálázás Normalizálás Fuzzyfikáció Következteto rendszer Defuzzifikáció Folyamat Output Skálázás Normalizálás Szenzor 25
26 Fuzzy szabályoz lyozás előnye hátránya Könnyen implementálható technológia Emberi tudás könnyen leképezhető Nem kell matematikai modell a folyamatról Könnyen átalakítható Nemlineáris rendszerek szabályozása Imprecíz, zajos adatok feldolgozása Robusztus szabályozás Stabilitás vizsgálat nem megoldott Hangolás nagy tapasztalatot, sok megfigyelést igényel Nagy számítási igény Esetenként lassú Hardver támogatottsága kicsi 26
27 Matlab Fuzzy Logic Toolbox 27
28 Matlab Fuzzy Logic Toolbox 28
29 Matlab FIS építés s koncepciója 29
30 A FIS editor 30
31 Az MF editor 31
32 A szabályb lybázis szerkesztő 32
33 A szabályb lybázis nézőn 33
34 A következtetk vetkeztetési felület let nézőn 34
35 Köszönöm m a figyelmet! Kérdések? 35
Fuzzy Rendszerek. 2. előadás Fuzzy következtető rendszerek. Ballagi Áron egyetemi adjunktus. Széchenyi István Egyetem, Automatizálási Tsz.
Fuzzy Rendszerek 2. előadás Fuzzy következtető rendszerek Ballagi Áron egyetemi adjunktus Széchenyi István Egyetem, Automatizálási Tsz. Fuzzy következtető rendszer Fuzzy következtető Szabálybázis Fuzzifikáló
Matlab Fuzzy Logic Toolbox
Matlab Fuzzy Logic Toolbox The Future looks Fuzzy Newsweek, May, 28, 1990. A fuzzy irányítási rendszerek vizsgálatára Windows alatt futó Matlab programcsomag szimulációs eszközeit és a Matlab-ra ráépülő
Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás
Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű
Fuzzy halmazok jellemzői
A Fuzzy rendszerek, számítási intelligencia gyakorló feladatok megoldása Fuzzy halmazok jellemzői A fuzzy halmaz tartója az alaphalmaz azon elemeket tartalmazó részhalmaza, melyek tagsági értéke 0-nál
TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
Intelligens irányítások
Intelligens irányítások Fuzzy halmazok Ballagi Áron Széchenyi István Egyetem Automatizálási Tsz. Arisztotelészi szi logika 2 Taichi Yin-Yang Yang logika 3 Hagyományos és Fuzzy halmaz Egy hagyományos halmaz
Intelligens rendszerek gyakorlat
Intelligens rendszerek gyakorlat Ezen a gyakorlaton megismerkedhetünk a Fuzzy Logic Toolbox használatával. A Toolbox használatához indítsuk el a MATLAB R2016a-t. A célja a mai gyakorlatnak, hogy megismerjük,
XII. LABOR - Fuzzy logika
XII. LABOR - Fuzzy logika XII. LABOR - Fuzzy logika A gyakorlat célja elsajátítani a fuzzy logikával kapcsolatos elemeket: fuzzy tagsági függvények, fuzzy halmazmveletek, fuzzy következtet rendszerek felépítése,
A F u z z y C L I P S a l a p j a i
A F u z z y C L I P S a l a p j a i A CLIPS rendszer bovítése a bizonytalan információk hatékony kezelése céljából. K é t f é l e b i z o n y t a l a n s á g t á m o g a t á s a : Pontosan nem megfogalmazható
6. Fuzzy irányítási rendszerek
6. Fuzzy irányítási rendszerek Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Bevezetés 2 Fuzzy irányítási rendszerek felépítése A szabálybázis Az illeszkedés mértékét meghatározó
Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.
Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,
Az alállomási kezelést támogató szakértői funkciók
Az alállomási kezelést támogató szakértői funkciók dr. Kovács Attila Szakértői rendszerek Emberi szakértő kompetenciájával, tudásával rendelkező rendszer Jellemzői: Számítási műveletek helyett logikai
Intelligens technikák k a
Intelligens technikák k a döntéstámogatásban Döntések fuzzy környezetben Starkné Dr. Werner Ágnes 1 Példa: Alternatívák: a 1,a 2,a 3 Kritériumok: k 1,k 2, k 3,k 4 Az alternatívák értékelését az egyes kritériumok
5. A kiterjesztési elv, nyelvi változók
5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A
4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI
4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok
MATLAB alapismeretek II.
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. MATLAB alapismeretek II. Feladat: Plottoljuk a sin(x) függvényt a 0 x 4π tartományban Rajzoltassuk az e -x/3 sin(x) függvényt
Dunaújvárosi Főiskola Informatikai Intézet
Dunaújvárosi Főiskola Informatikai Intézet Bizonytalanságkezelés Dr. Seebauer Márta főiskolai tanár seebauer.marta@szgti.bmf.hu Bizonytalan tudás forrása A klasszikus logikában a kijelentések vagy igazak
Megújuló energia bázisú, kis léptékű energiarendszer
Megújuló energia bázisú, kis léptékű energiarendszer Molnárné Dőry Zsófia 2. éves doktorandusz hallgató, energetikai mérnök (MSc), BME, Energetikai Gépek és Rendszerek Tanszék, Magyar Energetikai Társaság
GDF Fuzzy Robot Műhely
GDF Fuzzy Robot Műhely Kovács János, Vári Kakas István 2, Gábor Dénes Főiskola,2 Alap- és Műszaki Tudományi Intézet, Budapest, Hungary 2. nov. 8. GDF-FRM Kezdeti lépések: A Gábor Dénes Főiskolán (GDF)
BGF. 4. Mi tartozik az adatmodellek szerkezeti elemei
1. Mi az elsődleges következménye a gyenge logikai redundanciának? inkonzisztencia veszélye felesleges tárfoglalás feltételes függés 2. Az olyan tulajdonság az egyeden belül, amelynek bármely előfordulása
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
Fuzzy Rendszerek. 3. előadás Alkalmazások. Ballagi Áron egyetemi adjunktus. Széchenyi István Egyetem, Automatizálási Tsz.
Fuzzy Rendszerek 3. előadás Alkalmazások Ballagi Áron egyetemi adjunktus Széchenyi István Egyetem, Automatizálási Tsz. 1 IEEE fuzzy szabályozások felmérése [1996] Több mint 1100 sikeres fuzzy alkalmazás
Összeállította Horváth László egyetemi tanár
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011
FUZZY KÖVETKEZTETÉS SŰRŰ ÉS RITKA SZABÁLYBÁZISOK ESETÉN. Johanyák Zsolt Csaba 1 Kovács Szilveszter 2
Johanyák Zs. Cs., Kovács Sz.: Fuzzy következtetés sűrű és ritka szabálybázisok esetén, Magyar Tudomány Ünnepe, Bács-Kiskun Megyei Tudományos Fórum, Kecskemét, 2005. november.10, ISSN: 1586-846x, pp. 201-206.
Operációs rendszerek. 11. gyakorlat. AWK - szintaxis, vezérlési szerkezetek UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED
UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED AWK - szintaxis, vezérlési szerkezetek Operációs rendszerek 11. gyakorlat Szegedi Tudományegyetem Természettudományi és Informatikai Kar Csuvik
Korszerű információs technológiák
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Korszerű információs technológiák Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc,
MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,
MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.
Kockázatalapú fenntartás-tervezés Fuzzy logika alkalmazásával. ELMŰ Hálózat Bálint Zsolt 2017/11/20
Kockázatalapú fenntartás-tervezés Fuzzy logika alkalmazásával Miért kell erről beszélni? A hálózat ELMŰ Nyrt. 4 050 km 2 Supply area 15 501 km 2 10 645 GWh Energy supplied 6 113 GWh 965 GWh / 9,1% Grid
LOGISZTIKAI ADATBÁZIS RENDSZEREK EXCEL ALAPOK
LOGISZTIKAI ADATBÁZIS RENDSZEREK EXCEL ALAPOK Lénárt Balázs tanársegéd TANTERV Hét Dátum Előadó Előadások Időpont: szerda 8:30-10:00, helye: LFSZÁMG Dátum Gyakvezető 1. 9. 11. Tokodi Adatbázis kezelés
Alkalmazásokban. Dezsényi Csaba Ovitas Magyarország kft.
Tudásmodellezés Kereskedelmi Alkalmazásokban Dezsényi Csaba Ovitas Magyarország kft. Tudásmenedzsment Adat -> Információ -> Tudás Intézményi tudásvagyon hatékony kezelése az üzleti célok megvalósításának
Programok értelmezése
Programok értelmezése Kód visszafejtés. Izsó Tamás 2016. szeptember 22. Izsó Tamás Programok értelmezése/ 1 Section 1 Programok értelmezése Izsó Tamás Programok értelmezése/ 2 programok szemantika értelmezése
LOGISZTIKAI ADATBÁZIS RENDSZEREK JOIN, AGGREGÁCIÓ
LOGISZTIKAI ADATBÁZIS RENDSZEREK JOIN, AGGREGÁCIÓ Lénárt Balázs tanársegéd TANTERV Hét Dátum Előadó Előadások Időpont: szerda 8:30-10:00, helye: LFSZÁMG Dátum Gyakvezető 1. 9. 11. Tokodi Adatbázis kezelés
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2017/18 2. félév 3. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
First Prev Next Last Go Back Full Screen Close Quit
Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy
10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK
MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul
Hibadetektáló rendszer légtechnikai berendezések számára
Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő
Meteorológiai adatok azonosítása hálózatfelügyeleti mérésekből
Magyar Tudomány 2007/7 Meteorológiai adatok azonosítása hálózatfelügyeleti mérésekből Kóczy T. László az MTA doktora, egyetemi tanár BME Távközlési és Médiainformatikai Tanszék, SZE Távközlési Tanszék
Dinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
BIZONYTALAN ADATOK KEZELÉSE: FUZZY SZAKÉRTŐI RENDSZEREK
BIZONYTALAN ADATOK KEZELÉSE: FUZZY SZAKÉRTŐI RENDSZEREK Szakértői rendszerek, 14. hét, 2008 Tartalom 1 Bevezető 2 Fuzzy történelem A fuzzy logika kialakulása Alkalmazások Fuzzy logikát követ-e a világ?
FUZZY LOGIKAI IRÁNYÍTÁS
Electrical Engineering, Budapest, Branch of Computer Science, p.116, (1993). FUZZY LOGIKAI IRÁNYÍTÁS Bevezetés Egyre nagyobb teret hódít napjainkban a fuzzy logikai irányítás. Az 1987-ben (II.Fuzzy Világkongresszus)
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
A PROGRAMOZÁS ALAPJAI 3. Készítette: Vénné Meskó Katalin
1 A PROGRAMOZÁS ALAPJAI 3 Készítette: Vénné Meskó Katalin Információk 2 Elérhetőség meskokatalin@tfkkefohu Fogadóóra: szerda 10:45-11:30 Számonkérés Időpontok Dec 19 9:00, Jan 05 9:00, Jan 18 9:00 egy
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
IBM Datacap Taskmaster. Bejövő Számlák feldolgozása Accounts Payable Taskmaster (APT) Előadó: Csendes Balázs / IBM Industry Solutions Brand Executive
IBM Datacap Taskmaster Bejövő Számlák feldolgozása Accounts Payable Taskmaster (APT) Előadó: Csendes Balázs / IBM Industry Solutions Brand Executive Időpont: 2011.11.24. Napirend Miért Bejövő számlák Feldolgozása?
Adatmodellezés. 1. Fogalmi modell
Adatmodellezés MODELL: a bonyolult (és időben változó) valóság leegyszerűsített mása, egy adott vizsgálat céljából. A modellben többnyire a vizsgálat szempontjából releváns jellemzőket (tulajdonságokat)
... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.
Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat
1. Bevezetés...4. 1.1. A kutatás iránya, célkitűzése...4. 1.2. A dokumentum felépítése...6. 2. Irodalmi áttekintés...8
Tartalomjegyzék 1. Bevezetés...4 1.1. A kutatás iránya, célkitűzése...4 1.. A dokumentum felépítése...6. Irodalmi áttekintés...8.1. Fuzzy logika, halmazok, műveletek...8.1.1. Fuzzy halmazok...9.1.. Fuzzy
Fuzzy következtetô rendszerek alkalmazása mobil hálózatok felügyeletében
Fuzzy következtetô rendszerek alkalmazása mobil hálózatok felügyeletében KÓCZY T. LÁSZLÓ, BOTZHEIM JÁNOS, SALLAI RICHÁRD, CSÁNYI KORNÉL Budapesti Mûszaki és Gazdaságtudományi Egyetem, Távközlési és Médiainformatikai
Az informatika logikai alapjai
Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. Az elsőrendű logikai nyelv interpretációja L interpretációja egy I-vel jelölt függvénynégyes,
Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések
BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
BASH SCRIPT SHELL JEGYZETEK
BASH SCRIPT SHELL JEGYZETEK 1 TARTALOM Paraméterek... 4 Változók... 4 Környezeti változók... 4 Szűrők... 4 grep... 4 sed... 5 cut... 5 head, tail... 5 Reguláris kifejezések... 6 *... 6 +... 6?... 6 {m,n}...
Csank András ELMŰ Hálózati Kft. Dunay András Geometria Kft. 2010.
Csank András ELMŰ Hálózati Kft. Dunay András Geometria Kft. Fuzzy-alapú döntéstámogató rendszer bevezetése az ELMŰ-ÉMÁSZ ÉMÁSZ-nál 2010. Tartalom - Előzmények - Fuzzy logika - Modell bemutatása - Modell-hitelesítés
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
ÉTEL ELŐKÉSZÍTÉS/KONYHA
Hónap/év:.20 DÁTUM ALÁÍRÁS MEGJEGYZÉSEK 01. 02. 03. 04. 05. 06. 07. 08. 09. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. MINDEN TÉTEL NAPI LEGALÁBB EGYSZERI TISZTÍTÁSA
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
VTOL UAV. Inerciális mérőrendszer kiválasztása vezetőnélküli repülőeszközök számára. Árvai László, Doktorandusz, ZMNE
Inerciális mérőrendszer kiválasztása vezetőnélküli repülőeszközök számára Árvai László, Doktorandusz, ZMNE Tartalom Fejezet Témakör 1. Vezető nélküli repülőeszközök 2. Inerciális mérőrendszerek feladata
Számítási intelligencia
Botzheim János Számítási intelligencia Budapesti Műszaki és Gazdaságtudományi Egyetem, Mechatronika, Optika és Gépészeti Informatika Tanszék Graduate School of System Design, Tokyo Metropolitan University
Méréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
LOGISZTIKAI ADATBÁZIS RENDSZEREK UNIÓ, ALLEKÉRDEZÉSEK
LOGISZTIKAI ADATBÁZIS RENDSZEREK UNIÓ, ALLEKÉRDEZÉSEK Lénárt Balázs tanársegéd TANTERV Hét Dátum Előadó Előadások Időpont: szerda 8:30-10:00, helye: LFSZÁMG Dátum Gyakvezető 1. 9. 11. Tokodi Adatbázis
Programozás alapjai. 5. előadás
5. előadás Wagner György Általános Informatikai Tanszék Cserélve kiválasztásos rendezés (1) A minimum-maximum keresés elvére épül. Ismétlés: minimum keresés A halmazból egy tetszőleges elemet kinevezünk
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Hardver leíró nyelvek (HDL)
Hardver leíró nyelvek (HDL) Benesóczky Zoltán 2004 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű
Költségbecslési módszerek a szerszámgyártásban. Tartalom. CEE-Product Groups. Költségbecslés. A költségbecslés szerepe. Dr.
Gépgyártástechnológia Tsz Költségbecslési módszerek a szerszámgyártásban Szerszámgyártók Magyarországi Szövetsége 2003. december 11. 1 2 CEE-Product Groups Tartalom 1. Költségbecslési módszerek 2. MoldCoster
Logikai ágensek. Mesterséges intelligencia március 21.
Logikai ágensek Mesterséges intelligencia 2014. március 21. Bevezetés Eddigi példák tudásra: állapotok halmaza, lehetséges operátorok, ezek költségei, heurisztikák Feltételezés: a világ (lehetséges állapotok
Mesterséges intelligencia
Mesterséges intelligencia Botzheim János Budapesti Műszaki és Gazdaságtudományi Egyetem, Mechatronika, Optika és Gépészeti Informatika Tanszék Motivációk Hogyan lehetne automatikussá tenni azokat az összetett
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Programozás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2014. február 23. TARTALOMJEGYZÉK 1 of 28 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Értékadás MAPLE -ben SAGE -ben 3
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
I. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
BASH script programozás II. Vezérlési szerkezetek
06 BASH script programozás II. Vezérlési szerkezetek Emlékeztető Jelölésbeli különbség van parancs végrehajtása és a parancs kimenetére való hivatkozás között PARANCS $(PARANCS) Jelölésbeli különbség van
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 169/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet 1034 Budapest, Bécsi út 96/B Tel., Fax:1/666-5544,1/666-5545 http://nik.uni-obuda.hu/imri Az 2004-ben alakult IMRI (BMF)
Témaválasztás, kutatási kérdések, kutatásmódszertan
Témaválasztás, kutatási kérdések, kutatásmódszertan Dr. Dernóczy-Polyák Adrienn PhD egyetemi adjunktus, MMT dernoczy@sze.hu A projekt címe: Széchenyi István Egyetem minőségi kutatói utánpótlás nevelésének
OKM ISKOLAI EREDMÉNYEK
OKM ISKOLAI EREDMÉNYEK Statisztikai alapfogalmak Item Statisztikai alapfogalmak Átlag Leggyakrabban: számtani átlag Egyetlen számadat jól jellemzi az eredményeket Óvatosan: elfed Statisztikai alapfogalmak
Gingl Zoltán, Szeged, 2015. 2015.09.29. 19:14 Elektronika - Alapok
Gingl Zoltán, Szeged, 2015. 1 2 Az előadás diasora (előre elérhető a teljes anyag, fejlesztések mindig történnek) Könyv: Török Miklós jegyzet Tiezte, Schenk, könyv interneten elérhető anyagok Laborjegyzet,
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Hő- és füstelvezetés, elmélet-gyakorlat
Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu
Számítógéppel segített folyamatmodellezés p. 1/20
Számítógéppel segített folyamatmodellezés Piglerné Lakner Rozália Számítástudomány Alkalmazása Tanszék Pannon Egyetem Számítógéppel segített folyamatmodellezés p. 1/20 Tartalom Modellező rendszerektől
Elsőrendű logika. Mesterséges intelligencia március 28.
Elsőrendű logika Mesterséges intelligencia 2014. március 28. Bevezetés Ítéletkalkulus: deklaratív nyelv (mondatok és lehetséges világok közti igazságrelációk) Részinformációkat is kezel (diszjunkció, negáció)
Belebegési derivatívumok vumok meghatároz rozása szélcsatorna kísérlettel Hunyadi MátyM tyás tanárseg rsegéd Témavezető: Dr. Hegedűs s István egyetemi
Belebegési derivatívumok vumok meghatároz rozása szélcsatorna kísérlettel Hunyadi MátyM tyás tanárseg rsegéd Témavezető: Dr. Hegedűs s István egyetemi tanár 009.05.05. Célkitűzés Mérés s bemutatása Következtetések
Kockázatmenedzsment a vállalati sikeresség érdekében. ISOFÓRUM XXIII. NMK Balatonalmádi, Dr. Horváth Zsolt (INFOBIZ Kft.
Kockázatmenedzsment a vállalati sikeresség érdekében ISOFÓRUM XXIII. NMK Balatonalmádi, 2016. 09. 15-16. Dr. Horváth Zsolt (INFOBIZ Kft.) CÉL és ESZKÖZ kérdése Vállalati sikeresség a CÉL támogatás iránya
30 MB INFORMATIKAI PROJEKTELLENŐR
INFORMATIKAI PROJEKTELLENŐR 30 MB DOMBORA SÁNDOR BEVEZETÉS (INFORMATIKA, INFORMATIAKI FÜGGŐSÉG, INFORMATIKAI PROJEKTEK, MÉRNÖKI ÉS INFORMATIKAI FELADATOK TALÁKOZÁSA, TECHNOLÓGIÁK) 2016. 09. 17. MMK- Informatikai
Integrált Köznevelési Elemző Rendszer Hollósi Géza, Kerekes Balázs, Menner Ákos, Nagy Zoltán
Integrált Köznevelési Elemző Rendszer Hollósi Géza, Kerekes Balázs, Menner Ákos, Nagy Zoltán Helyi oktatásirányítás fejlesztése TÁMOP 3.1.10-11/1-2012-0001 A KÖZNEVELÉS ÁGAZATI IRÁNYÍTÁSÁNAK ÁTALAKULÁSA
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs
Interaktív, grafikus környezet. Magasszintû alkalmazási nyelv (KAL) Integrált grafikus interface könyvtár. Intelligens kapcsolat más szoftverekkel
Készítette: Szabó Gábor, 1996 Az Az IntelliCorp IntelliCorp stratégiája: stratégiája: Kifinomult, Kifinomult, objektum-orientált objektum-orientált környezetet környezetet biztosít biztosít tervezéséhez,
Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában
Budapesti Műszaki és Gazdaságtudományi Egyetem Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Cselkó Richárd 2009. október. 15. Az előadás fő témái Soft Computing technikák alakalmazásának
FIT-jelentés :: Széchenyi István Általános Iskola Arló 3663 Arló, Rákóczi út 3/A. OM azonosító: Intézményi jelentés. 6.
FIT-jelentés :: 2011 Széchenyi István Általános Iskola Arló 3663 Arló, Rákóczi út 3/A. Létszámadatok A telephelyek kódtáblázata A 004 - Széchenyi István Általános Iskola (általános iskola) (3663 Arló,
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont
Egyenletek, egyenlőtlenségek, egyenletrendszerek I.
Egyenletek, egyenlőtlenségek, egyenletrendszerek I. DEFINÍCIÓ: (Nyitott mondat) Az olyan állítást, amelyben az alany helyén változó szerepel, nyitott mondatnak nevezzük. A nyitott mondatba írt változót
Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26
1/26 Logika és számításelmélet I. rész Logika Negyedik előadás Tartalom 2/26 Az elsőrendű logika szemantikája Formulák és formulahalmazok szemantikus tulajdonságai Elsőrendű logikai nyelv interpretációja
Alapok. tisztán funkcionális nyelv, minden függvény (a konstansok is) nincsenek hagyományos változók, az első értékadás után nem módosíthatók
Haskell 1. Alapok tisztán funkcionális nyelv, minden függvény (a konstansok is) nincsenek hagyományos változók, az első értékadás után nem módosíthatók elég jól elkerülhetők így a mellékhatások könnyebben
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával
Helyszíni beállítások táblázata
/7 [6.8.] =... ID43/46 Alkalmazható beltéri egységek *GSQHS8AA9W ThermaliaC* Megjegyzések - 4P3938-D -. /7 Felhasználói beállítások Előre beállított értékek Szobahőmérséklet Kényelmi (fűtés) 7.4.. R/W
Számítógépes geometria (mester kurzus)
2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)
Parametrikus tervezés
2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók
Elektronika 2. TFBE1302
Elektronika 2. FBE1302 áplálás FBE1302 Elektronika 2. Analóg elektronika Az analóg elektronikai alkalmazásoknál a részfeladatok többsége több alkalmazási területen is előforduló, közös feladat. Az ilyen
Mérési struktúrák
Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést